Oracle Berkeley DB

Getting Started with
the
SOL APIs

11g Release 2
Library Version 11.2.5.3

ORACLE
BERKELEY DB

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forum|D=271

Published 9/9/2013

http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

[= =Tl P PP vi
Conventions Used in this BOOKueiiiiiiiietiiiiiiiiteieeriiieeeeererineeeeresenneeeeeeennns vi
FOr More INformation ...eeeeiiiieeeiiiiiiietteeeiiieeeeeeeninneeeesessnneeeeeeesnsesssesnnnnnnes vi

(0011 - Vot L U L PP vii

1. Berkeley DB SQL: The ADSOLULE BaSICS vvviiiriiuereeieriieeeeeeeriineeeereserseeeseessnnnnsseeanns 1
BDB SQL Is Nearly Identical t0 SQLItE ccvuueiiiiiiiiiiiiiiiiieeieiiieeeereennneeeeeaennnnes 1
Getting and Installing BDB SQL ...vviiiiiiiiititieiiiitteeeeiireeeeeeessneeeesessnnnsessesannnns 1

ON WINAOWS SYSEEIMS . .uuuttiiiiiiieteereeiieeeeeeeeernseeeeeesenseseeessssnnsssesessnnaneess 1

(0] T U 1 |) PP 1

The BDB SQL ADO.NET INteIfate .oviiieeiiiiiiiiiieeiiiiiiiiiieeeeessnnneeeeeessssnnnnnanes 2
Prerequisites For Building The ADO.NET Packagecccevveiieiineeeeenannnnns 2

Building BDB SQL ADO.NET Interface For Windowsccceviiiiiiinneeiecnnnnnns 2

Building BDB SQL ADO.NET Interface For Windows Mobile 3

Accessing BDB SQL Databasesueeeeiiiiieeeeereiiiueteeresnieeeeeessnneseeeesssnnseseeeanns 3
The JoUrNal DirCOIY tiueetitiiiiiitteeeiiieeeereeeiaeeeeeessnneseesesennasesssssnnnnsaseennn 4
UNSUPPOrted PRAGMAS . ..uuetiiiiiiiiitttteiiieteeteeeiaeeeeeessnsseessessnnssessessnnnssssasnnns 4
Changed PRAGMAS ...ciiiiiiitttiiiiieteeteeaineeeeeeeennaeeeesessnnesesssssnsssssessnnnnssesanns 4
PRAGMA QUEO_VACUUIM .ettttiiiineeeeerennaeeeeeeennaseeeesssnnssseessssnssnssesssnnsasaeens 4
PRAGMA inCremental_VaCUUM ...ciiiiieeeeeeeeinneeeeeeennnerecessennssesesssnnseseesanns 5
PRAGMA journal_sSize_lIMiteeiiiiieiiiiiiiiiiiieeiiieeeereeinneeeeeeennneneeesennnnes 5
Added PRAGMAS ...ttt ee ettt et eee e reaaeerenneseannesanneesannessnnnesanns 5
PRAGMA bdbsgl_error_file covveeeiiiiiiiiiiiiiiiiiiieeeiiieteeeeenineeeeenennnneeeenns 5
PRAGMA bdbsql_LoCK_tableSize ...cvveineiiiiiiiiiiiiiiiiiiiiiiieiiieeeeenennneeeesanns 6
PRAGMA bdbsql_shared_reSOUICESeiiiieiieeeeeeeeiiieeeeeeeenrnneeeeesesnsseeeaannns 6
PRAGMA bdbsql_siNgle_ProCESS .uuueeeeiereiieeetereeireeeeeeeernneeeeeessnnaseeseennnnes 6
PRAGMA bdbsql_system_MEmMOIY ..iiiiireettereeiieeeereernneeeeresennaseeeessnnsesssanns 6
PRAGMA bdbsql_vacuum_fillpercentcoovveiiiiiiiiiitiiiiiiieeeeeeiineeeeeeennnnes 7
PRAGMA bdbsql_vaCUUM_PAgES ..eeeereeinnereereerineeeeeeeennesessesenssneesssennnssseees 7
PRAGMA MULLIVEISION tiiiiiiettteeiiiieteeeeeenieeeeeeeessnseseeeessnssesessessnnessssesanns 7
PRAGMA snapshot_iSOlationceiieiieeiiiieiiiieeieieeiiieeeererinneeeeeessnnneeeeeanns 7

[YN €Y N o o el (= PP PP 7
PRAGMA tXN_DULK ettt it et et et e e e reeaeerenneeaennerannns 8
RePlICAtion PRAGMASuiiiiiiiiitttiieiiiteteeeenieeeeeeeesnneneeesssnnnessssesnnnnneens 8
Miscellaneous DiffEreNCES ...vveeiiiiiitttiiiiiiiiettreeiiieeeeeeeainereeeessnsaeeeeessnnnnseesanns 8
Berkeley DB CONCEPES titiiirinttttierineeeereenuateeeeserneseesessnnseeessessnnnnsssessnnnneees 10
[Vo Y o (o] o KT P PP PP 10
USING SEQUENCES 1.uuutetttiiiiiteeteeeeinueeeeeeesnaeseesessnnssesesesnnesssssssnnsssssessnnnneens 10
Lol =T LY =T a U] Vol P 11

115 ATz | S PPN 12
(10 | 4 - | PP PP 12
ArOP _SEQUENCE .uvtiiiiiiineteeeeaaineeeeeeeernseeeesessnnssessessnnnsessssssnnsssssessnnnnes 12
Differences for Users of other SQL ENGINESuuueiiiiiiiiieteeieiiiineeeeeeinnereeeesennnnes 12

2. LOCKING NOLES tiiiiittttiiiiiietetteeeireeeeeeeenneeeeeeeennseeeessnnnssesesesnnssesesssnnssesenns 14
Internal Database USAZ@ ...ueiiiiiiieretieriiieeeeeeeennueeeeeesnnnneeesesssnsseeeessnnnneseenes 14
(o Tel Qi o =10 T | 1 = S P PPN 15

SQLItE LOCK USAZE tuuurertiiiiiiiteteereniineeeeeeenrnseseesessnnssesessssnsssessessnnanaees 15

9/9/2013 Getting Started with the BDB SQL APIs Page iii

Lock Usage with the BDB SQL INterfaceccceeieieiiiiuiiniieireiieereneeeenneenanns 16

3. Berkeley DB FEAtUIES viiiuutiiietieinttreneteeeneeeenneerenneeesneeeesneesenneessnessenneesennssannes 18
USING BULK LOAAING .uvtiintiiiintiiiitieitteeiteeeneeeeaneeeenneeeseeeesneeeennseesnsesennneens 18
Using Multiversion Concurrency CONTrol ...eeeueeeeieeeeieeiriieeeeiieeeeneeeesneeeenneceennees 18
Selecting the Page SiZe ...iviiiiiiiiiiiiiiiiiiiii et e et eeteeenaeeaaeeeennaeeannaennn 19

4. Using Replication with the SQL APleiiiniiiiiiiiiiiiiii it eeeieeeeieeeenaeeeanaeeannees 20
REPLICATION OVEIVIEW 1uieiiiittiiitieeitteeeteeeinteeeneteeaneeeesnseesnsssesneesennseesnnsennn 20

REPLICATION MASEEIS ..uviiietiiiitiiii et eiieteeteeteneeeeaeeeenneerenneesnneeeonneens 20
= ot) 3 N 21
DUrability GUAranNt@ES ...uueiieieeiriietienetreieeeeaneeeenneereneeeesneeeenneeeonaesenneens 21
TWO-Site RepliCation GrOUPS «icuveirereteerneerenneereneeeesneeresaeeesneeeesneseennaeennes 21
RePlICAtION PRAGMAS ...innttiiiietiiiittieiteteeteeneerenaeeeaneeeesneeesnaeeesneessnnsessnnens 21
PRAGMA repliCation ..uiieieeiieieeieieeieietereieerenneerereeessneeessaeeeonesessneseonnees 22
PRAGMA replication_initial_Mmasterccciviieiiiiiiiiiiiiiiiiiiiniieeeeneeennneens 22
PRAGMA replication_LloCal_Site ...icveeiiiieiiiiieiiiiiiiiiiiiieeniieeeieerenaeeanness 22
PRAGMA replication_remote_siteieveiiiiieiiiiiiiriieiiiieereieeenneeeenneeeanaens 22
PRAGMA replication_remove_Siteiicieiiiieiiiiiieiieereieeenneeeerneeeenaeennneens 23
PRAGMA replication_verbose_OULtPULcivveiiriieiiiieeriiteniieeeeieeeeneeeanneens 23
PRAGMA replication_verbose_fileccveieiiiiiiiiiiiiiiiniiiieiiieiiieenenneennness 23
Displaying Replication StatiStiCsieveeiereiierieeieneteereteerieereneeeenneeesneeeenneeenns 23
Replication Usage EXamPLlesS ...cieuiiriieiieiiieiitieiittteneeeeneeeerneeeenneeesnaseesneeenns 24
Example 1: Distributed Read at 3 Sites ..ivvviiriiiiiiiiiiiiiiiiiiieeiieeeieeaenaens 24
Example 2: 2-Site@ FailoVer ..uuieieiiiiiiiiiiiiiii et et eeeieeeeneeeeneeeaaneeenns 25

5. Administrating Berkeley DB SQL Databases ...cccueeeeeierieierieeeerieeennneeesiaeeeeneeennnees 28

Backing Up Berkeley DB SQL Databasesccceeierueeriieerrneereneeeenneeeenneeeenaeennneens 28
Backing Up Replicated Berkeley DB SQL Databasesccceeeviuiieiineennnnennnnnn. 28
Syncing with Oracle Databaseseeeeiuiiiiieiiiiiieiiiieiiieeiieeieeeeieeeaeneeeannees 28
Syncing on UnixX Platforms ..oeeeiiiieiiiiiiiiiiiiiiiiiieiiieieeeeneeeenneeeenaeeannens 29
Syncing on Windows Platformseeeeiiiiiieieiiiiiiiiieeiieeieeaineeeenneeasnnees 29
Syncing on Windows Mobile Platformscceveeiiiiiiiiiiiiiiiiiiiiiiiiennneeeannns 29
Data Migration ..oeiveueeiiiiiiiitiiieiiaeetereeaaeeereeerraressssesansesssessnnssssssannanes 30
Migration Using the Shellscceiiiiiiiiiiiiiiiiiiiiii it ieii i ei e eereeeeeeeeannas 30

A. Using the BFILE EXEENSION . .utiiutiiiittieiieeeieeeenneeeenaeeesneeessneeesnaeeesnasessneeesnneens 31
Supported Platforms and LanQUAaZESeueeiereeerereeernneerereeeeeneeeesneeeenaeesoneeeennees 31
BFILE SQL Objects and FUNCLIONS ...ueiiietirieeieieteeneereieeeraneeeesneeeenaeeesneeeenneens 31

BFILE_CREATE_DIRECTORYeiueietintnneeneeneaneaneaneanernereaeeneennennsnesnnsnnens 32
BFILE_REPLACE_DIRECTORY ...etuutueineeneanenneaneaneanenneaneaneaneensenssnesnesneanens 32
BFILE_DROP_DIRECTORYeiueinueeeineeneenennenneaneaneaneaneaneaneensanesneenesnaanens 32
BFILE_NAME .. .tetntintit ettt eee e e e eeneeneaneaneanesneaneeneennenesnneneenesnnens 32
3 T U Y I N 32
5] T] o PP 32
BFILE_READ ...ueineiniin it tee e e eeneeneaneaneaneaneenesnesneeneansennennsnesnesneenens 32
5]] PN 32
3] T Y A PP 33
BFILE C/C++ Objects and FUNCLIONS ..iiuueiiiiieiiiitirieeeieeeeneeeeeeeeenneeesnaeeanneens 33
SQLIte3_ColUMN_Dfile wiinnrtiii i e et i e et e e eeraeeeenaaeannaens 33
SQLIE3 _DfilE _OPEN .ttt i e e e e er e e e eaaes 34
SQLILE3 _Dfile_ClOSE tiuuetiieiiiit ittt re et e et et e e 34
SQLItE3 _Dfile IS _OPEN ettt e et e ee e e e e r e e 34

9/9/2013 Getting Started with the BDB SQL APIs Page iv

SQLItE3_Dfile_read .oovvneiiiiiiiiii i i e e et et e e e e aaaes 35

Sqlite3_bfile_file _eXiStS tuuiiiiirtiriiiiii i i eiieeieeeieeeeeeeeanneaaanaees 35
SQLIEE3 D ilE _SIZE vivneiiiit i i i e et e e e e e 36
sqlite3_bfile_final ..oveeiiiiiiiii i it i et et e e e e aaaas 36

9/9/2013 Getting Started with the BDB SQL APIs Page v

Preface

Welcome to the Berkeley DB SQL interface. This manual describes how to configure and

use the SQL interface to Berkeley DB 11¢g Release 2. This manual also describes common
administrative tasks, such as backup and restore, database dump and load, and data migration
when using the BDB SQL interface.

This manual is intended for anyone who wants to use the BDB SQL interface. Because usage of
the BDB SQL interface is very nearly identical to SQLite, prior knowledge of SQLite is assumed
by this manual. No prior knowledge of Berkeley DB is necessary, but it is helpful.

To learn about SQLite, see the official SQLite website at: http://www.sqlite.org
Conventions Used in this Book

The following typographical conventions are used within in this manual:

Keywords or literal text that you are expected to type is presented in a monospaced font.
For example: "Use the DB_HOME environment variable to identify the location of your
environment directory.”

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory.”

Program examples and literal text that you might type are displayed in a monospaced font on
a shaded background. For example:

/* File: gettingstarted_common.h */
typedef struct stock_dbs {
DB *inventory_dbp; /* Database containing inventory information */

DB *vendor_dbp; /* Database containing vendor information */
char *db_home_dir; /* Directory containing the database files */
char *inventory_db_name; /* Name of the inventory database */
char *vendor_db_name; /* Name of the vendor database */
} STOCK_DBS;
Note

Finally, notes of interest are represented using a note block such as this.
For More Information

Beyond this manual, you may also find the following sources of information useful when using
the Berkeley DB SQL interface:

» Berkeley DB Installation and Build Guide

» Berkeley DB Programmer's Reference Guide

9/9/2013 Getting Started with the BDB SQL APIs Page vi

http://www.sqlite.org/
http://download.oracle.com/docs/cd/E17076_02/html/installation/BDB_Installation.pdf
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf

» Berkeley DB Getting Started with Replicated Applications

To download the latest documentation along with white papers and other collateral, visit
http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle downloads, visit http://www.oracle.com/technetwork/
database/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: http://forums.oracle.com/forums/forum.jspa?forumiD=271, or for Oracle
Berkeley DB High Availability at: http://forums.oracle.com/forums/forum.jspa?forumiD=272.

For sales or support information, email to: berkeleydb-info_us®@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

9/9/2013 Getting Started with the BDB SQL APIs Page vii

http://download.oracle.com/docs/cd/E17076_02/html/gsg_db_rep/C/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=271
http://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

Chapter 1. Berkeley DB SQL: The Absolute Basics

Welcome to the Berkeley DB SQL interface. If you are a SQLite user who is using the BDB
SQL interface for reasons other than performance enhancements, this chapter tells you the
minimum things you need to know about the interface. You should simply read this chapter
and then skip the rest of this book.

If, however, you are using the BDB SQL interface for performance reasons, then you need
to read this chapter, plus most of the rest of the chapters in this book (although you can
probably skip most of Administrating Berkeley DB SQL Databases (page 28), unless you want
to administer your database "the Berkeley DB way").

Also, if you are an existing Berkeley DB user who is interested in the BDB SQL interface, read
this chapter plus the rest of this book.

BDB SQL Is Nearly Identical to SQLite

Your interaction with the BDB SQL interface is almost identical to SQLite. You use the same
APls, the same command shell environment, the same SQL statements, and the same PRAGMAs
to work with the database created by the BDB SQL interface as you would if you were using
SQLite.

To learn how to use SQLite, see the official SQLite Documentation Page.

That said, there are a few small differences between the two interfaces. These are described
in the remainder of this chapter.

Getting and Installing BDB SQL

The BDB SQL interface comes as a part of the Oracle Berkeley DB download. This can be
downloaded from the Oracle Berkeley DB download page.

On Windows Systems

The BDB SQL interface is automatically built and installed whenever you build or install
Berkeley DB for a Windows system. The BDB SQL interface d11s and the command line
interpreter have names that differ from a standard SQLite distribution as follows:

e dbsqgl.exe
This is the command line shell. It operates identically to the SQLite sqlite3.exe shell.
» libdb_sqgl50.d11

This is the library that provides the BDB SQL interface. It is the equivalent of the SQLite
sqlite3.dl1l library.

On Unix

In order to build the BDB SQL interface, you download and build Berkeley DB, configuring it

so that the BDB SQL interface is also built. Be aware that it is not built by default. Instead,
9/9/2013 Getting Started with the BDB SQL APIs Page 1

http://www.sqlite.org/docs.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

you need to tell the Berkeley DB configure script to also build the BDB SQL interface. For
instructions on building the BDB SQL interface, see Building the DB SQL Interface in the
Berkeley DB Installation and Build Guide.

The library and application names used when building the BDB SQL interface are different
than those used by SQLite. If you want library and command shell names that are consistent
with the names used by SQLite, configure the BDB SQL interface build using the compatibility
(--enable-sql_compat) option.

Warning

The compatibility option can break other applications on your platform that rely on
standard SQLite. This is especially true of Mac OS X, which uses standard SQLite for a
number of default applications.

Use the compatibility option only if you know exactly what you are doing.

Unless you built the BDB SQL interface with the compatibility option, libraries and a command
line shell are built with the following names:

« dbsql
This is the command line shell. It operates identically to the SQLite sqlite3 shell.
e libdb_sql

This is the library that provides the BDB SQL interface. It is the equivalent of the SQLite
libsqlite3 library.

The BDB SQL ADO.NET Interface

Download the ADO.NET package from the Oracle Berkeley DB download page.

Prerequisites For Building The ADO.NET Package

« To build the Ling package, you will need to install Microsoft .NET Framework 3.5 SP1.
» To build SQLite.Designer, you will need to install the Microsoft Visual Studio SDK.

« To build on Windows Mobile you will need to install the Microsoft Windows Mobile 6.5.3
Developer Tool Kit (DTK).

« To build on Windows Mobile you will need to use Visual Studio 2008.

Building BDB SQL ADO.NET Interface For Windows

« The package contains Visual Studio solution files:
e SQLite.NET.2008.s1ln and SQLite.NET.2010.sln

For use by with Visual Studio 2008 or 2010. Note that these solution files do not build
support for Ling or SQLite Designer.

9/9/2013

Getting Started with the BDB SQL APIs Page 2

../installation/build_unix.html#build_unix_sqlinter
../api_reference/C/dbsql.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

e SQLite.NET.2008.MSBuild.sln and SQLite.NET.2010.MSBuild.sln

For use with MSBuild (Microsoft Build Engine). These can also be used with Visual Studio.
These solutions exclude SQLite Designer and CompactFramework. By default, these do not
build support for Ling.

« Change the current platform target to ReleaseNativeOnly choose either Win32 or x64
depending on your target platform.

« Build the solution.
Building BDB SQL ADO.NET Interface For Windows Mobile

Building BDB SQL ADO.NET for Windows Mobile requires Windows Mobile 6.5.3 Professional
DTK. Typical requirements for installing this toolkit are:

« Visual Studio 2005 SP1 or Later

e ActiveSync 4.5

o .NET CompactFramework 2.0 SP1

» Windows Mobile 6 SDK

To build BDB SQL ADO.NET for Windows Mobile, do the following:

» Open the SQLite.NET.2008.WinCE.s1n solution file in Visual Studio 2008.

» Select Load Project Normally

Change the current platform to ReleaseNativeOnly.

Select Configuration Manager->new, then type or select the platform Windows Mobile
6.5.3 Professional DTK (ARMV4I). Choose to copy settings from Pocket PC 2003
(ARMVAI)

Build the solution.

Accessing BDB SQL Databases

BDB SQL databases can be accessed using a number of different drivers, applications and APIs.
Only some of these are supported by all major platforms, as identified in the following table.

UNIX/POSIX Windows Windows Android ioS
Mobile/CE
DBSQL Library X X X X X
DBSQL Shell X X X X X
ODBC X X
JDBC X X
ADO.NET X X

9/9/2013 Getting Started with the BDB SQL APIs Page 3

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

The Journal Directory

When you create a database using the BDB SQL interface, a directory is created alongside of
it. This directory has the same name as your database file, but with a -journal suffix.

That is, if you create a database called "mydb” then the BDB SQL interface also creates a
directory alongside of the "mydb" file called "mydb-journal”.

This directory contains files that are very important for the proper functioning of the BDB SQL
interface. Do not delete this directory or any of its files unless you know what you are doing.

In Berkeley DB terms, the journal directory contains the environment files that are required to
provide access to databases across multiple processes.

Unsupported PRAGMAs

The following PRAGMAs are not supported by the BDB SQL interface.

PRAGMA journal_mode
PRAGMA legacy_file_format

Also, PRAGMA fullfsync is always on for the BDB SQL interface. (This is an issue only for Mac OS
X platforms.)

Changed PRAGMAs

The following PRAGMASs are available in the BDB SQL interface, but they behave differently in
some way from standard SQLite.

PRAGMA auto_vacuum

The syntax for this PRAGMA is:

PRAGMA auto_vacuum
PRAGMA auto_vacuum = © | NONE | 1 | FULL | 2 | INCREMENTAL

Standard SQLite does not allow you to enable or disable auto-vacuum after a table has been
created. Berkeley DB, however, allows you to change this at any time.

In the previous syntax, @ and NONE both turn off auto vacuuming.

1 or FULL causes full vacuuming to occur. That is, the BDB SQL interface will vacuum the
entire database at each commit using a very low fill percentage (1%) in order to return
emptied pages to the file system. Because Berkeley DB allows you to call this PRAGMA at any
time, it is recommended that you do not turn on FULL vacuuming because doing so can result
in a great deal of overhead to your transaction commits.

If 2 or INCREMENTAL is used, then incremental vacuuming is enabled. The amount of
vacuuming that is performed for incremental vacuum is controlled using the following
PRAGMAs:

9/9/2013

Getting Started with the BDB SQL APIs Page 4

http://www.sqlite.org/pragma.html#pragma_journal_mode
http://www.sqlite.org/pragma.html#pragma_legacy_file_format
http://www.sqlite.org/pragma.html#pragma_fullfsync

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

PRAGMA bdbsql_vacuum_fillpercent (page 7)
PRAGMA bdbsql_vacuum_pages (page 7)

Note that you can call PRAGMA incremental_vacuum (page 5) to perform an incremental
vacuum operation on demand.

When performing vacuum operations, Berkeley DB defragments and repacks individual
database pages, while SQLite only truncates the freelist pages from the database file.

For more information on auto vacuum, see PRAGMA auto_vacuum in the SQLite
documentation.

PRAGMA incremental_vacuum

Performs incremental vacuum operations on demand. You can cause incremental vacuum
operations to be performed automatically using PRAGMA auto_vacuum (page 4).

Note that for SQLite, this PRAGMA is used to specify the maximum number of pages to be
freed during vacuuming. For Berkeley DB, you use PRAGMA bdbsql vacuum_pages instead.

PRAGMA journal_size_limit

For standard SQLite, this pragma identifies the maximum size that the journal file is allowed
to be.

Berkeley DB uses multiple journal files, Berkeley DB journal files are different to a SQLite
journal file in that they contain information about multiple transactions, rather than a single
transaction (similar to the SQLite WAL journal file). Over the course of the database's lifetime,
Berkeley DB will probably create multiple journal files. A new journal file is created when

the current journal file has reached the maximum size configured using the journal_size_limit
pragma.

Note that a BDB SQL interface journal file is referred to as a log file in the Berkeley DB
documentation.

Added PRAGMAs

The following PRAGMAs are added in the Berkeley DB SQL interface.

PRAGMA bdbsql_error_file

PRAGMA bdbsql_error_file [filename]

Redirects internal Berkeley DB error messages to the named file. If a relative path is specified
to [filename], then the path is interpreted as being relative to the current working
directory.

If this PRAGMA is issued with no filename, then the current target for Berkeley DB error
output is returned. By default, error messages are sent to STDERR.

This PRAGMA can be issued at any time; initial database access does not have to occur before
this PRAGMA can be used.

9/9/2013

Getting Started with the BDB SQL APIs Page 5

http://www.sqlite.org/pragma.html#pragma_auto_vacuum

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

PRAGMA bdbsql_lock_tablesize

PRAGMA bdbsql_lock_tablesize [= N]

Sets or reports the number of buckets in the Berkeley DB environment's lock object hash
table.

This pragma must be called prior to opening/creating the database environment.

For more details, see get_lk_tablesize and set_lk_tablesize.

PRAGMA bdbsql_shared_resources

PRAGMA bdbsql shared_resources [= N]

Sets or reports the maximum amount of memory (bytes) to be used by shared structures in the
main environment region.

This pragma must be called prior to opening/creating the database environment.

For more details, see get_memory_max and set_memory_max.

PRAGMA bdbsql_single_process

PRAGMA bdbsql_single process = boolean

To create a private environment rather than a shared environment, enable this pragma. The
cache and other region files will be created in memory rather than using file backed shared
memory.

In Berkeley DB SQL the default behavior is to allow a database to be opened and operated
on by multiple processes simultaneously. When this pragma is enabled, accessing the same
database from multiple processes simultaneously can lead to data corruption. Either option
supports accessing a database using a single process multi-threaded application.

By default omit sharing is disabled. This pragma must be called prior to opening/creating the
database environment. Because the setting is not persistent, you may need to invoke it before
every database open, or define compile option BDBSQL_OMIT_SHARING instead.

For more information, see Shared memory region. Note that this pragma causes the
DB_PRIVATE flag to be specified in the DB_ENV->open() method.

PRAGMA bdbsql_system_memory

PRAGMA bdbsql_system _memory [base segment ID]

Queries or sets a flag that causes the database's shared resources to be created in system
shared memory. By default the database's shared resources are created in file-backed shared
memory.

If a [base segment ID] is specified, the shared resources will be created using X/0Open

style shared memory interfaces. The [base segment ID] will be used as the starting ID for
shared resources used by the database. Use different [base segment ID] values for different
databases. It is possible for multi-process applications to use a single database by specifying
the same [base segment ID] to this PRAGMA. Each connection needs to set this PRAGMA.

9/9/2013

Getting Started with the BDB SQL APIs Page 6

../api_reference/C/envget_lk_tablesize.html
../api_reference/C/envset_lk_tablesize.html
../api_reference/C/envget_memory_max.html
../api_reference/C/envset_memory_max.html
../programmer_reference/env_region.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

This PRAGMA may be used to set a [base segment ID] only before the first table is created in
the database.

PRAGMA bdbsql_vacuum_fillpercent

PRAGMA bdbsql_vacuum_fillpercent [= N]

Sets or reports the page full threshold. Any page in the database that is at or below this
percentage full is considered for vacuuming when PRAGMA incremental_ vacuum is enabled.
The value is specified as a percentage between 1 and 100. By default, pages 85% full and
below are considered for vacuuming.

PRAGMA bdbsql_vacuum_pages

PRAGMA bdbsql_vacuum_pages [= N]

Sets or reports the maximum number of pages to be returned to the file system from the free
page list when incremental vacuuming is enabled. By default, up to 128 pages are removed
from the free list.

Page vacuuming is controlled using PRAGMA auto_vacuum (page 4).

PRAGMA multiversion

PRAGMA multiversion

Controls whether Multiversion Concurrency Control (MVCC) is on or off. You can not use this
PRAGMA at any time during your application's runtime after your database tables have been
accessed.

For more information on MVCC and snapshot isolation, see Using Multiversion Concurrency
Control (page 18)

PRAGMA snapshot_isolation

PRAGMA snapshot_isolation

Controls whether snapshot isolation is turned on. This PRAGMA can be used at any time during
your application's runtime after Multiversion Concurrency Control (MVCC) has been turned on.

For more information on MVCC and snapshot isolation, see Using Multiversion Concurrency
Control (page 18)

PRAGMA trickle

PRAGMA trickle [percent]

Ensures that at least the specified percentage of pages in the shared cache are clean. This can
cause pages that have been modified to be flushed to disk.

The trickle functionality enables an application to ensure that a page is available for reading
new information into the shared cache without waiting for a write operation to complete.

Specifying this PRAGMA without a percentage value causes the current trickle value to be
displayed. Specify 0 to turn the trickle functionality off.

9/9/2013

Getting Started with the BDB SQL APIs Page 7

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

PRAGMA txn_bulk

PRAGMA TXN_BULK

Enables transactional bulk loading optimization. For more information, see Using Bulk
Loading (page 18).

Replication PRAGMAs

Seven PRAGMAs were added to control replication. They are described in Using Replication
with the SQL API (page 20):

Note

If you are using these replication PRAGMAs and you want to perform a backup, there
is an additional backup step for the pragma file. See Backing Up Berkeley DB SQL
Databases (page 28) for more information.

PRAGMA replication

PRAGMA replication_initial_master

PRAGMA replication_local_site

PRAGMA replication_remote_site

PRAGMA replication_remove_site

PRAGMA replication_verbose_output

PRAGMA replication_verbose_file

Miscellaneous Differences

The following miscellaneous differences also exist between the BDB SQL interface and SQLite:

The BDB SQL interface does not support the IMMEDIATE keyword (BEGIN IMMEDIATE
behaves just like BEGIN).

When an exclusive transaction is active, it will block any new transactions from beginning
(they will be blocked during their first operation until the exclusive transactions commits
or aborts). Non-exclusive transactions that are active when the exclusive transaction begins
will not be able to execute any more operations without being blocked until the exclusive
transactions finishes.

Enabling MVCC mostly disables exclusive transactions. Exclusive transactions can still be
used, but they will run concurrently with regular transactions, even ones that write to the
database. The only advantage of exclusive transactions in this case is that two exclusive
transactions will be forced to run in serial, and that if an exclusive transaction and non-
exclusive transaction experience deadlock, then the non-exclusive transaction will always
be the transaction forced to release its locks.

9/9/2013

Getting Started with the BDB SQL APIs Page 8

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

For more information on MVCC and snapshot isolation, see Using Multiversion Concurrency
Control (page 18)

There are differences in how the two products work in a concurrent application that will
cause the BDB SQL interface to deadlock where SQLite would result in a different error. This
is because the products use different locking paradigms. See Locking Notes (page 14) for
more information.

The BDB SQL does not call the busy callback when a session attempts to operate the same
database page that another session has locked. It blocks instead. This means that the
functions sqlite3 busy handler and sqlite3 busy timeout are not effective in BDB

SQL.

The BDB SQL does not support two phase commit across databases. Attaching to multiple
databases can lead to inconsistency after recovery and undetected deadlocks when
accessing multiple databases from concurrent transactions in different order. Hence,
applications must ensure that they access databases in the same order in any transaction
that spans multiple databases. Else, a deadlock can occur that causes threads to block, and
the deadlock will not be detected by Berkeley DB.

In BDB SQL, when two sessions accessing the same database perform conflicting operations
on the same page, one session will be blocked until the conflicting operations are resolved.
For example,

Session 1:

dbsql> insert into a values (4);

dbsql> begin;

dbsql> insert into a values (5);
Session 2:

dbsql> select * from a;
What happens here is that Session 2 is blocked until Session 1 commits the transaction.

Session 1:

dbsql> commit;

Session 2:

dbsql> select * from a;
4
5

Under such situations in SQLite, operations poll instead of blocking, and a callback is used
to determine whether to continue polling.

By default, you always only have a single database file when you use BDB SQL interface
SQL, just as you do when you use SQLite. However, you can configure BDB SQL interface
at compile time to create one BDB SQL interface database file for each SQL table that you

9/9/2013

Getting Started with the BDB SQL APIs Page 9

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

create. How to perform this configuration is described in the Berkeley DB Installation and
Build Guide.

Berkeley DB Concepts

If you are a SQLite user who is migrating to the BDB SQL interface, then there are a few
Berkeley DB-specific concepts you might want to know about.

« Environments. The directory that is created alongside your database file, and which ends
with the "-journal” suffix, is actually a Berkeley DB environment directory.

» The Locking Subsystem

The Berkeley DB library implements locking in a different way to SQLite. SQLite implements
locking at a database level - any operation will take a lock on the entire database. Berkeley
DB implements a scheme called page level locking. The database divides data into relatively
small blocks. Each block corresponds to a page in database terms. Each block can contain
multiple pieces of user information. Berkeley DB takes locks on individual pages. This allows
for greater concurrency in applications, but means that applications are more likely to
encounter deadlocks.

See: Locking Notes (page 14) for more information.

e The Journal Subsystem
The BDB SQL interface implements write ahead logging (WAL), it stores journal files
differently to the SQLite WAL implementation. BDB SQL interface rolls over journal files

when they get to a certain size (default 10MB). It is possible for the to be multiple journal
files active at one time with BDB SQL interface.

Encryption

The Berkeley DB SQL interface supports the SQLite Encryption Extension (SEE) to ensure
security of your data. The supported encryption algorithm is AES-128 in CBC mode. For more
information on the concepts relating to BDB encryption, see the Berkeley DB Programmer's
Reference Guide.

To learn how to use the SQLite Encryption Extension (SEE), see the official SQLite
Documentation Page.

Note

The Berkeley DB SQL interface does not support the sqlite3_rekey method.

Using Sequences

You can use sequences with the SQL API. Sequences provide for an arbitrary number of
increasing or decreasing integers that persist across database accesses. Use sequences if you
need to create unique values in a highly efficient and persistent way.

9/9/2013 Getting Started with the BDB SQL APIs Page 10

../programmer_reference/env_encrypt.html
../programmer_reference/env_encrypt.html
http://www.hwaci.com/sw/sqlite/see.html
http://www.hwaci.com/sw/sqlite/see.html

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

To create and access a sequence, you must use SQL functionality that is unique to the BDB
SQL interface; no corresponding functionality exists in SQLite. The sequence functionality is
implemented using SQLite function plugins, as such it is necessary to use the 'select’ keyword
as a prefix to all sequence APIs.

The SQL API sequence support is a partial implementation of the sequence API defined in the
SQL 2003 specification.

The following sections describe the BDB SQL interface sequence API.

create_sequence

Creates a new sequence. A name is required, all other parameters are optional. For example:

SELECT create_sequence("my_sequence", "start", 100, "incr", 10,
"maxvalue", 300);

This creates a sequence called my_sequence starting at 100 and incrementing by 10 until it
reaches 300.

SELECT create_sequence("my_decr_sequence", "incr", -100,
"minvalue", -10000);

This creates a sequence call my_decr_sequence starting at 0 and decreasing by 100 until it
reaches -10000.

Parameters are:
* Name

Required parameter that provides the name of the sequence. It is an error to create a
sequence with another name that is currently in use within the database.

e start
The starting value for the sequence. If this parameter is not provided then @ is used.
e minvalue

The lowest value generated by the sequence. If this parameter is not provided and a
decrementing sequence is created, then INT64_MIN is used.

e maxvalue

The largest value generated by the sequence. If this parameter is not provided and an
incrementing sequence is created, then INT64_MAX is used.

e incr

The amount the sequence is incremented for each get operation. This value can be positive
or negative. If this parameter is not provided, then 1 is used.

e cache

9/9/2013

Getting Started with the BDB SQL APIs Page 11

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

Causes each handle to keep a cache of sequence values. So long as there are values
available in the cache, retrieving the next value is cheap and does not lead to contention
between handles.

Sequences with caches cannot be created or dropped within an explicit transaction.

Operations on caching sequences are not transactionally protected. That is, a rollback will
not result in a value being returned to the sequence.

Sequences with caches do not support the currval function.

The parameter following the cache parameter must be an integer value specifying the size
of the cache.

nextval

Retrieves the next value from the named sequence. For example:

SELECT nextval("my_sequence");
currval

Retrieves the last value that was returned from the named sequence. For example:

SELECT currval("my_sequence");
drop_sequence

Removes the sequence. For example:

SELECT drop_sequence("my_sequence");

Differences for Users of other SQL Engines

If you are used to a SQL implementation from other SQL engine (such as Oracle's RDBMS),
the SQL used by the BDB SQL interface (which is the same as used by SQLite) may hold some
surprises for you.

Some things in particular to take note of:

» Datatyping is weaker in SQLite than it is with standard SQL. For example, SQLite does not
enforce the length of a VARCHAR. While standard SQL will truncate a VARCHAR that is too
long, you could (for example) declare a VARCHAR(10) then put 500 characters in it without
any truncation, ever.

SQLite datatyping is described in detail on the Datatypes in SQLite Version 3 page.
« Do not use autocommit with SQLite. Instead, use begin exclusive and then commit.

« How NULLs are handled in SQLite may be different from what you are used to. See NULL
Handling in SQLite Versus Other Database Engines for details.

9/9/2013 Getting Started with the BDB SQL APIs Page 12

Library Version 11.2.5.3 Berkeley DB SQL: The Absolute Basics

» There are some features of SQL that SQLite does not support. For more information, see
SQL Features That SQLite Does Not Implement.

9/9/2013 Getting Started with the BDB SQL APIs Page 13

Chapter 2. Locking Notes

There are some important performance differences between the BDB SQL interface and
SQLite, especially in a concurrent environment. This chapter gives you enough information
about how the BDB SQL interface uses its database, as opposed to how SQLite uses its
database, in order for you to understand the difference between the two interfaces. It then
gives you some advice on how to best approach working with the BDB SQL interface in a multi-
threaded environment.

If you are an existing user of SQLite, and you care about improving your application
performance when using the BDB SQL interface in a concurrent situation, you should read
this chapter. Existing users of Berkeley DB may also find some interesting information in this
chapter, although it is mostly geared towards SQLite users.

Internal Database Usage

The BDB SQL interface and SQLite do different things when it comes to locking data in their
databases. In order to provide ACID transactions, both products must prevent concurrent
access during write operations. Further, both products prevent concurrent access by obtaining
software level locks that allow only the current holder of the lock to perform write access to
the locked data.

The difference between the two is that when SQLite requires a lock (such as when a
transaction is underway), it locks the entire database and all tables. (This is known as
database level locking.) The BDB SQL interface, on the other hand, only locks the portion
of the table being operated on within the current transactional context (this is known as
page level locking). In most situations, this allows applications using the BDB SQL interface
to operate concurrently and so have better read/write throughput than applications using
SQLite. This is because there is less lock contention.

By default, one Berkeley DB logical database is created within the single database file
for every SQL table that you create. Within each such logical database, each table row is
represented as a Berkeley DB key/data pair.

This is important because the BDB SQL interface uses Berkeley DB's Transaction Data Store
product. This means that Berkeley DB does not have to lock an entire database (all the tables
within a database file) when it acquires a lock. Instead, it locks a single Berkeley DB database
page (which usually contains a small sub-set of rows within a single table).

The size of database pages will differ from platform to platform (you can also manually
configure this), but usually a database page can hold multiple key/data pairs; that is, multiple
rows from a SQL table. Exactly how many table rows fit on a database page depends on the
size of your page and the size of your table rows.

If you have an exceptionally small table, it is possible for the entire table to fit on a single
database page. In this case, Berkeley DB is in essence forced to serialize access to the entire
table when it requires a lock for it.

Note, however, that the case of a single table fitting on a single database page is very rare,
and it in fact represents the abnormal case. Normally tables span multiple pages and so

9/9/2013

Getting Started with the BDB SQL APIs Page 14

Library Version 11.2.5.3 Locking Notes

Berkeley DB will lock only portions of your tables. This locking behavior is automatic and
transparent to your application.

Lock Handling

There is a difference in how applications written for the BDB SQL interface handle deadlocks
as opposed to how deadlocks are handled for SQLite applications. For the SQLite developer,
the following information is a necessary review in order to understand how the BDB SQL
interface behaves differently.

From a usage point of view, the BDB SQL interface behaves in the same way as SQLite in
shared cache mode. The implications of this are explained below.

SQLite Lock Usage

As mentioned previously in this chapter, SQLite locks the entire database while performing a
transaction. It also has a locking model that is different from the BDB SQL interface, one that
supports multiple readers, but only a single writer. In SQLite, transactions can start as follows:

e BEGIN

Begins the transaction, locking the entire database for reading. Use this if you only want to
read from the database.

e BEGIN IMMEDIATE

Begins the transaction, acquiring a "modify"” lock. This is also known as a RESERVED lock.
Use this if you are modifying the database (that is, performing INSERT, UPDATE, or DELETE).
RESERVED locks and read locks can co-exist.

e BEGIN EXCLUSIVE

Begins the transaction, acquiring a write lock. Transactions begun this way will be written
to the disk upon commit. No other lock can co-exist with an exclusive lock.

The last two statements are a kind of a contract. If you can get them to complete (that is, not
return SQLITE_LOCKED), then you can start modifying the database (that is, change data in
the in-memory cache), and you will eventually be able to commit (write) your modifications to
the database.

In order to avoid deadlocks in SQLite, programmers who want to modify a SQLite database
start the transaction with BEGIN IMMEDIATE. If the transaction cannot acquire the necessary
locks, it will fail, returning SQLITE_BUSY. At that point, the transaction falls back to an
unlocked state whereby it holds no locks against the database. This means that any existing
transactions in a RESERVED state can safely wait for the necessary EXCLUSIVE lock in order to
finally write their modifications from the in-memory cache to the on-disk database.

The important point here is that so long as the programmer uses these locks correctly, he can
assume that he can proceed with his work without encountering a deadlock. (Assuming that all
database readers and writers are also using these locks correctly.)

9/9/2013

Getting Started with the BDB SQL APIs Page 15

Library Version 11.2.5.3 Locking Notes

Lock Usage with the BDB SQL Interface

When you use the BDB SQL interface, you can begin your transaction with BEGIN or BEGIN
EXCLUSIVE.

Note that the IMMEDIATE keyword is ignored in the BDB SQL interface (BEGIN IMMEDIATE
behaves like BEGIN).

When you begin your transaction with BEGIN, Berkeley DB decides what kind of a lock you
need based on what you are doing to the database. If you perform an action that is read-only,
it acquires a read lock. If you perform a write action, it acquires a write lock.

Also, the BDB SQL interface supports multiple readers and multiple writers. This means that
multiple transactions can acquire locks as long as they are not trying to modify the same page.
For example:

Session 1:

dbsql> create table a(x int);
dbsgl> begin;

dbsql> insert into a values (1);
dbsql> commit;

Session 2:

dbsql> create table b(x int);
dbsql> begin;

dbsgl> insert into b values (1);
dbsql> commit;

Because these two sessions are operating on different pages in the Berkeley DB cache, this
example will work. If you tried this with SQLite, you could not start the second transaction
until the first had completed.

However, if you do this using the BDB SQL interface:

Session 1:

dbsgl> begin;

dbsql> insert into a values (2);
Session 2:

dbsqgl> begin;

dbsgl> insert into a values (2);

The second session blocks until the first session commits the transaction. Again, this

is because both sessions are operating on the same database page(s). However, if you
simultaneously attempt to write pages in reverse order, you can deadlock. For example:
Session 1:

dbsql> begin;

9/9/2013

Getting Started with the BDB SQL APIs Page 16

Library Version 11.2.5.3 Locking Notes

dbsgl> insert into a values (3);
dbsgl> insert into b values (3);

Session 2:

dbsgl> begin;

dbsql> insert into b values (3);
dbsql> insert into a values (3);
Error: database table is locked

What happens here is that Session 1 is blocked waiting for a lock on table b, while Session 2 is
blocked waiting for a lock on table a. The application can make no forward progress, and so it
is deadlocked.

When such a deadlock is detected one session loses the lock it got when executing its last
statement, and that statement is automatically rolled back. The rest of the statements in the
session will still be valid, and you can continue to execute statements in that session. The
session that does not lose its lock to deadlock detection will continue to execute as if nothing
happened.

Assume Session 2 was sacrificed to deadlock detection, no value would be inserted into a and
an error will be returned. But the insertion of value 3 into b would still be valid. Session 1
would continue to wait while inserting into table b until Session 2 either commits or aborts,
thus freeing the lock it has on table b.

When you begin your transaction with BEGIN EXCLUSIVE, the session is never aborted due to
deadlock or lock contention with another transaction. Non-exclusive transactions are allowed
to execute concurrently with the exclusive transaction, but the non-exclusive transactions
will have their locks released if deadlock with the exclusive transaction occurs. If two or more
exclusive transactions are running at the same time, they will be forced to execute in serial.

If Session 1 was using an exclusive transaction, then Session 2 would lose its locks when

deadlock is detected between the two. If both Session 1 and Session 2 start an exclusive
transaction, then the last one to start the exclusive transaction would be blocked after

executing BEGIN EXCLUSIVE until the first one is committed or aborted.

9/9/2013

Getting Started with the BDB SQL APIs Page 17

Chapter 3. Berkeley DB Features

When using the Berkeley DB SQL API, there are features that you can manage using PRAGMAs
that are unique to Berkeley DB. This chapter discusses these features.

Using Bulk Loading

Bulk loading is an I/0 optimization feature that is useful when loading large amounts of data
to the database inside of a single transaction. The bulk load optimization avoids writing some
log records to the journal file. This can provide significant performance benefits when loading
a large number of new rows into a database.

When you use bulk load, nested transactions are disabled. This means that you cannot
undo any single operation. Instead, if you want to undo a given operation, you must undo
everything performed within the transaction.

It is not possible to use the bulk load functionality when replication is enabled.
To enable bulk loading, use:
PRAGMA TXN_BULK =0 | 1;

Default value is @, which means the PRAGMA is turned off and so bulk loading is not in use. 1
means bulk loading is in use.

Using Multiversion Concurrency Control

Multiversion Concurrency Control (MVCC) enables snapshot isolation. Snapshot isolation means
that whenever a transaction would take a read lock on a page, it makes a copy of the page
instead, and then performs its operations on that copied page. This frees other writers from
blocking due to a read locks held by other transactions.

You should use snapshot isolation whenever you have a lot of read-only transactions operating
at the same time that read-write transactions. In this case, snapshot isolation will improve
transaction throughput, albeit at the cost of greater resource usage.

MVCC is described in more detail in Snapshot Isolation.

To use MVCC, you must enable it before you access any database tables. Once MVCC is
enabled, you can turn snapshot isolation on and off at anytime during the life of your
application.

To turn MVCC on, use:
PRAGMA multiversion = on | off;

This PRAGMA must be enabled before you access any database tables during your application
runtime, or an error is returned. Turning MVCC on automatically enables snapshot isolation. By
default MVCC is turned off.

Once MVCC is enabled, you can turn snapshot isolation on and off using:

9/9/2013

Getting Started with the BDB SQL APIs Page 18

../programmer_reference/transapp_read.html#snapshot_isolation

Library Version 11.2.5.3 Berkeley DB Features

PRAGMA snapshot_isolation = on | off;

This PRAGMA can be used at any time during the life of your application after MVCC has been
turned on. If you attempt to enable or disable snapshot isolation before MVCC is enabled, an
error is returned.

Selecting the Page Size

When using the BDB SQL interface, you configure your database page size in exactly the same
way as you do when using SQLite. That is, use PRAGMA page_size to report and set the page
size. This PRAGMA must be called before you create your first SQLite table. See the PRAGMA

page_size documentation for more information.

When you use PRAGMA cache_size to size your in-memory cache, you provide the cache size
in terms of a number of pages. Therefore, your database page size influences how large your
cache is, and so determines how much of your database will fit into memory.

The size of your pages can also affect how efficient your application is at performing disk
[70. It will also determine just how fine-grained the fine-grained locking actually is. This is
because Berkeley DB locks database pages when it acquires a lock.

Note that the default value for your page size is probably correct for the physical hardware
that you are using. In almost all situations, the default page size value will give your
application the best possible I/0 performance. For this reason, tuning the page size should
rarely, if ever, be attempted.

That said, when using the BDB SQL interface, the page size affects how much of your tables
are locked when read and/or write locks are acquired. (See Internal Database Usage (page 14)
for more information.) Increasing your page size will typically improve the bandwidth you get
accessing the disk, but it also may increase contention if too many key data pairs are on the
same page. Decreasing your page size frequently improves concurrency, but may increase the
number of locks you need to acquire and may decrease your disk bandwidth.

When changing your page size, make sure the value you select is a power of 2 that is greater
than 512 and less than or equal to 64KB. (Note that the standard SQLite MAX_PAGE_SIZE limit
is not examined for this upper bound.)

Beyond that, there are some additional things that you need to consider when selecting your
page size. For a thorough treatment of selecting your page size, see the section on Selecting a
page size in the Berkeley DB Programmer's Reference Guide.

9/9/2013 Getting Started with the BDB SQL APIs Page 19

http://www.sqlite.org/pragma.html#pragma_page_size
http://www.sqlite.org/pragma.html#pragma_page_size
../programmer_reference/general_am_conf.html#am_conf_pagesize
../programmer_reference/general_am_conf.html#am_conf_pagesize

Chapter 4. Using Replication with the SQL API

The Berkeley DB SQL interface allows you to use Berkeley DB's replication feature. You
configure and start replication using PRAGMAs that are specific to the task.

This chapter provides a high-level introduction of Berkeley DB replication. It then shows how
to configure and use replication with the SQL API.

For a more detailed description of Berkeley DB replication, see:
» Berkeley DB Getting Started with Replicated Applications

o Berkeley DB Programmer's Reference Guide

Note

You cannot access a BDB SQL database using multiple processes if you enable
replication for that database.

Replication Overview

Berkeley DB's replication feature allows you to automatically distribute your database
write operations to one or more read-only replicas. For this reason, BDB's replication
implementation is said to be a single master, multiple replica replication strategy.

A single replication master and all of its replicas are referred to as a replication group. Each
replication group can have one and only one master site.

When discussing Berkeley DB replication, we sometimes refer to replication sites. This is
because most production applications place each of their replication participants on separate
physical machines. In fact, each replication participant must be assigned a hostname/port pair
that is unique within the replication group.

Note that under the hood, the unit of replication is the environment. That is, data is
replicated from one Berkeley DB environment to one or more other Berkeley DB environments.
However, when used with the BDB SQL interface, you can think of this as replicating between
Berkeley DB databases, because the BDB SQL interface results in a single database file for
each environment.

Replication Masters

Every replication group has one and only one master. The master site is where you perform
write operations. These operations are then automatically replicated to the other sites in the
replication group. Because the other replica sites in the replication group are read-only, it is
an error for you to attempt to perform write operatons on them.

The replication master is usually automatically selected by the replication group using
elections. Replication elections simply determine which replication site has the most up-to-
date copy of the data, and so is in the best position to serve as the master site.

Note that when you initially start up your BDB SQL replicated application, you must explicitly
designate a specific site as the master. Over time, the master site can move from one

9/9/2013

Getting Started with the BDB SQL APIs Page 20

Library Version 11.2.5.3 Using Replication with the SQL API

environment to the next. For example, if the master site is shut down, becomes unavailable,
or a network partition causes it to lose contact with the rest of the replication group, then the
replication group will elect a new master if it can successfully hold an election. When the old
master comes back online, it rejoins the replication group as a read-only replica site.

Also, if you are enabling replication for an existing database, then that database must be
designated as the master. Doing this is required; otherwise the entire contents of the existing
database might be deleted during the replication startup process.

Elections

A replication group selects the master site by holding an election. In simplistic terms, each
participant in the replication group votes on who it believes has the most up-to-date version
of the data that the replication group is managing. The site that receives the most number of
votes becomes the master site, and all data write activity must occur there.

In order to hold an election, the replication group must have a quorum. In order to achieve
a quorum, a simple majority of the sites must be available to select the master. That is, n/2
+ 1 sites must be available, where n is the total number of replication group participants.
By requiring a simple majority, the replication group avoids the possibility of simultaneously
running with two master sites due to a network partition.

If a replication group cannot select a master, then it can only be used in read-only mode.
Durability Guarantees

Durability is a term that means data modifications have met some pre-defined set of
guarantees that the modifications will remain persistent across application run times. Usually,
this means that there is some assurance that the data modification has been written to stable
storage (that is, written to a hard drive).

For replicated BDB SQL applications, the durability guarantee is extended because data
modifications are also replicated to those environments that are participating in the
replication group. This ensures higher data durability than non-replicated applications by
placing data in multiple environments that usually reside on separate physical machines.

Two-Site Replication Groups

In a replication group that consists of exactly two sites, both sites must be available in order
to achieve a quorum. Without a quorum, a new master site cannot be elected. This means
that if the master site is unable to participate in the replication group, then the remaining
read-only replica cannot become the master site.

In other words, if you have a group that consists of exactly two sites, if you lose your master
site then the replication group must exist in read-only mode until the master site becomes
available again.

Replication PRAGMAs

To control replication when using the Berkeley DB SQL interface, you use the following
PRAGMAs. For an example of how to use these, see Replication Usage Examples (page 24).

9/9/2013 Getting Started with the BDB SQL APIs Page 21

Library Version 11.2.5.3 Using Replication with the SQL API

PRAGMA replication
PRAGMA replication=ON|OFF

Enables the local environment to participate in replication.

Before invoking this PRAGMA for a brand new database (one that has never been

opened), you must invoke the replication_local_site PRAGMA and then either the
replication_initial_master or the replication_remote_site PRAGMA. These actions
define the way this site fits into the replication group.

If you are enabling replication for an existing database, it must become the initial master for
a new replication group. You must invoke the replication_local_ site PRAGMA followed by
the replication_initial master PRAGMA before enabling replication.

If you use this PRAGMA to turn off replication, then replication is completely disabled for
the environment. In order to enable replication again, you follow the procedure used to
enable replication on an existing database; that is, invoke the replication_local_site
PRAGMA followed by the replication_initial master PRAGMA, followed by PRAGMA
replication=0ON.

PRAGMA replication_initial_master

PRAGMA replication_initial master=ON|OFF

Causes the local environment to start up as a master site. This PRAGMA must be used once and
only once in the replicated lifetime of a BDB SQL environment.

This PRAGMA is usually invoked for the first site in a new replication group before the
replication PRAGMA is invoked and before BDB SQL initially creates the underlying BDB
environment for a SQL database. Starting replication on the initial master site establishes the
new replication group so that other sites can join it.

However, you must call this PRAGMA when enabling replication for a database that already
exists. Doing so causes the existing database to become the replication master for a new
replication group.

Note that subsequent election activity can cause other sites in the replication group to
become master. Do not assume that the initial master site will remain master indefinitely, or
that it will rejoin the replication group as master after a shutdown.

PRAGMA replication_local_site

PRAGMA replication_local site="hostname:port"

Sets the local site information for replication.

PRAGMA replication_remote_site

PRAGMA replication_remote_site="hostname:port"

Sets information about a remote helper site in the replication group.

9/9/2013 Getting Started with the BDB SQL APIs Page 22

Library Version 11.2.5.3 Using Replication with the SQL API

This PRAGMA is needed when a site first joins an existing replication group to specify a site
that is already in the replication group. It must be invoked before the replication PRAGMA
is invoked. This PRAGMA is not needed on the initial master site or when restarting a site
that is already a member of the replication group. However, supplying this PRAGMA in those
situations does no harm.

Note that the information provided to this PRAGMA can be superseded by normal replication
activity over the course of the environment's lifetime.
PRAGMA replication_remove_site

PRAGMA replication_remove_site="hostname:port"

Removes the specified site from the replication group. Use this PRAGMA if you truly want to
remove the site permanently from the group. It is not desirable to call this PRAGMA if a site
has been temporarily shut down or disconnected from the rest of the replication group.

Removing a site from the replication group means that the site is no longer counted towards
the total number of sites belonging to the group. This is important when the replication group
requires knowledge about whether a quorum has been reached (such as when, for example,
elections are held).

PRAGMA replication_verbose_output
PRAGMA replication_verbose_output=ON|OFF

If set to TRUE, additional logging information specifically related to replication is created.

PRAGMA replication_verbose_file

PRAGMA replication_verbose_file="filename"

Indicates that verbose replication output should be sent to the specified file, as opposed to
STDOUT.

Displaying Replication Statistics

You can display a brief summary of replication statistics using .stat :rep:. This command
displays the most basic information about replication status, as well as some information that
is useful for troubleshooting.

dbsgl> .stat :rep:

Replication summary statistics

Environment configured as a replication client
Startup complete

1/50232 Maximum permanent LSN

2 Number of environments in the replication group

(%] Number of failed message sends

(%] Number of messages ignored due to pending recovery
(%] Number of log records currently queued

In the above output:

9/9/2013 Getting Started with the BDB SQL APIs Page 23

Library Version 11.2.5.3 Using Replication with the SQL API

e Environment configured as a replication client

Identifies the current role of the site within the replication group. In this example, the
current site is not the master site. Replication client is another term for replica.

e Startup complete

Indicates that this replica site has completed its synchronization with the master site.
Replica synchronization can take some time if there are many master transactions with
which it needs to catch up.

¢ Maximum permanent LSN

Identifies the most recent log record that is durably replicated on a master or acknowledged
by a replica. You can compare a replica’s maximum permanent LSN to the master's maximum
permanent LSN to determine if the replica is caught up with the master.

¢ Number of failed message sends

If this number is increasing, it could be an indication of network or communications
problems between sites in the replication group.

¢ Number of messages ignored due to pending recovery

If this number is increasing, this site is ignoring messages because it is starting up or
recovering and may need some time to catch up with the rest of the replication group.

e Number of log records currently queued

If this number is increasing, it means that connections to other sites may be unavailable or
congested and that there may be delays in durably replicating master transactions.

Replication Usage Examples

In this section we provide two examples of using replication with BDB SQL. The first example
shows a typical startup process. The second demonstrates master site failover.

Example 1: Distributed Read at 3 Sites

This example shows how a typical replication group startup sequence is performed. It initially
populates the master, then starts two replicas so that read operations can be distributed.
Then it shows what happens when an attempt is made to write to a replica.

Site 1:

Start initial master.

univ.db does not yet exist.

dbsgl univ.db
pragma replication_local_site="sitel:7000";
pragma replication_initial_master=0N;
pragma replication=ON;

9/9/2013

Getting Started with the BDB SQL APIs Page 24

Library Version 11.2.5.3

Using Replication with the SQL API

Create and populate university and country tables.

.read university.sql

Site 2:

Start first replica.

univ.db does not yet exist.

dbsqgl univ.db
pragma replication_local_site="site2:7001";
pragma replication_remote_site="sitel:7000";
pragma replication=0N;

Site 3:

Start second replica.

univ.db does not yet exist.

dbsqgl univ.db
pragma replication_local site="site3:7002";
pragma replication_remote_site="sitel:7000";
pragma replication=0ON;

Site 1:
Perform some writes and reads on master.
insert into country values ("Greenland","gl", @, 0, 0, 2);
insert into university values (26, "University College London",
"ucl.edu", "uk", "Europe", 18, 39, 47, 30);
select * from country where abbr = "gl";
update country set top 1000 = 1 where abbr = "gl";
Site 2:

Perform some reads on first replica.

select * from university where region = "Europe";

select count(*) from country where top_100 > 0;

Attempt to write on first replica.

insert into country values ("Antarctica","an", 0, 0, 9, 0);
.../univ.db: DBcursor->put: attempt to modify a read-only database

Error: attempt to write to a readonly database

Example 2: 2-Site Failover

Site 1:

Start initial master.
quote.db does not yet exist.
dbsgql quote.db

This example demonstrates failover of the master from one site to another. It shows how a

failed site can rejoin the replication group, and it shows that there is a window of time during
which write operations cannot be performed for the replication group. Finally, it shows how to
check the master's location.

9/9/2013

Getting Started with the BDB SQL APIs

Page 25

Library Version 11.2.5.3 Using Replication with the SQL API

pragma replication_local_site="sitel:7000";
pragma replication_initial_master=0N;
pragma replication=ON;

Create stock quote application table.
create table stock_quote (company_name text(40), price real);

Site 2:

Start replica.

quote.db does not yet exist.

dbsqgl quote.db
pragma replication_local site="site2:7001";
pragma replication_remote_site="sitel:7000";
pragma replication=ON;

Site 1:

Perform some writes on master.

insert into stock_quote values ("General Electric", 20.25);

insert into stock_quote values ("Nabisco", 24.75);

insert into stock_quote values ("United Healthcare", 31.00);
update stock_quote set price=25.25 where company_name = "Nabisco";

Site 2:

Perform some reads on replica.

select * from stock_quote where price < 30.00;

select price from stock_quote where
company_name = "General Electric";

Site 1:

Stop the initial master.
.exit

Site 2:

HHE
Now the remaining site does not accept write operations until

the other site rejoins the replication group.
HHE

insert into stock_quote values ("Prudential", 17.25);
.../quote.db: DBcursor->put: attempt to modify a read-only database
Error: attempt to write to a readonly database

Site 1:

Restart site, will rejoin replication group.

dbsgl quote.db
The earlier replication=ON causes replication to be
automatically started. This site may or may not become master
after rejoining replication group. Check status of site's

9/9/2013 Getting Started with the BDB SQL APIs Page 26

Library Version 11.2.5.3

Using Replication with the SQL API

startup and determine whether it is a master or a replica.

.stat

‘rep:

Replication summary statistics
Environment configured as a replication master
1/49056 Maximum permanent LSN

2

(4]
(4]
(4]

Number of environments in the replication group
Number of failed message sends

Number of messages ignored due to pending recovery
Number of log records currently queued

Assuming this site became master, perform some writes.
If this site is not the master, these writes will not
succeed and must be performed at the other site.
insert into stock_quote values ("Raytheon", 9.25);
insert into stock_quote values ("Cadbury", 7.75);

Site 2:

Read operations can be performed on master or replica

site.

select * from stock_quote where price < 21.00;

9/9/2013

Getting Started with the BDB SQL APIs Page 27

Chapter 5. Administrating Berkeley DB SQL
Databases

This chapter provides administrative procedures that are unique to the Berkeley DB SQL
interface.

Backing Up Berkeley DB SQL Databases

You can use the standard SQLite .dump command to backup the data managed by the BDB SQL
interface.

The BDB SQL interface supports the standard SQLite Online Backup APIl. However, there

is a small difference between the two interfaces. In the BDB SQL interface, the value
returned by the sqlite3_backup_remaining method and the number of pages passed to

the sqlite3_backup_step method, are estimates of the number of pages to be copied

and not exact values. To be certain that the backup process is complete, check if the
sqlite3 backup_step method has returned SQLITE_DONE. To learn how to use SQLite Online
Backup API, see the official SQLite Documentation Page.

If you are using replication, you will also need to copy the file that contains the replication
pragma information in order to have a full backup. To do that copy the file named pragma
from the database journal directory.

Backing Up Replicated Berkeley DB SQL Databases

When BDB SQL interface databases are replicated the process for backing up a regular
database should be followed. The user must then copy some additional files for the backup to
be complete.

The additional files can be found in the journal directory of the source database, and should
be copied into the journal directory of the backup copy. The journal directory is automatically
created when a Berkeley DB SQL interface database is created. The journal directory is
created in the same directory as the database file, it has the name of the database file with a
-journal appendix.

The files that need to be copied into the backup journal directory are:
e db.rep.egen

e db.rep.gen

e db.rep.init

e db.rep.system

Syncing with Oracle Databases

Oracle’s SQLite Mobile Client product allows you to synchronize a SQLite database with a back-
end Oracle database. Because the BDB SQL interface is a drop-in replacement for SQLite, this
means you can synchronize a Berkeley DB database with an Oracle back-end as well.

9/9/2013

Getting Started with the BDB SQL APIs Page 28

http://www.sqlite.org/backup.html

Library Version 11.2.5.3 Administrating Berkeley DB SQL Databases

Note

Berkeley DB SQL databases are not compatible with SQLite databases. In order for
sync to work, you must remove any currently existing SQLite databases.

Syncing on Unix Platforms

For Unix platforms, the easiest way to use Oracle's SQLite Mobile Client is to build the BDB SQL
interface with the compatibility option. That is, specify both --enable-sql and --enable-
sql-compat when you configure your Berkeley DB installation. This causes libraries with the
exact same name as the SQLite libraries to be created when you build Berkeley DB.

Having done that, you must then change your platform's library search path so that it finds
the Berkeley DB libraries before any installed SQLite libraries. On many (but not all) Unix
platforms, you do this by modifying the LD_LIBRARY_PATH environment variable. See your
operating system documentation for information on how to change your search path for
dynamically linked libraries.

Once you have properly configured and built your Berkeley DB installation, and you have
properly configured your operating system, you can use the Oracle SQLite Mobile Client in
exactly the same way as you would if you were using standard SQLite libraries and databases
with it. See the Oracle Database Lite documentation for information on using SQLite Mobile
Client.

For information on building the BDB SQL interface, see the Configuring the SQL Interface
section in the Berkeley DB Installation and Build Guide.

Syncing on Windows Platforms

For Windows platforms, you use Oracle's SQLite Mobile Client by building the BDB SQL
interface in the same way as you normally do. See the Building Berkeley DB for Windows
chapter in the Berkeley DB Installation and Build Guide for more information.

Once you have built the product, rename the Berkeley DB SQL dlls so that they are named
identically to the standard SQLite dlls (sqlite3.dll). Install the renamed Berkeley DB SQL dll
along with the main Berkeley DB dll (libdb5x.dll) in the same directory as the SQLite dlls. See
the Building the SQL API section for details.

Finally, configure your Windows PATH environment variable so that it finds your Berkeley DB
dlls before it finds any standard SQLite dlls that might be installed on your system.

Once you have built your Berkeley DB installation and renamed your dlls, and you have
properly configured your operating system, you can use the Oracle SQLite Mobile Client in
exactly the same way as you would if you were using standard SQLite libraries and databases
with it. See the Oracle Database Lite documentation for information on using SQLite Mobile
Client.

Syncing on Windows Mobile Platforms

For Windows Mobile platforms, you use Oracle's SQLite Mobile Client by building the BDB SQL
interface in the same way as you normally do. See the Building Berkeley DB for Windows
Mobile chapter in the Berkeley DB Installation and Build Guide for more information.

9/9/2013 Getting Started with the BDB SQL APIs Page 29

http://download.oracle.com/docs/cd/E12095_01/nav/portal_booklist.htm
../installation/build_unix_sql.html
../installation/build_win.html
../installation/build_win_sql.html
http://download.oracle.com/docs/cd/E12095_01/nav/portal_booklist.htm
../installation/build_wince.html
../installation/build_wince.html

Library Version 11.2.5.3 Administrating Berkeley DB SQL Databases

Once you have built the product, rename the Berkeley DB SQL dll to sqlite3.d11. Then, copy
the dll to the \Windows path on the phone. Note that you only need the new sqlite3.dl11;
you do not need any of the other Berkeley DB dlls.

Once you have built your Berkeley DB installation and renamed your dlls, and you have
properly configured your operating system, you can use the Oracle SQLite Mobile Client in
exactly the same way as you would if you were using standard SQLite libraries and databases
with it. See the Oracle Database Lite documentation for information on using SQLite Mobile
Client.

Data Migration

If you have a database created by SQLite, you can migrate it to a Berkeley DB database for use

with the BDB SQL interface. For production applications, you should do this only when your

application is shutdown.

All data and schema supported by SQLite can be migrated to a Berkeley DB database.
Migration Using the Shells

To migrate your data from SQLite to a Berkeley DB database:

1. Make sure your application is shutdown.

2. Open the SQLite database within the sqlite3 shell.

3. Execute the .output command to specify the location where you want to dump data.

4. Dump the database using the SQLite .dump command.

5. Close the sqlite3 shell and open the Berkeley DB dbsql shell.

6. Load the dumped data using the .read command.

Note that you can migrate in the reverse direction as well. Dump the Berkeley DB database by
calling .dump from within the Berkeley DB dbsql shell, and load it into SQLite by .read from
within SQLite's sqlite3 shell.

9/9/2013 Getting Started with the BDB SQL APIs Page 30

http://download.oracle.com/docs/cd/E12095_01/nav/portal_booklist.htm
../api_reference/C/dbsql.html
../api_reference/C/dbsql.html

Appendix A. Using the BFILE
Extension

The BFILE data type allows the BDB SQL interface to access binary files that are stored in the
file system outside of the database. The binary file can be queried in exactly the same way
as any other data type stored in the database, but Berkeley DB is able to save space in the
database file by not embedding a large amount of binary data in it. This also helps overall
database performance.

Internally, a BFILE column or attribute stores a BFILE locater, which serves as a pointer to

the binary file. The locater maintains the directory alias and the filename. You can change
the path of BFILE without affecting the base table by using the BFILENAME function. BFILE

is somewhat like the BLOB data type, but it does not participate in transactions and it is not
recoverable. Instead, the underlying operating system is expected to provide file integrity and
durability.

The remainder of this section describes the various objects and functions that the BFILE
extension makes available to you. In addition, complete examples of using these extensions
are available with your Berkeley DB distribution. They are placed in the following location:

<db-dist>/lang/sql/sqlite/ext/bfile/examples

Supported Platforms and Languages

The BFILE extension is currently only supported for *nix platforms.

The BFILE extension it is not available in your library by default. Instead, you must enable
the extension when you compile Berkeley DB. See the Berkeley DB Installation and Build
Guide for information on how to enable this extension when you build Berkeley DB. Once
you have enabled the extension, applications will also need to load the BFILE library file:
libbfile_ext.so.

By default, the BFILE extension provides support for additional SQL statements. With some
extra configuration at Berkeley DB compile time, you can also obtain support for extensions to
the SQLite C/C++ interface. Both the SQL extensions and the extensions to the SQLite C/C++
interface are described in the following sections.

BFILE SQL Objects and Functions

When the BFILE extension is enabled, you can create a DIRECTORY object. These objects are
required before you can store a pointer to a file in a BFILE column.

DIRECTORY objects are stored in a special table called BFILE_DIRECTORY. This table is
automatically created for you when it is needed. You should not manually create this table.

You manage DIRECTORY objects using the following SQL functions:

BFILE_CREATE_DIRECTORY (page 32)

9/9/2013

Getting Started with the BDB SQL APIs Page 31

Library Version 11.2.5.3 Using the BFILE Extension

BFILE_REPLACE_DIRECTORY (page 32)
BFILE_DROP_DIRECTORY (page 32)

The following sections describe the SQL functions that you can use when the BFILE extension is
enabled.

BFILE_CREATE_DIRECTORY
BFILE_CREATE_DIRECTORY(directory, path)

Creates a DIRECTORY object as a path. The specified path must not already exist, or
Directory already exists is returned.

BFILE_REPLACE_DIRECTORY

BFILE_REPLACE_DIRECTORY(directory, path)

Replaces the named DIRECTORY object using the specified path. If the object does not exist,
Directory does not exist is returned.

BFILE_DROP_DIRECTORY
BFILE_DROP_DIRECTORY(directory)

Drops the named DIRECTORY object. If the object does not exist, Directory does not
exist is returned.

BFILE_NAME

BFILE_NAME(directory, filename)

Returns the BFILE locator.
BFILE_FULLPATH

BFILE_FULLPATH(column)

Returns the full path.

BFILE_OPEN
BFILE_OPEN(column)

Extracts the directory and file names from the BFILE locator, and then opens that file. On
success, a BFILE handle is returned. Otherwise, 0 is returned.

BFILE_READ

BFILE_READ(BFILE handle, amt, offset)

Reads at most amt data from the BFILE handle, starting at offset. On success, Data is
returned. Otherwise, 0 is returned to indicate that no more valid data is available.

BFILE_CLOSE
BFILE_CLOSE(BFILE handle)

9/9/2013 Getting Started with the BDB SQL APIs Page 32

Library Version 11.2.5.3 Using the BFILE Extension

Closes the BFILE handle.

BFILE_SIZE
BFILE _SIZE(column)

Returns the size of the BFILE. On success, the size is returned. Otherwise, -1 is returned.

BFILE C/C++ Objects and Functions

The BFILE extension can optionally make available to you some additional C language data
types and functions for use with the SQLite C/C++ interface. These are available to you only if
you take the proper steps when you compile Berkeley DB. See the Berkeley DB Installation and
Build Guide for more information.

Once enabled, the BFILE C extension makes the following new structure available to you:
typedef struct sqlite3_bfile sqlite3_bfile;

This structure serves as the BFILE handle when you are using the BFILE extension along with
the SQLite C/C++ interface.

In addition to the new structure, you can also use the following new C functions:

sqlite3_column_bfile
int
sqlite3_column_bfile(sqlite3_stmt *pStmt, int iCol,
sqlite3_bfile **ppBfile);
Returns a result set from a query against a column of type BFILE.

On success, SQLITE_OK is returned and the new BFILE handle is written to ppBfile. Otherwise,
SQLITE_ERROR is returned.

Parameters are:
e pStmt

Pointer to the prepared statement that the function is evaluating. The statement is created
using sqlite3_prepare_v2() or one of its variants.

If this statement does not point to a valid row, the result is undefined.
« iCol

Index of the column for which information should be returned. The left-most column of the
result set is index . Use sqlite3_column_count() to discover the number of columns in
the result set.

If the column index is out of range, the result is undefined.

« ppBfile

9/9/2013 Getting Started with the BDB SQL APIs Page 33

Library Version 11.2.5.3 Using the BFILE Extension

The BFILE handle that you are using for the query. This pointer is valid only until
sqlite3_step(), sqlite3_reset() or sqlite3_finalize() have been called.

The memory space used to hold this handle is freed by sqlite3_bfile_final (page 36) Do
not pass these pointers to sqlite3_free().

This function can be called successfully only if all of the following conditions are true. If any
of the following are not true, the result is undefined:

» The most recent call to sqlite3_step() has returned SQLITE_ROW.

» Neither sqlite3_reset() nor sqlite3_finalize() have been called since the last time
sqlite3 step() was called.

e sqlite3 step(), sqlite3 reset() or sqlite3 finalize() have not been called from a
different thread while this routine is pending.
sqlite3_bfile_open

int
sqlite3 bfile open(sqlite3 bfile *pBfile);

Opens a file for incremental read.
On success, SQLITE_OK is returned. Otherwise, SQLITE_ERROR is returned.

To avoid a resource leak, every opened BFILE handle should eventually be closed with the
sqlite3_bfile_close (page 34) function. Note that pBfile is always initialized such that it is
always safe to invoke sqlite _bfile close() against it, regardless of the success or failure

of this function.

sqlite3_bfile_close

int
sqlite3_bfile_close(sqlite3_bfile *pBfile);

Closes an open BFILE handle. The BFILE is closed unconditionally. Even if this function returns
an error, the BFILE is still closed.

Calling this routine with a null pointer (such as would be returned by failed call to
sqlite3_column_bfile()) is a harmless non-operation.

On success, SQLITE_OK is returned. Otherwise, SQLITE_ERROR is returned.

sqlite3_bfile_is_open

int
sqlite3_bfile_is_open(sqlite3 _bfile *pBfile, int *open);

Checks whether a BFILE handle is open. The open parameter is set to 1 if the file is open,
otherwise it is 0.

9/9/2013 Getting Started with the BDB SQL APIs Page 34

Library Version 11.2.5.3 Using the BFILE Extension

On success, SQLITE_OK is returned. Otherwise, SQLITE_ERROR is returned.

sqlite3_bfile_read
int
sqlite3_bfile_read(sqlite3_bfile *pBfile, void *oBuff, int nSize,
int iOffset, int *nRead);
This function is used to read data from an opened BFILE handle into a caller-supplied buffer.

On success, SQLITE_OK is returned, the data that has been read is written to the output
buffer, oBuff, and the amount of data written to the buffer is recorded in nRead. Otherwise,
SQLITE_ERROR is returned.

Parameters are:
» pBfile
The BFILE handle from which the data is read.

This function only works on a BFILE handle which has been created by a prior
successful call to sqlite3_bfile_open (page 34) and which has not been closed by
sqlite3_bfile_close (page 34). Passing any other pointer in to this function results in
undefined and probably undesirable behavior.

 oBuff

The buffer used to contain the data that is read from pBfile. It must be at least nSize bytes
in size.

» nSize

The amount of data, in bytes, to read from the BFILE.
« iOffset

The offset from the beginning of the file where the read operation is to begin.
» nRead

Contains the amount of data, in bytes, actually written to buffer oBuff once the read
operation is completed.

Note

The size of the BFILE can be determined using the sqlite3_bfile_size (page 36)
function.

sqlite3_bfile_file_exists
int
sqlite3 bfile file exists(sqlite3 bfile *pBfile, int *exist);

9/9/2013 Getting Started with the BDB SQL APIs Page 35

Library Version 11.2.5.3 Using the BFILE Extension

Checks whether a BFILE exists. The exists parameter is set to 1 if the file is exists, otherwise
itis 0.

On success, SQLITE_OK is returned. Otherwise, SQLITE_ERROR is returned.
sqlite3_bfile_size

int
sqlite3_bfile_size(sqlite3_bfile *pBfile, off_t *size);

Returns the size of the BFILE, in bytes.

On success, SQLITE_OK is returned, and size is set to the size of the BFILE, in bytes.
Otherwise, SQLITE_ERROR is returned.

This function only works on a BFILE handle which has been created by a prior successful call to
sqlite3_column_bfile (page 33) and which has not been finalized by sqlite3_bfile_final (page
36). Passing any other pointer in to this function results in undefined and probably

undesirable behavior.

sqlite3_bfile_final
int
sqlite3 bfile final(sqlite3 bfile *pBfile);

Frees a BFILE handle.

On success, SQLITE_OK is returned. Otherwise, SQLITE_ERROR is returned.

9/9/2013 Getting Started with the BDB SQL APIs Page 36

	Getting Started with the Oracle Berkeley DB SQL APIs
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information
	Contact Us

	Chapter 1. Berkeley DB SQL: The Absolute Basics
	BDB SQL Is Nearly Identical to SQLite
	Getting and Installing BDB SQL
	On Windows Systems
	On Unix
	The BDB SQL ADO.NET Interface
	Prerequisites For Building The ADO.NET Package
	Building BDB SQL ADO.NET Interface For Windows
	Building BDB SQL ADO.NET Interface For Windows Mobile

	Accessing BDB SQL Databases
	The Journal Directory
	Unsupported PRAGMAs
	Changed PRAGMAs
	PRAGMA auto_vacuum
	PRAGMA incremental_vacuum
	PRAGMA journal_size_limit

	Added PRAGMAs
	PRAGMA bdbsql_error_file
	PRAGMA bdbsql_lock_tablesize
	PRAGMA bdbsql_shared_resources
	PRAGMA bdbsql_single_process
	PRAGMA bdbsql_system_memory
	PRAGMA bdbsql_vacuum_fillpercent
	PRAGMA bdbsql_vacuum_pages
	PRAGMA multiversion
	PRAGMA snapshot_isolation
	PRAGMA trickle
	PRAGMA txn_bulk
	Replication PRAGMAs

	Miscellaneous Differences
	Berkeley DB Concepts
	Encryption
	Using Sequences
	create_sequence
	nextval
	currval
	drop_sequence

	Differences for Users of other SQL Engines

	Chapter 2. Locking Notes
	Internal Database Usage
	Lock Handling
	SQLite Lock Usage
	Lock Usage with the BDB SQL Interface

	Chapter 3. Berkeley DB Features
	Using Bulk Loading
	Using Multiversion Concurrency Control
	Selecting the Page Size

	Chapter 4. Using Replication with the SQL API
	Replication Overview
	Replication Masters
	Elections
	Durability Guarantees
	Two-Site Replication Groups

	Replication PRAGMAs
	PRAGMA replication
	PRAGMA replication_initial_master
	PRAGMA replication_local_site
	PRAGMA replication_remote_site
	PRAGMA replication_remove_site
	PRAGMA replication_verbose_output
	PRAGMA replication_verbose_file

	Displaying Replication Statistics
	Replication Usage Examples
	Example 1: Distributed Read at 3 Sites
	Example 2: 2-Site Failover

	Chapter 5. Administrating Berkeley DB SQL Databases
	Backing Up Berkeley DB SQL Databases
	Backing Up Replicated Berkeley DB SQL Databases

	Syncing with Oracle Databases
	Syncing on Unix Platforms
	Syncing on Windows Platforms
	Syncing on Windows Mobile Platforms

	Data Migration
	Migration Using the Shells

	Appendix A. Using the BFILE Extension
	Supported Platforms and Languages
	BFILE SQL Objects and Functions
	BFILE_CREATE_DIRECTORY
	BFILE_REPLACE_DIRECTORY
	BFILE_DROP_DIRECTORY
	BFILE_NAME
	BFILE_FULLPATH
	BFILE_OPEN
	BFILE_READ
	BFILE_CLOSE
	BFILE_SIZE

	BFILE C/C++ Objects and Functions
	sqlite3_column_bfile
	sqlite3_bfile_open
	sqlite3_bfile_close
	sqlite3_bfile_is_open
	sqlite3_bfile_read
	sqlite3_bfile_file_exists
	sqlite3_bfile_size
	sqlite3_bfile_final

