
Oracle Berkeley DB

Getting Started with
Replicated Applications

for Java

11g Release 2
Library Version 11.2.5.3

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United States and other
countries.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forumID=271

Published 9/9/2013

http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

9/9/2013 Using Replication with DB Page iii

Table of Contents
Preface ... v

Conventions Used in this Book .. v
For More Information ... vi

Contact Us ... vi
1. Introduction .. 1

Overview .. 1
Replication Environments .. 1
Replication Databases .. 2
Communications Layer ... 2
Selecting a Master .. 2

Replication Benefits ... 3
The Replication APIs .. 4

Replication Manager Overview .. 4
Replication Base API Overview .. 5

Holding Elections .. 5
Influencing Elections .. 6
Winning Elections ... 6
Switching Masters ... 7

Permanent Message Handling .. 7
When Not to Manage Permanent Messages ... 8
Managing Permanent Messages .. 8
Implementing Permanent Message Handling .. 9

2. Transactional Application .. 11
Application Overview .. 11
Program Listing ... 11

Class: RepConfig ... 12
Class: SimpleTxn ... 13
Method: SimpleTxn.main() ... 14
Method: SimpleTxn.init() ... 15
Method: SimpleTxn.doloop() ... 16
Method: SimpleTxn.printStocks() .. 18

3. The DB Replication Manager .. 20
Starting and Stopping Replication ... 21

Managing Election Policies ... 23
Selecting the Number of Threads ... 25

Adding the Replication Manager to SimpleTxn ... 25
Permanent Message Handling .. 33

Identifying Permanent Message Policies .. 33
Setting the Permanent Message Timeout .. 34
Adding a Permanent Message Policy to RepQuoteExampleGSG 35

Managing Election Times .. 36
Managing Election Timeouts ... 36
Managing Election Retry Times .. 36

Managing Connection Retries ... 36
Managing Heartbeats .. 37

4. Replica versus Master Processes .. 38

9/9/2013 Using Replication with DB Page iv

Determining State .. 38
Processing Loop ... 43
Example Processing Loop ... 45

Running It ... 52
5. Additional Features ... 55

Delayed Synchronization .. 55
Managing Blocking Operations .. 55
Stop Auto-Initialization .. 56
Read-Your-Writes Consistency .. 56
Client to Client Transfer .. 57

Identifying Peers ... 57
Bulk Transfers ... 58

9/9/2013 Using Replication with DB Page v

Preface
This document describes how to write replicated applications for Berkeley DB 11g Release
2 (library version 11.2.5.3). The APIs used to implement replication in your application are
described here. This book describes the concepts surrounding replication, the scenarios
under which you might choose to use it, and the architectural requirements that a replication
application has over a transactional application.

This book is aimed at the software engineer responsible for writing a replicated DB
application.

This book assumes that you have already read and understood the concepts contained in the
Berkeley DB Getting Started with Transaction Processing guide.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example: "The
Environment() constructor returns an Environment class object."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

import com.sleepycat.db.DatabaseConfig;

...

// Allow the database to be created.
DatabaseConfig myDbConfig = new DatabaseConfig();
myDbConfig.setAllowCreate(true);

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bold font. For example:

import com.sleepycat.db.Database;
import com.sleepycat.db.DatabaseConfig;

...

// Allow the database to be created.
DatabaseConfig myDbConfig = new DatabaseConfig();
myDbConfig.setAllowCreate(true);
Database myDb = new Database("mydb.db", null, myDbConfig);

Note

Finally, notes of special interest are represented using a note block such as this.

9/9/2013 Using Replication with DB Page vi

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a transactional DB application:

• Getting Started with Transaction Processing for Java

• Getting Started with Berkeley DB for Java

• Berkeley DB Collections Tutorial

• Berkeley DB Programmer's Reference Guide

• Berkeley DB Javadoc

To download the latest Berkeley DB documentation along with white papers and other
collateral, visit http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle Berkeley DB downloads, visit http://www.oracle.com/
technetwork/database/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: http://forums.oracle.com/forums/forum.jspa?forumID=271, or for Oracle
Berkeley DB High Availability at: http://forums.oracle.com/forums/forum.jspa?forumID=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

http://download.oracle.com/docs/cd/E17076_02/html/gsg_txn/JAVA/BerkeleyDB-Core-JAVA-Txn.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg/JAVA/BerkeleyDB-Core-JAVA-GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/collections/tutorial/BerkeleyDB-Java-Collections.pdf
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/java/index.html
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=271
http://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

9/9/2013 Using Replication with DB Page 1

Chapter 1. Introduction
This book provides a thorough introduction and discussion on replication as used with Berkeley
DB (DB). It begins by offering a general overview to replication and the benefits it provides. It
also describes the APIs that you use to implement replication, and it describes architecturally
the things that you need to do to your application code in order to use the replication APIs.
Finally, it discusses the differences in backup and restore strategies that you might pursue
when using replication, especially where it comes to log file removal.

You should understand the concepts from the Berkeley DB Getting Started with Transaction
Processing guide before reading this book.

Overview

The DB replication APIs allow you to distribute your database write operations (performed
on a read-write master) to one or more read-only replicas. For this reason, DB's replication
implementation is said to be a single master, multiple replica replication strategy.

Note that your database write operations can occur only on the master; any attempt to write
to a replica results in an error being raised by the DB API used to perform the write.

A single replication master and all of its replicas are referred to as a replication group. While
all members of the replication group can reside on the same machine, usually each replication
participant is placed on a separate physical machine somewhere on the network.

Note that all replication applications must first be transactional applications. The data that
the master transmits to its replicas are log records that are generated as records are updated.
Upon transactional commit, the master transmits a transaction record which tells the replicas
to commit the records they previously received from the master. In order for all of this to
work, your replicated application must also be a transactional application. For this reason, it
is recommended that you write and debug your DB application as a stand-alone transactional
application before introducing the replication layer to your code.

Replication Environments

The most important requirement for a replication participant is that it must use a unique
Berkeley DB database environment independent of all other replication participants. So
while multiple replication participants can reside on the same physical machine, no two such
participants can share the same environment home directory.

For this reason, technically replication occurs between unique database environments. So
in the strictest sense, a replication group consists of a master environment and one or more
replica environments. However, the reality is that for production code, each such environment
will usually be located on its own unique machine. Consequently, this manual sometimes talks
about replication sites, meaning the unique combination of environment home directory, host
and port that a specific replication application is using.

There is no DB-specified limit to the number of environments which can participate in a
replication group. The only limitation here is one of resources — network bandwidth, for
example.

Library Version 11.2.5.3 Introduction

9/9/2013 Using Replication with DB Page 2

(Note, however, that the Replication Manager does place a limit on the number of
environments you can use. See Replication Manager Overview (page 4) for details.)

Also, DB's replication implementation requires all participating environments to be assigned
IDs that are locally unique to the given environment. Depending on the replication APIs that
you choose to use, you may or may not need to manage this particular detail.

For detailed information on database environments, see the Berkeley DB Getting Started with
Transaction Processing guide. For more information on environment IDs, see the Berkeley DB
Programmer's Reference Guide.

Replication Databases

DB's databases are managed and used in exactly the same way as if you were writing a
non-replicated application, with a couple of caveats. First, the databases maintained in a
replicated environment must reside either in the ENV_HOME directory, or in the directory
identified by the EnvironmentConfig.addDataDir() method. Unlike non-replication
applications, you cannot place your databases in a subdirectory below these locations. You
should also not use full path names for your databases or environments as these are likely to
break when they are replicated to other machines.

Communications Layer

In order to transmit database writes to the replication replicas, DB requires a communications
layer. DB is agnostic as to what this layer should look like. The only requirement is that it be
capable of passing two opaque data objects and an environment ID from the master to its
replicas without corruption.

Because replicas are usually placed on different machines on the network, the
communications layer is usually some kind of a network-aware implementation. Beyond that,
its implementation details are largely up to you. It could use TCP/IP sockets, for example, or
it could use raw sockets if they perform better for your particular application.

Note that you may not have to write your own communications layer. DB provides a
Replication Manager that includes a fully-functional TCP/IP-based communications layer. See
The Replication APIs (page 4) for more information.

See the Berkeley DB Programmer's Reference Guide for a description of how to write your own
custom replication communications layer.

Selecting a Master

Every replication group is allowed one and only one master environment. Usually masters
are selected by holding an election, although it is possible to turn elections off and manually
select masters (this is not recommended for most replicated applications).

When elections are being used, they are performed by the underlying Berkeley DB replication
code so you have to do very little to implement them.

When holding an election, replicas "vote" on who should be the master. Among replicas
participating in the election, the one with the most up-to-date set of log records will win the

Library Version 11.2.5.3 Introduction

9/9/2013 Using Replication with DB Page 3

election. Note that it's possible for there to be a tie. When this occurs, priorities are used to
select the master. See Holding Elections (page 5) for details.

For more information on holding and managing elections, see Holding Elections (page 5).

Replication Benefits

Replication offers your application a number of benefits that can be a tremendous help.
Primarily replication's benefits revolve around performance, but there is also a benefit in
terms of data durability guarantees.

Briefly, the reasons why you might choose to implement replication in your DB application are:

• Improve application reliability.

By spreading your data across multiple machines, you can ensure that your application's
data continues to be available even in the event of a hardware failure on any given machine
in the replication group.

• Improve read performance.

By using replication you can spread data reads across multiple machines on your network.
Doing so allows you to vastly improve your application's read performance. This strategy
might be particularly interesting for applications that have readers on remote network
nodes; you can push your data to the network's edges thereby improving application data
read responsiveness.

Additionally, depending on the portion of your data that you read on a given replica, that
replica may need to cache part of your data, decreasing cache misses and reducing I/O on
the replica.

• Improve transactional commit performance

In order to commit a transaction and achieve a transactional durability guarantee, the
commit must be made durable. That is, the commit must be written to disk (usually, but not
always, synchronously) before the application's thread of control can continue operations.

Replication allows you to avoid this disk I/O and still maintain a degree of durability
by committing to the network. In other words, you relax your transactional durability
guarantees on the master, but by virtue of replicating the data across the network you gain
some additional durability guarantees above what is provided locally.

Usually this strategy is implemented using some form of an asynchronous transactional
commit on the master. In this way your data writes will eventually be written to disk, but
your application will not have to wait for the disk I/O to complete before continuing with its
next operation.

Note that it is possible to cause DB's replication implementation to wait to hear from one
or more replicas as to whether they have successfully saved the write before continuing.
However, in this case you might be trading performance for a even higher durability
guarantee (see below).

Library Version 11.2.5.3 Introduction

9/9/2013 Using Replication with DB Page 4

• Improve data durability guarantee.

In a traditional transactional application, you commit your transactions such that data
modifications are saved to disk. Beyond this, the durability of your data is dependent upon
the backup strategy that you choose to implement for your site.

Replication allows you to increase this durability guarantee by ensuring that data
modifications are written to multiple machines. This means that multiple disks, disk
controllers, power supplies, and CPUs are used to ensure that your data modification makes
it to stable storage. In other words, replication allows you to minimize the problem of a
single point of failure by using more hardware to guarantee your data writes.

If you are using replication for this reason, then you probably will want to configure your
application such that it waits to hear about a successful commit from one or more replicas
before continuing with the next operation. This will obviously impact your application's
write performance to some degree — with the performance penalty being largely dependent
upon the speed and stability of the network connecting your replication group.

For more information, see Permanent Message Handling (page 33).

The Replication APIs

There are two ways that you can choose to implement replication in your transactional
application. The first, and preferred, mechanism is to use the pre-packaged Replication
Manager that comes with the DB distribution. This framework should be sufficient for most
customers.

If for some reason the Replication Manager does not meet your application's technical
requirements, you will have to use the Replication Base APIs available through the Berkeley DB
library to write your own custom replication framework.

Both of these approaches are described in slightly greater detail in this section. The bulk
of the chapters later in this book are dedicated to these two replication implementation
mechanisms.

Replication Manager Overview

DB's pre-packaged Replication Manager exists as a layer on top of the DB library. The
Replication Manager is a multi-threaded implementation that allows you to easily add
replication to your existing transactional application. You access and manage the Replication
Manager using special methods and classes designated for its use. Mostly these are centered
around the Environment and EnvironmentConfig classes.

The Replication Manager:

• Provides a multi-threaded communications layer using pthreads (on Unix-style systems and
similar derivatives such as Mac OS X), or Windows threads on Microsoft Windows systems.

• Uses TCP/IP sockets. Network traffic is handled via threads that handle inbound and
outbound messages. However, each process uses a single socket that is shared using
select().

Library Version 11.2.5.3 Introduction

9/9/2013 Using Replication with DB Page 5

Note that for this reason, the Replication Manager is limited to a maximum of 60 replicas
(on Windows) and approximately 1000 replicas (on Unix and related systems), depending on
how your system is configured.

• Requires that only one instance of the environment handle be used.

• Upon application startup, a master can be selected either manually or via elections.
After startup time, however, during the course of normal operations it is possible for the
replication group to need to locate a new master (due to network or other hardware related
problems, for example) and in this scenario elections are always used to select the new
master.

If your application has technical requirements that do not conform to the implementation
provided by the Replication Manager, you must write implement replication using the DB
Replication Base APIs. See the next section for introductory details.

Replication Base API Overview

The Replication Base API is a series of Berkeley DB library classes and methods that you
can use to build your own replication infrastructure. You should use the Base API only if the
Replication Manager does not meet your application's technical requirements.

To make use of the Base API, you must write your own networking code. This frees you from
the technical constraints imposed by the Replication Manager. For example, by writing your
own framework, you can:

• Use a threading package other than pthreads (Unix) or Windows threads (Microsoft
Windows). This might be interesting to you if you are using a platform whose preferred
threading package is something other than (for example) pthreads, such as is the case for
Sun Microsystem's Solaris operating systems.

• Implement your own sockets. The Replication Manager uses TCP/IP sockets. While this
should be acceptable for the majority of applications, sometimes UDP or even raw sockets
might be desired.

For information on writing a replicated application using the Berkeley DB Replication Base
APIs, see the Berkeley DB Programmer's Reference Guide.

Holding Elections

Finding a master environment is one of the fundamental activities that every replication
replica must perform. Upon startup, the underlying DB replication code will attempt to locate
a master. If a master cannot be found, then the environment should initiate an election.

Note

In some rare situations, it is desireable for the application to manually select its
master. For these cases, elections can be turned off.

Library Version 11.2.5.3 Introduction

9/9/2013 Using Replication with DB Page 6

Manually selecting a master is an activity that should be performed infrequently,
if ever. You turn elections off by using the ReplicationConfig and
ReplicationManagerStartPolicy classes.

How elections are held depends upon the API that you use to implement replication. For
example, if you are using the Replication Manager elections are held transparently without
any input from your application's code. In this case, DB will determine which environment is
the master and which are replicas.

Influencing Elections

If you want to control the election process, you can declare a specific environment to be
the master. Note that for the Replication Manager, it is only possible to do this at application
startup. Should the master become unavailable during run-time for any reason, an election
is held. The environment that receives the most number of votes, wins the election and
becomes the master. A machine receives a vote because it has the most up-to-date log
records.

Because ties are possible when elections are held, it is possible to influence which
environment will win the election. How you do this depends on which API you are using. In
particular, if you are writing a custom replication layer, then there are a great many ways to
manually influence elections.

One such mechanism is priorities. When votes are cast during an election, the winner is
determined first by the environment with the most up-to-date log records. But if this is a tie,
the the environment's priority is considered. So given two environments with log records that
are equally recent, votes are cast for the environment with the higher priority.

Therefore, if you have a machine that you prefer to become a master in the event of an
election, assign it a high priority. Assuming that the election is held at a time when the
preferred machine has up-to-date log records, that machine will win the election.

Winning Elections

To win an election:

1. There cannot currently be a master environment.

2. The environment must have the most recent log records. Part of holding the election is
determining which environments have the most recent log records. This process happens
automatically; your code does not need to involve itself in this process.

3. The environment must receive the most number of votes from the replication
environments that are participating in the election.

If you are using the Replication Manager, then in the event of a tie vote the environment
with the highest priority wins the election. If two or more environments receive the same
number of votes and have the same priority, then the underlying replication code picks one
of the environments to be the winner. Which winner will be picked by the replication code is
unpredictable from the perspective of your application code.

Library Version 11.2.5.3 Introduction

9/9/2013 Using Replication with DB Page 7

Switching Masters

To switch masters:

1. Start up the environment that you want to be master as normal. At this time it is a
replica. Make sure this environment has a higher priority than all the other environments.

2. Allow the new environment to run for a time as a replica. This allows it to obtain the
most recent copies of the log files.

3. Shut down the current master. This should force an election. Because the new
environment has the highest priority, it will win the election, provided it has had enough
time to obtain all the log records.

4. Optionally restart the old master environment. Because there is currently a master
environment, an election will not be held and the old master will now run as a replica
environment.

Permanent Message Handling

Messages received by a replica may be marked with special flag that indicates the message
is permanent. Custom replicated applications will receive notification of this flag via
the DB_REP_ISPERM return value from the method. There is no hard requirement that a
replication application look for, or respond to, this return code. However, because robust
replicated applications typically do manage permanent messages, we introduce the concept
here.

A message is marked as being permanent if the message affects transactional integrity.
For example, transaction commit messages are an example of a message that is marked
permanent. What the application does about the permanent message is driven by the
durability guarantees required by the application.

For example, consider what the Replication Manager does when it has permanent message
handling turned on and a transactional commit record is sent to the replicas. First, the
replicas must transactional-commit the data modifications identified by the message.
And then, upon a successful commit, the Replication Manager sends the master a message
acknowledgment.

For the master (again, using the Replication Manager), things are a little more complicated
than simple message acknowledgment. Usually in a replicated application, the master
commits transactions asynchronously; that is, the commit operation does not block
waiting for log data to be flushed to disk before returning. So when a master is managing
permanent messages, it typically blocks the committing thread immediately before commit()
returns. The thread then waits for acknowledgments from its replicas. If it receives enough
acknowledgments, it continues to operate as normal.

If the master does not receive message acknowledgments — or, more likely, it does not receive
enough acknowledgments — the committing thread flushes its log data to disk and then
continues operations as normal. The master application can do this because replicas that
fail to handle a message, for whatever reason, will eventually catch up to the master. So by

Library Version 11.2.5.3 Introduction

9/9/2013 Using Replication with DB Page 8

flushing the transaction logs to disk, the master is ensuring that the data modifications have
made it to stable storage in one location (its own hard drive).

When Not to Manage Permanent Messages

There are two reasons why you might choose to not implement permanent messages. In part,
these go to why you are using replication in the first place.

One class of applications uses replication so that the application can improve transaction
through-put. Essentially, the application chooses a reduced transactional durability guarantee
so as to avoid the overhead forced by the disk I/O required to flush transaction logs to disk.
However, the application can then regain that durability guarantee to a certain degree by
replicating the commit to some number of replicas.

Using replication to improve an application's transactional commit guarantee is called
replicating to the network.

In extreme cases where performance is of critical importance to the application, the
master might choose to both use asynchronous commits and decide not to wait for message
acknowledgments. In this case the master is simply broadcasting its commit activities to its
replicas without waiting for any sort of a reply. An application like this might also choose to
use something other than TCP/IP for its network communications since that protocol involves
a fair amount of packet acknowledgment all on its own. Of course, this sort of an application
should also be very sure about the reliability of both its network and the machines that are
hosting its replicas.

At the other extreme, there is a class of applications that use replication purely to improve
read performance. This sort of application might choose to use synchronous commits on the
master because write performance there is not of critical performance. In any case, this kind
of an application might not care to know whether its replicas have received and successfully
handled permanent messages because the primary storage location is assumed to be on the
master, not the replicas.

Managing Permanent Messages

With the exception of a rare breed of replicated applications, most masters need some view
as to whether commits are occurring on replicas as expected. At a minimum, this is because
masters will not flush their log buffers unless they have reason to expect that permanent
messages have not been committed on the replicas.

That said, it is important to remember that managing permanent messages involves a fair
amount of network traffic. The messages must be sent to the replicas and the replicas
must acknowledge them. This represents a performance overhead that can be worsened by
congested networks or outright outages.

Therefore, when managing permanent messages, you must first decide on how many of
your replicas must send acknowledgments before your master decides that all is well and
it can continue normal operations. When making this decision, you could decide that all
replicas must send acknowledgments. But unless you have only one or two replicas, or you are
replicating over a very fast and reliable network, this policy could prove very harmful to your
application's performance.

Library Version 11.2.5.3 Introduction

9/9/2013 Using Replication with DB Page 9

Therefore, a common strategy is to wait for an acknowledgment from a simple majority of
replicas. This ensures that commit activity has occurred on enough machines that you can be
reliably certain that data writes are preserved across your network.

Remember that replicas that do not acknowledge a permanent message are not necessarily
unable to perform the commit; it might be that network problems have simply resulted in a
delay at the replica. In any case, the underlying DB replication code is written such that a
replica that falls behind the master will eventually take action to catch up.

Depending on your application, it may be possible for you to code your permanent message
handling such that acknowledgment must come from only one or two replicas. This is a
particularly attractive strategy if you are closely managing which machines are eligible to
become masters. Assuming that you have one or two machines designated to be a master in
the event that the current master goes down, you may only want to receive acknowledgments
from those specific machines.

Finally, beyond simple message acknowledgment, you also need to implement an
acknowledgment timeout for your application. This timeout value is simply meant to ensure
that your master does not hang indefinitely waiting for responses that will never come
because a machine or router is down.

Implementing Permanent Message Handling

How you implement permanent message handling depends on which API you are using to
implement replication. If you are using the Replication Manager, then permanent message
handling is configured using policies that you specify to the framework. In this case, you can
configure your application to:

• Ignore permanent messages (the master does not wait for acknowledgments).

• Require acknowledgments from a quorum. A quorum is reached when acknowledgments are
received from the minimum number of electable peers needed to ensure that the record
remains durable if an election is held.

An electable peer is any other site that potentially can be elected master.

The goal here is to be absolutely sure the record is durable. The master wants to hear from
enough electable peer that they have committed the record so that if an election is held,
the master knows the record will exist even if a new master is selected.

This is the default policy.

• Require an acknowledgment from at least one replica.

• Require acknowledgments from all replicas.

• Require an acknowledgment from at least one electable peer.

• Require acknowledgments from all electable peers.

Note that the Replication Manager simply flushes its transaction logs and moves on if a
permanent message is not sufficiently acknowledged.

Library Version 11.2.5.3 Introduction

9/9/2013 Using Replication with DB Page 10

For details on permanent message handling with the Replication Manager, see Permanent
Message Handling (page 33).

If these policies are not sufficient for your needs, or if you want your application to take more
corrective action than simply flushing log buffers in the event of an unsuccessful commit, then
you must use implement replication using the Base APIs.

When using the Base APIs, messages are sent from the master to its replica using a send()
callback that you implement. Note, however, that DB's replication code automatically sets the
permanent flag for you where appropriate.

If the send() callback returns with a non-zero status, DB flushes the transaction log
buffers for you. Therefore, you must cause your send() callback to block waiting for
acknowledgments from your replicas. As a part of implementing the send() callback, you
implement your permanent message handling policies. This means that you identify how
many replicas must acknowledge the message before the callback can return 0. You must also
implement the acknowledgment timeout, if any.

Further, message acknowledgments are sent from the replicas to the master using a
communications channel that you implement (the replication code does not provide a channel
for acknowledgments). So implementing permanent messages means that when you write your
replication communications channel, you must also write it in such a way as to also handle
permanent message acknowledgments.

For more information on implementing permanent message handling using a custom
replication layer, see the Berkeley DB Programmer's Reference Guide.

9/9/2013 Using Replication with DB Page 11

Chapter 2. Transactional Application
In this chapter, we build a simple transaction-protected DB application. Throughout the
remainder of this book, we will add replication to this example. We do this to underscore
the concepts that we are presenting in this book; the first being that you should start with a
working transactional program and then add replication to it.

Note that this book assumes you already know how to write a transaction-protected DB
application, so we will not be covering those concepts in this book. To learn how to write
a transaction-protected application, see the Berkeley DB Getting Started with Transaction
Processing guide.

Application Overview

Our application maintains a stock market quotes database. This database contains records
whose key is the stock market symbol and whose data is the stock's price.

The application operates by presenting you with a command line prompt. You then enter the
stock symbol and its value, separated by a space. The application takes this information and
writes it to the database.

To see the contents of the database, simply press return at the command prompt.

To quit the application, type 'quit' or 'exit' at the command prompt.

For example, the following illustrates the application's usage. In it, we use entirely fictitious
stock market symbols and price values.

> java db.repquote_gsg.SimpleTxn -h env_home_dir
QUOTESERVER> stock1 88
QUOTESERVER> stock2 .08
QUOTESERVER>
 Symbol Price
 ====== =====
 stock1 88

QUOTESERVER> stock1 88.9
QUOTESERVER>
 Symbol Price
 ====== =====
 stock1 88.9
 stock2 .08

QUOTESERVER> quit
>

Program Listing

Our example program is a fairly simple transactional application. At this early stage of its
development, the application contains no hint that it must be network-aware so the only

Library Version 11.2.5.3 Transactional Application

9/9/2013 Using Replication with DB Page 12

command line argument that it takes is one that allows us to specify the environment home
directory. (Eventually, we will specify things like host names and ports from the command
line).

Note that the application performs all writes under the protection of a transaction; however,
multiple database operations are not performed per transaction. Consequently, we simplify
things a bit by using autocommit for our database writes.

Also, this application is single-threaded. It is possible to write a multi-threaded or multi-
process application that performs replication. That said, the concepts described in this book
are applicable to both single threaded and multi-threaded applications so nothing is gained by
multi-threading this application other than distracting complexity. This manual does, however,
identify where care must be taken when performing replication with a non-single threaded
application.

Finally, remember that transaction processing is not described in this manual. Rather, see the
Berkeley DB Getting Started with Transaction Processing guide for details on that topic.

Class: RepConfig

Before we begin, we present a class that we will use to maintain useful information for us.
Under normal circumstances, this class would not be necessary for a simple transactional
example such as this. However, this code will grow into a replicated example that needs to
track a lot more information for the application, and so we lay the groundwork for it here.

The class that we create is called RepConfig and its only purpose at this time is to track the
location of our environment home directory.

package db.repquote_gsg;

public class RepConfig
{
 // Constant values used in the RepQuote application.
 public static final String progname = "SimpleTxn";
 public static final int CACHESIZE = 10 * 1024 * 1024;

 // member variables containing configuration information
 public String home; // String specifying the home directory for
 // rep files.

 public RepConfig()
 {
 home = "TESTDIR";
 }

 public java.io.File getHome()
 {
 return new java.io.File(home);
 }

}

Library Version 11.2.5.3 Transactional Application

9/9/2013 Using Replication with DB Page 13

Class: SimpleTxn

Our transactional example will consist of a class, SimpleTxn, that performs all our work for
us.

First, we provide the package declaration and then a few import statements that the class
needs.

package db.repquote_gsg;

import java.io.FileNotFoundException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.UnsupportedEncodingException;

import com.sleepycat.db.Cursor;
import com.sleepycat.db.Database;
import com.sleepycat.db.DatabaseConfig;
import com.sleepycat.db.DatabaseEntry;
import com.sleepycat.db.DatabaseException;
import com.sleepycat.db.DatabaseType;
import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;
import com.sleepycat.db.LockMode;
import com.sleepycat.db.OperationStatus;
import db.repquote_gsg.RepConfig;

public class SimpleTxn
{
 private RepConfig repConfig;
 private Environment dbenv;

Next, we provide our class constructor. This simply initializes our class data members.

 public SimpleTxn()
 throws DatabaseException
 {
 repConfig = null;
 dbenv = null;
 }

And then we provide our usage() method. At this point, this method has very little to report:

 public static void usage()
 {
 System.err.println("usage: " + repConfig.progname);
 System.err.println("-h home");

 System.err.println("\t -h home directory\n");

 System.exit(1);

Library Version 11.2.5.3 Transactional Application

9/9/2013 Using Replication with DB Page 14

 }

Method: SimpleTxn.main()

Having implemented our usage() method, we can jump directly into our main() method. This
method begins by instantiating a RepConfig object, and then collecting the command line
arguments so that it can populate the object with the appropriate data (just the environment
home directory, at this time):
 public static void main(String[] argv)
 throws Exception
 {
 RepConfig config = new RepConfig();
 // Extract the command line parameters
 for (int i = 0; i < argv.length; i++)
 {
 if (argv[i].compareTo("-h") == 0) {
 // home - a string arg.
 i++;
 config.home = argv[i];
 } else {
 System.err.println("Unrecognized option: " + argv[i]);
 usage();
 }
 }

And then perform a little sanity checking on the command line input:
 // Error check command line.
 if (config.home.length() == 0)
 usage();

Now we perform the class' work. To begin, we initialize the object. The init() method
actually opens our environment for us (shown in the next section).
 SimpleTxn runner = null;
 try {
 runner = new SimpleTxn();
 runner.init(config);

And then we call our doloop() method. This method is where we perform all our database
activity. See Method: SimpleTxn.doloop() (page 16) for it's details.
 runner.doloop();

And then, finally terminate the application (which closes our environment handle) and end the
method.
 runner.terminate();
 } catch (DatabaseException dbe) {
 System.err.println("Caught an exception during " +
 "initialization or processing: " + dbe.toString());
 if (runner != null)
 runner.terminate();

Library Version 11.2.5.3 Transactional Application

9/9/2013 Using Replication with DB Page 15

 }
 System.exit(0);
 } // end main

Method: SimpleTxn.init()

The SimpleTxn.init() method is used to open our environment handle. For readers familiar
with writing transactional DB applications, there should be no surprises here. However, we will
be adding to this in later chapters as we roll replication into this example.

The only thing worth noting in this method here is that we relax our transactional durability
guarantee for this application. We do this because the application will eventually be
replicated and so we don't need a high durability guarantee.

 public int init(RepConfig config)
 throws DatabaseException
 {
 int ret = 0;
 repConfig = config;
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setErrorStream(System.err);
 envConfig.setErrorPrefix(RepConfig.progname);

 envConfig.setCacheSize(RepConfig.CACHESIZE);
 envConfig.setTxnNoSync(true);

 envConfig.setAllowCreate(true);
 envConfig.setRunRecovery(true);
 envConfig.setInitializeLocking(true);
 envConfig.setInitializeLogging(true);
 envConfig.setInitializeCache(true);
 envConfig.setTransactional(true);
 try {
 dbenv = new Environment(repConfig.getHome(), envConfig);
 } catch(FileNotFoundException e) {
 System.err.println("FileNotFound exception: " + e.toString());
 System.err.println(
 "Ensure that the environment directory is pre-created.");
 ret = 1;
 }

 return ret;
 }

Finally, we present the SimpleTxn.terminate() method here. All this does is close
the environment handle. Again, there should be no surprises here, but we provide the
implementation for the sake of completeness anyway.

 public void terminate()
 throws DatabaseException
 {

Library Version 11.2.5.3 Transactional Application

9/9/2013 Using Replication with DB Page 16

 dbenv.close();
 }

Method: SimpleTxn.doloop()

We now implement our application's primary data processing method. This method provides a
command prompt at which the user can enter a stock ticker value and a price for that value.
This information is then entered to the database.

To display the database, simply enter return at the prompt.

To begin, we declare a database pointer:
 public int doloop()
 throws DatabaseException, , UnsupportedEncodingException
 {
 Database db = null;

Next, we begin the loop and we immediately open our database if it has not already been
opened.
 for (;;)
 {
 if (db == null) {
 DatabaseConfig dbconf = new DatabaseConfig();
 dbconf.setType(DatabaseType.BTREE);
 dbconf.setAllowCreate(true);
 dbconf.setTransactional(true);

 try {
 db = dbenv.openDatabase(null, // Txn handle
 RepConfig.progname, // db filename
 null, // db name
 dbconf);
 } catch (FileNotFoundException fnfe) {
 System.err.println("File not found exception" +
 fnfe.toString());
 // Get here only if the environment home directory
 // somehow does not exist.
 }
 }

Now we implement our command prompt. This is a simple and not very robust implementation
of a command prompt. If the user enters the keywords exit or quit, the loop is exited and
the application ends. If the user enters nothing and instead simply presses return, the entire
contents of the database is displayed. We use our printStocks() method to display the
database. (That implementation is shown next in this chapter.)

Notice that very little error checking is performed on the data entered at this prompt. If the
user fails to enter at least one space in the value string, a simple help message is printed and
the prompt is returned to the user. That is the only error checking performed here. In a real-
world application, at a minimum the application would probably check to ensure that the

Library Version 11.2.5.3 Transactional Application

9/9/2013 Using Replication with DB Page 17

price was in fact an integer or float value. However, in order to keep this example code as
simple as possible, we refrain from implementing a thorough user interface.

 BufferedReader stdin =
 new BufferedReader(new InputStreamReader(System.in));

 // listen for input, and add it to the database.
 System.out.print("QUOTESERVER> ");
 System.out.flush();
 String nextline = null;
 try {
 nextline = stdin.readLine();
 } catch (IOException ioe) {
 System.err.println("Unable to get data from stdin");
 break;
 }
 String[] words = nextline.split("\\s");

 // A blank line causes the DB to be dumped to stdout.
 if (words.length == 0 ||
 (words.length == 1 && words[0].length() == 0)) {
 try {
 printStocks(db);
 } catch (DatabaseException e) {
 System.err.println("Got db exception reading " +
 "DB: " + e.toString());
 break;
 }
 continue;
 }

 if (words.length == 1 &&
 (words[0].compareToIgnoreCase("quit") == 0 ||
 words[0].compareToIgnoreCase("exit") == 0)) {
 break;
 } else if (words.length != 2) {
 System.err.println("Format: TICKER VALUE");
 continue;
 }

Now we assign data to the DatabaseEntry classes that we will use to write the new
information to the database.

 DatabaseEntry key =
 new DatabaseEntry(words[0].getBytes("UTF-8"));
 DatabaseEntry data =
 new DatabaseEntry(words[1].getBytes("UTF-8"));

Having done that, we can write the new information to the database. Remember that because
a transaction handle is not explicitly used, but we did open the database such that it supports
transactions, then autocommit is automatically used for this database write.

Library Version 11.2.5.3 Transactional Application

9/9/2013 Using Replication with DB Page 18

Autocommit is described in the Berkeley DB Getting Started with Transaction Processing
guide.

Also, the database is not configured for duplicate records, so the data portion of a record
is overwritten if the provided key already exists in the database. However, in this case DB
returns OperationStatus.KEYEXIST — which we ignore.

 db.put(null, key, data);

Finally, we close our database before returning from the method.

 }
 if (db != null)
 db.close(true);
 return 0;
 }

Method: SimpleTxn.printStocks()

The printStocks() method simply takes a database handle, opens a cursor, and uses it to
display all the information it finds in a database. This is trivial cursor operation that should
hold no surprises for you. We simply provide it here for the sake of completeness.

If you are unfamiliar with basic cursor operations, please see the Getting Started with
Berkeley DB guide.

 public void terminate()
 throws DatabaseException
 {
 dbenv.close();
 }

 /*
 * void return type since error conditions are propagated
 * via exceptions.
 */
 private void printStocks(Database db)
 throws DatabaseException
 {
 Cursor dbc = db.openCursor(null, null);

 System.out.println("\tSymbol\tPrice");
 System.out.println("\t======\t=====");

 DatabaseEntry key = new DatabaseEntry();
 DatabaseEntry data = new DatabaseEntry();
 OperationStatus ret;
 for (ret = dbc.getFirst(key, data, LockMode.DEFAULT);
 ret == OperationStatus.SUCCESS;
 ret = dbc.getNext(key, data, LockMode.DEFAULT)) {
 String keystr = new String

Library Version 11.2.5.3 Transactional Application

9/9/2013 Using Replication with DB Page 19

 (key.getData(), key.getOffset(), key.getSize());
 String datastr = new String
 (data.getData(), data.getOffset(), data.getSize());
 System.out.println("\t"+keystr+"\t"+datastr);

 }
 dbc.close();
 }
} // end class

9/9/2013 Using Replication with DB Page 20

Chapter 3. The DB Replication Manager
The easiest way to add replication to your transactional application is to use the Replication
Manager. The Replication Manager provides a comprehensive communications layer that
enables replication. For a brief listing of the Replication Manager's feature set, see Replication
Manager Overview (page 4).

To use the Replication Manager, you make use of special methods off the Environment
and EnvironmentConfig classes, as well as the ReplicationManagerSiteConfig class.
You also use a series of related classes to perform your implementation. For example, in
order to detect whether your code is running as a master or a replica, you must implement
com.sleepycat.db.EventHandler. (see Determining State (page 38)). That is:

1. Create an environment handle as normal.

2. Configure your environment handle as needed (e.g. set the error file and error prefix
values, if desired).

3. Use the Replication Manager replication classes and methods to configure the Replication
Manager. Using these classes and methods causes DB to know that you are using the
Replication Manager.

Configuring the Replication Manager entails setting the replication environment's priority,
setting the TCP/IP address that this replication environment will use for incoming
replication messages, identifying TCP/IP addresses of other replication environments,
setting the number of replication environments in the replication group, and so forth.
These actions are discussed throughout the remainder of this chapter.

4. Open your environment handle. When you do this, be sure to specify
EnvironmentConfig.setInitializeReplication() when you configure your
environment handle. This is in addition to the configuration that you would normally
use for a transactional application. This causes replication to be initialized for the
application.

5. Start replication by calling Environment.replicationManagerStart().

6. Open your databases as needed. Masters must open their databases for read and write
activity. Replicas can open their databases for read-only activity, but doing so means they
must re-open the databases if the replica ever becomes a master. Either way, replicas
should never attempt to write to the database(s) directly.

Note

The Replication Manager allows you to only use one environment handle per process.

When you are ready to shut down your application:

1. Close your databases

2. Close your environment. This causes replication to stop as well.

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 21

Note

Before you can use the Replication Manager, you may have to enable it in your DB
library. This is not a requirement for Microsoft Windows systems, or Unix systems that
use pthread mutexes by default. Other systems, notably BSD and BSD-derived systems
(such as Mac OS X), must enable the Replication Manager when you configure the DB
build.

You do this by not disabling replication and by configuring the library with POSIX
threads support. In other words, replication must be turned on in the build (it is by
default), and POSIX thread support must be enabled if it is not already by default. To
do this, use the --enable-pthread_api switch on the configure script.

For example:
../dist/configure --enable-pthread-api

Starting and Stopping Replication

As described above, you introduce replication to an application by starting with a
transactional application, performing some basic replication configuration, and then starting
replication using Environment.replicationManagerStart().

You stop replication by closing your environment cleanly in the same way you would for any DB
application.

For example, the following code fragment initializes, then stops and starts replication. Note
that other replication activities are omitted for brevity.

Note

Note that the following code fragment would be part of a larger class that must
implement com.sleepycat.db.EventHandler. This class is used to track state
changes between master and replica. We put off that implementation for the
moment, but the point remains that the following code fragment would be contained
in a method or two that you would include in your com.sleepycat.db.EventHandler
implementation.

import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;
import com.sleepycat.db.ReplicationHostAddress;
import com.sleepycat.db.ReplicationManagerStartPolicy;
import com.sleepycat.db.ReplicationManagerSiteConfig;

...
 String progname = "example_replication";
 String envHome = "TESTDIR";
 int cachesize = 10 * 1024 * 1024;

 Environment dbenv;
 String listenHost = "mymachine.sleepycat.com";

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 22

 String otherHost = "anothermachine.sleepycat.com";
 int listenPort = 8080;
 int otherPort = 8081;

try {
 // Configure the environment handle
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setErrorStream(System.err);
 envConfig.setErrorPrefix(progname);
 envConfig.setCacheSize(cachesize);
 envConfig.setTxnNoSync(true);

 // Identify the local replication site. This is the local hostname
 // and port that this replication participant will use to receive
 // incoming replication messages. Note that this can be
 // performed only once for the application. It is required.
 ReplicationManagerSiteConfig thisHostConfig =
 new ReplicationManagerSiteConfig(listenHost, listenPort);
 thisHostConfig.setGroupCreator(creator);
 thisHostConfig.setLocalSite(true)
 envConfig.addReplicationManagerSite(thisHostConfig);

 // Set this application's priority. This is used for elections.
 //
 // Set this number to a positive integer, or 0 if you do not want
 // this site to be able to become a master.
 envConfig.setReplicationPriority(100);

 // Add a site to the list of replication environments known to
 // this application.
 ReplicationManagerSiteConfig remoteSiteConfig =
 new ReplicationManagerSiteConfig(otherHost, otherPort);
 remoteSiteConfig.setBootstrapHelper(true);
 envConfig.addReplicationManagerSite(remoteSiteConfig);

 // Configure the environment's subsystems. Note that we initialize
 // replication. This is required.
 envConfig.setAllowCreate(true);
 envConfig.setRunRecovery(true);
 envConfig.setThreaded(true);
 envConfig.setInitializeReplication(true);
 envConfig.setInitializeLocking(true);
 envConfig.setInitializeLogging(true);
 envConfig.setInitializeCache(true);
 envConfig.setTransactional(true);

 // Missing from this is where we set the event handle and the
 // acknowledgement policy. We discuss these things later in this

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 23

 // book.

 // Open our environment handle.
 try {
 dbenv = new Environment(envHome, envConfig);
 } catch(FileNotFoundException e) {
 System.err.println("FileNotFound exception: " + e.toString());
 System.err.println(
 "Ensure that the environment directory is pre-created.");
 }

 // Start the replication manager such that it has three threads.
 dbenv.replicationManagerStart(3,
 ReplicationManagerStartPolicy.REP_ELECTION);

 //
 // All other application code goes here, including
 // database opens.
 //

} catch (DatabaseException dbe) {
 // Error handling goes here
}

// Close out your application here.
try {
 // Make sure all your databases are closed.

 // Closing your environment stops replication.
 dbenv.close();
} catch (DatabaseException dbe) {
 // Error handling here.
}

// All done.

Managing Election Policies

Before continuing, it is worth taking a look at the startup election options that you can set for
replication. You set these using the ReplicationManagerStartPolicy class that you pass to
the Environment.replicationManagerStart() method.

In the previous example, we specified ReplicationManagerStartPolicy.REP_ELECTION
when we started replication. This causes the application to try to find a master upon startup.
If it cannot, it calls for an election. In the event an election is held, the environment receiving
the most number of votes will become the master.

There's some important points to make here:

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 24

• This option only requires that other environments in the replication group participate in
the vote. There is no requirement that all such environments participate. In other words, if
an environment starts up, it can call for an election, and select a master, even if all other
environment have not yet joined the replication group.

• It only requires a simple majority of participating environments to elect a master. This is
always true of elections held using the Replication Manager.

• As always, the environment participating in the election with the most up-to-date log files
is selected as master. If an environment with more recent log files has not yet joined the
replication group, it may not become the master.

Any one of these points may be enough to cause a less-than-optimum environment to be
selected as master. Therefore, to give you a better degree of control over which environment
becomes a master at application startup, the Replication Manager offers the following start-up
options:

Option Description

ReplicationManagerStartPolicy.
REP_MASTER

The application starts up and declares the
environment to be a master without calling
for an election. It is an error for more than
one environment to start up using this flag,
or for an environment to use this flag when a
master already exists.

Note that no replication group should ever
operate with more than one master.

In the event that a environment attempts
to become a master when a master already
exists, the replication code will resolve
the problem by holding an election. Note,
however, that there is always a possibility of
data loss in the face of duplicate masters,
because once a master is selected, the
environment that loses the election will have
to roll back any transactions committed until
it is in sync with the "real" master.

ReplicationManagerStartPolicy.
REP_CLIENT

The application starts up and declares the
environment to be a replica without calling
for an election. Note that the environment
can still become a master if a subsequent
application starts up, calls for an election,
and this environment is elected master.

ReplicationManagerStartPolicy.
REP_ELECTION

As described above, the application starts
up, looks for a master, and if one is not found
calls for an election.

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 25

Selecting the Number of Threads

Under the hood, the Replication Manager is threaded and you can control the number
of threads used to process messages received from other replicas. The threads that the
Replication Manager uses are:

• Incoming message thread. This thread receives messages from the site's socket and passes
those messages to message processing threads (see below) for handling.

• Outgoing message thread. Outgoing messages are sent from whatever thread performed a
write to the database(s). That is, the thread that called, for example, Database.put() is
the thread that writes replication messages about that fact to the socket.

Note that if this write activity would cause the thread to be blocked due to some condition
on the socket, the Replication Manager will hand the outgoing message to the incoming
message thread, and it will then write the message to the socket. This prevents your
database write threads from blocking due to abnormal network I/O conditions.

• Message processing threads are responsible for parsing and then responding to incoming
replication messages. Typically, a response will include write activity to your database(s), so
these threads can be busy performing disk I/O.

Of these threads, the only ones that you have any configuration control over are the message
processing threads. In this case, you can determine how many of these threads you want to
run.

It is always a bit of an art to decide on a thread count, but the short answer is you probably
do not need more than three threads here, and it is likely that one will suffice. That said,
the best thing to do is set your thread count to a fairly low number and then increase it if it
appears that your application will benefit from the additional threads.

Adding the Replication Manager to SimpleTxn

We now use the methods described above to add partial support to the SimpleTxn example
that we presented in Transactional Application (page 11). That is, in this section we will:

• Enhance our command line options to accept information of interest to a replicated
application.

• Configure our environment handle to use replication and the Replication Manager.

• Minimally configure the Replication Manager.

• Start replication.

Note that when we are done with this section, we will be only partially ready to run the
application. Some critical pieces will be missing; specifically, we will not yet be handling the
differences between a master and a replica. (We do that in the next chapter).

Also, note that in the following code fragments, additions and changes to the code are marked
in bold.

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 26

To begin, we make some significant changes to our RepConfig class because we will be using
it to maintain a lot more information that we needed for our simple transactional example.

We begin by importing a few new classes. java.util.Vector is used to organize a list of
"other host" definitions (that is, the host and port information for the other replication
participants known to this application). We also need a couple of classes used to manage
individual host and port information, as well as replication sites and startup policy
information.

package db.repquote_gsg;

import java.util.Vector;

import com.sleepycat.db.ReplicationHostAddress;
import com.sleepycat.db.ReplicationManagerSiteConfig;
import com.sleepycat.db.ReplicationManagerStartPolicy;

public class RepConfig
{

Next we add considerably to the constants and data members used by this class. All of this is
used to manage information necessary for replication purposes. We also at this point change
the program's name, since we will be doing that to the main class in our application a little
later in this description.

 // Constant values used in the RepQuote application.
 public static final String progname = "RepQuoteExampleGSG";
 public static final int CACHESIZE = 10 * 1024 * 1024;
 public static final int SLEEPTIME = 5000;

 // member variables containing configuration information
 // String specifying the home directory for rep files.
 public String home;
 // Stores an optional set of "other" hosts.
 public Vector<ReplicationHostAddress> otherHosts;
 // Priority within the replication group.
 public int priority;
 public ReplicationManagerStartPolicy startPolicy;
 // The host address to listen to.
 public ReplicationHostAddress thisHost;

 // member variables used internally.
 private int currOtherHost;
 private boolean gotListenAddress;

Now we update our class constructor to initialize all of these new variables:

 public RepConfig()
 {
 startPolicy = ReplicationManagerStartPolicy.REP_ELECTION;
 home = "TESTDIR";
 gotListenAddress = false;

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 27

 priority = 100;
 currOtherHost = 0;
 thisHost = new ReplicationManagerSiteConfig();
 otherHosts = new Vector();
 }

Finally, we finish updating this class by providing a series of new getter and setter methods.
These are used primarily for setting a retrieving host information of interest to our replicated
application:

 public java.io.File getHome()
 {
 return new java.io.File(home);
 }

 public void setThisHost(String host, int port, boolean creator)
 {
 gotListenAddress = true;
 thisHost.setHost(host);
 thisPort.setPort(port);
 thisHost.setGroupCreator(creator);
 }

 public ReplicationManagerSiteConfig getThisHost()
 {
 if (!gotListenAddress) {
 System.err.println("Warning: no host specified.");
 System.err.println("Returning default.");
 }
 return thisHost;
 }

 public ReplicationHostAddress getThisHostAddress()
 {
 if (!gotListenAddress) {
 System.err.println("Warning: no host specified.");
 System.err.println("Returning default.");
 }
 return thisHost.getAddress();
 }

 public boolean gotListenAddress() {
 return gotListenAddress;
 }

 public void addOtherHost(String host, int port)
 {
 ReplicationHostAddress newInfo =
 new ReplicationHostAddress(host, port);
 otherHosts.add(newInfo);

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 28

 }

 public ReplicationHostAddress getFirstOtherHost()
 {
 currOtherHost = 0;
 if (otherHosts.size() == 0)
 return null;
 return (ReplicationHostAddress)otherHosts.get(currOtherHost);
 }

 public ReplicationHostAddress getNextOtherHost()
 {
 currOtherHost++;
 if (currOtherHost >= otherHosts.size())
 return null;
 return (ReplicationHostAddress)otherHosts.get(currOtherHost);
 }

 public ReplicationHostAddress getOtherHost(int i)
 {
 if (i >= otherHosts.size())
 return null;
 return (ReplicationHostAddress)otherHosts.get(i);
 }
}

Having completed our update to the RepConfig class, we can now start making changes to
the main portion of our program. We begin by changing the program's name. (This, of course,
means that we copy our SimpleTxn code to a file named RepQuoteExampleGSG.java.)

package db.repquote_gsg;

import java.io.FileNotFoundException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.lang.Thread;
import java.lang.InterruptedException;

import com.sleepycat.db.Cursor;
import com.sleepycat.db.Database;
import com.sleepycat.db.DatabaseConfig;
import com.sleepycat.db.DatabaseEntry;
import com.sleepycat.db.DatabaseException;
import com.sleepycat.db.DatabaseType;
import com.sleepycat.db.EnvironmentConfig;
import com.sleepycat.db.LockMode;
import com.sleepycat.db.OperationStatus;
import com.sleepycat.db.ReplicationHostAddress;

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 29

import com.sleepycat.db.ReplicationManagerSiteConfig;

import db.repquote.RepConfig;

public class RepQuoteExampleGSG
{
 private RepConfig repConfig;
 private Environment dbenv;

Next we update our usage function. The application will continue to accept the -h parameter
so that we can identify the environment home directory used by this application. However, we
also add the:

• -l parameter which allows us to identify the host and port used by this application to listen
for replication messages. This parameter is required unless the -L parameter is specified.

• -L parameter, which allows us to identify the local site as the group creator.

• -r parameter which allows us to specify other replicas.

• -p option, which is used to identify this replica's priority (recall that the priority is used as a
tie breaker for elections)

 public RepQuoteExampleGSG()
 throws DatabaseException
 {
 repConfig = null;
 dbenv = null;
 }

 public static void usage()
 {
 System.err.println("usage: " + repConfig.progname);
 System.err.println("-h home[-r host:port][-l|-L host:port]" +
 "[-r host:port][-p priority]");

 System.err.println("\t -h home directory (required)\n" +
 "\t -l host:port (required, unless -L is specified; " +
 "l stands for local)\n" +
 "\t -L host:port (optional;L mean group creator)\n" +
 "\t -r host:port (optional; r stands for remote; any " +
 "number of these may be specified)\n" +
 "\t -p priority (optional: defaults to 100)\n");

 System.exit(1);
 }

Now we can begin working on our main() function. We begin by adding a couple of variables
that we will use to collect TCP/IP host and port information.

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 30

 public static void main(String[] argv)
 throws Exception
 {
 RepConfig config = new RepConfig();
 String tmpHost;
 int tmpPort = 0;

Now we collect our command line arguments. As we do so, we will configure host and port
information as required, and we will configure the application's election priority if necessary.

 // Extract the command line parameters
 for (int i = 0; i < argv.length; i++)
 {
 if (argv[i].compareTo("-h") == 0) {
 // home is a string arg.
 i++;
 config.home = argv[i];
 } else if (argv[i].compareTo("-l") == 0) ||
 argv[i].compareTo("-L") == 0) {
 if (i == argv.length - 1)
 usage();
 if (argv[i].compareTo("-L") == 0)
 isCreator = true;
 // "local" should be host:port.
 i++;
 String[] words = argv[i].split(":");
 if (words.length != 2) {
 System.err.println(
 "Invalid host specification host:port needed.");
 usage();
 }
 try {
 tmpPort = Integer.parseInt(words[1]);
 } catch (NumberFormatException nfe) {
 System.err.println("Invalid host specification, " +
 "could not parse port number.");
 usage();
 }
 config.setThisHost(words[0], tmpPort, isCreator);
 } else if (argv[i].compareTo("-p") == 0) {
 i++;
 config.priority = Integer.parseInt(argv[i]);
 } else if (argv[i].compareTo("-r") == 0) {
 i++;
 String[] words = argv[i].split(":");
 if (words.length != 2) {
 System.err.println(
 "Invalid host specification host:port needed.");
 usage();
 }

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 31

 try {
 tmpPort = Integer.parseInt(words[1]);
 } catch (NumberFormatException nfe) {
 System.err.println("Invalid host specification, " +
 "could not parse port number.");
 usage();
 }
 config.addOtherHost(words[0], tmpPort);
 } else {
 System.err.println("Unrecognized option: " + argv[i]);
 usage();
 }
 }

 // Error check command line.
 if ((!config.gotListenAddress()) || config.home.length() == 0)
 usage();

Having done that, the remainder of our main() function is left unchanged, with the exception
of a few name changes required by the new class name:

 RepQuoteExampleGSG runner = null;
 try {
 runner = new RepQuoteExampleGSG();
 runner.init(config);

 runner.doloop();
 runner.terminate();
 } catch (DatabaseException dbe) {
 System.err.println("Caught an exception during " +
 "initialization or processing: " + dbe.toString());
 if (runner != null)
 runner.terminate();
 }
 System.exit(0);
 } // end main

Now we need to update our RepQuoteExampleGSG.init() method. Our updates are at
first related to configuring replication. First, we need to update the method so that we
can identify the local site to the environment handle (that is, the site identified by the -l
command line option):

 public int init(RepConfig config)
 throws DatabaseException
 {
 int ret = 0;
 repConfig = config;
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setErrorStream(System.err);
 envConfig.setErrorPrefix(RepConfig.progname);

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 32

 envConfig.addReplicationManagerSite(repConfig.getThisHost());

And we also add code to allow us to identify "other" sites to the environment handle (that is,
the sites that we identify using the -o command line option). To do this, we iterate over each
of the "other" sites provided to us using the -o command line option, and we add each one
individually in turn:

We also add code here to set the environment's priority.

 for (ReplicationHostAddress host =
 repConfig.getFirstOtherHost(); host != null;
 host = repConfig.getNextOtherHost()) {

 ReplicationManagerSiteConfig repmgrRemoteSiteConfig =
 new ReplicationManagerSiteConfig(host.host, host.port);
 repmgrRemoteSiteConfig.setBootstrapHelper(true);
 envConfig.addReplicationManagerSite(
 repmgrRemoteSiteConfig);
 }

 envConfig.addReplicationPriority(repConfig.priority);

We can now open our environment. Note that the options we use to open the environment are
slightly different for a replicated application than they are for a non-replicated application.
Namely, replication requires the EnvironmentConfig.setInitializeReplication() option.

Also, because we are using the Replication Manager, we must prepare our environment for
threaded usage. For this reason, we also need the DB_THREAD flag.
 envConfig.setCacheSize(RepConfig.CACHESIZE);
 envConfig.setTxnNoSync(true);

 envConfig.setAllowCreate(true);
 envConfig.setRunRecovery(true);
 envConfig.setInitializeReplication(true);
 envConfig.setInitializeLocking(true);
 envConfig.setInitializeLogging(true);
 envConfig.setInitializeCache(true);
 envConfig.setTransactional(true);
 try {
 dbenv = new Environment(appConfig.getHome(), envConfig);
 } catch(FileNotFoundException e) {
 System.err.println("FileNotFound exception: " + e.toString());
 System.err.println(
 "Ensure that the environment directory is pre-created.");
 ret = 1;
 }

Finally, we start replication before we exit this method. Immediately after exiting this
method, our application will go into the RepQuoteExampleGSG.doloop() method, which is

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 33

where the bulk of our application's work is performed. We update that method in the next
chapter.
 // start Replication Manager
 dbenv.replicationManagerStart(3, appConfig.startPolicy);
 return ret;
 }

This completes our replication updates for the moment. We are not as yet ready to actually
run this program; there remains a few critical pieces left to add to it. However, the work that
we performed in this section represents a solid foundation for the remainder of our replication
work.

Permanent Message Handling

As described in Permanent Message Handling (page 7), messages are marked permanent if
they contain database modifications that should be committed at the replica. DB's replication
code decides if it must flush its transaction logs to disk depending on whether it receives
sufficient permanent message acknowledgments from the participating replicas. More
importantly, the thread performing the transaction commit blocks until it either receives
enough acknowledgments, or the acknowledgment timeout expires.

The Replication Manager is fully capable of managing permanent messages for you if
your application requires it (most do). Almost all of the details of this are handled by
the Replication Manager for you. However, you do have to set some policies that tell the
Replication Manager how to handle permanent messages.

There are two things that you have to do:

• Determine how many acknowledgments must be received by the master.

• Identify the amount of time that replicas have to send their acknowledgments.

Identifying Permanent Message Policies

You identify permanent message policies using the ReplicationManagerAckPolicy class
which you pass to the environment using the
EnvironmentConfig.setReplicationManagerAckPolicy method. Note that you can set
permanent message policies at any time during the life of the application.

The following permanent message policies are available when you use the Replication
Manager:

Note

The following list mentions electable peer several times. This is simply another
environment that can be elected to be a master (that is, it has a priority greater
than 0). Do not confuse this with the concept of a peer as used for client to client
transfers. See Client to Client Transfer (page 57) for more information on client to
client transfers.

• ReplicationManagerAckPolicy.NONE

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 34

No permanent message acknowledgments are required. If this policy is selected, permanent
message handling is essentially "turned off." That is, the master will never wait for replica
acknowledgments. In this case, transaction log data is either flushed or not strictly
depending on the type of commit that is being performed (synchronous or asynchronous).

• ReplicationManagerAckPolicy.ONE

At least one replica must acknowledge the permanent message within the timeout period.

• ReplicationManagerAckPolicy.ONE_PEER

At least one electable peer must acknowledge the permanent message within the timeout
period.

• ReplicationManagerAckPolicy.ALL

All replicas must acknowledge the message within the timeout period. This policy should be
selected only if your replication group has a small number of replicas, and those replicas are
on extremely reliable networks and servers.

• ReplicationManagerAckPolicy.ALL_AVAILABLE

All currently connected replication clients must acknowledge the message. This policy
will invoke the DB_EVENT_REP_PERM_FAILED event if fewer than a quorum of clients
acknowledged during that time.

• ReplicationManagerAckPolicy.ALL_PEERS

All electable peers must acknowledge the message within the timeout period. This policy
should be selected only if your replication group is small, and its various environments are
on extremely reliable networks and servers.

• ReplicationManagerAckPolicy.QUORUM

A quorum of electable peers must acknowledge the message within the timeout period.
A quorum is reached when acknowledgments are received from the minimum number of
environments needed to ensure that the record remains durable if an election is held. That
is, the master wants to hear from enough electable replicas that they have committed the
record so that if an election is held, the master knows the record will exist even if a new
master is selected.

By default, a quorum of electable peers must must acknowledge a permanent message in
order for it considered to have been successfully transmitted.

Setting the Permanent Message Timeout

The permanent message timeout represents the maximum amount of time the committing
thread will block waiting for message acknowledgments. If sufficient acknowledgments arrive
before this timeout has expired, the thread continues operations as normal. However, if this
timeout expires, the committing thread flushes its transaction log buffer before continuing
with normal operations.

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 35

You set the timeout value using Environment.setReplicationTimeout(). You pass this
method the ReplicationTimeoutType.ACK_TIMEOUT constant and a timeout value in
microseconds.

For example:

 dbenv.setReplicationTimeout(ReplicationTimeoutType.ACK_TIMEOUT, 100);

This timeout value can be set at anytime during the life of the application.

Adding a Permanent Message Policy to RepQuoteExampleGSG

For illustration purposes, we will now update RepQuoteExampleGSG such that it requires
only one acknowledgment from a replica on transactional commits. Also, we will give this
acknowledgment a 500 microsecond timeout value. This means that our application's main
thread will block for up to 500 microseconds waiting for an acknowledgment. If it does not
receive at least one acknowledgment in that amount of time, DB will flush the transaction logs
to disk before continuing on.

This is a very simple update. We can perform the entire thing in
RepQuoteExampleGSG.init() immediately after we set the application's priority and before
we open our environment handle.

 public int init(RepConfig config)
 throws DatabaseException
 {
 int ret = 0;
 repConfig = config;
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setErrorStream(System.err);
 envConfig.setErrorPrefix(RepConfig.progname);

 envConfig.addReplicationManagerSite(repConfig.getThisHost());
 for (ReplicationHostAddress host =
 repConfig.getFirstOtherHost();
 host != null; host = repConfig.getNextOtherHost()){

 ReplicationManagerSiteConfig repmgrRemoteSiteConfig =
 new ReplicationManagerSiteConfig(host.host, host.port);
 repmgrRemoteSiteConfig.setBootstrapHelper(true);
 envConfig.addReplicationManagerSite(
 repmgrRemoteSiteConfig);
 }
 envConfig.setReplicationPriority(appConfig.priority);

 envConfig.setReplicationManagerAckPolicy(
 ReplicationManagerAckPolicy.ALL);
 envConfig.setReplicationTimeout(ReplicationTimeoutType.ACK_TIMEOUT,
 500);

 envConfig.setCacheSize(RepConfig.CACHESIZE);

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 36

 envConfig.setTxnNoSync(true);
 ...

Managing Election Times

Where it comes to elections, there are two timeout values with which you should be
concerned: election timeouts and election retries.

Managing Election Timeouts

When an environment calls for an election, it will wait some amount of time for the other
replicas in the replication group to respond. The amount of time that the environment will
wait before declaring the election completed is the election timeout.

If the environment hears from all other known replicas before the election timeout occurs,
the election is considered a success and a master is elected.

If only a subset of replicas respond, then the success or failure of the election is determined
by how many replicas have participated in the election. It only takes a simple majority of
replicas to elect a master. If there are enough votes for a given environment to meet that
standard, then the master has been elected and the election is considered a success.

However, if not enough replicas have participated in the election when the election timeout
value is reached, the election is considered a failure and a master is not elected. At this
point, your replication group is operating without a master, which means that, essentially,
your replicated application has been placed in read-only mode.

Note, however, that the Replication Manager will attempt a new election after a given amount
of time has passed. See the next section for details.

You set the election timeout value using Environment.setReplicationTimeout(). You pass
this method the ReplicationTimeoutType.ELECTION_TIMEOUT constant and a timeout value
in microseconds.

Managing Election Retry Times

In the event that a election fails (see the previous section), an election will not be attempted
again until the election retry timeout value has expired.

You set the election timeout value using Environment.setReplicationTimeout(). You pass
this method the ReplicationTimeoutType.ELECTION_RETRY constant and a retry value in
microseconds.

Note that this constant is only valid when you are using the Replication Manager. If you are
using the Base APIs, then this constant is ignored.

Managing Connection Retries

In the event that a communication failure occurs between two environments
in a replication group, the Replication Manager will wait a set amount of time

Library Version 11.2.5.3 The DB Replication Manager

9/9/2013 Using Replication with DB Page 37

before attempting to re-establish the connection. You can configure this wait
value using Environment.setReplicationTimeout(). You pass this method the
ReplicationTimeoutType.CONNECTION_RETRY constant and a retry value in microseconds.

Managing Heartbeats

If your replicated application experiences few updates, it is possible for the replication group
to lose a master without noticing it. This is because normally a replicated application only
knows that a master has gone missing when update activity causes messages to be passed
between the master and replicas.

To guard against this, you can configure a heartbeat. The heartbeat must be configured for
both the master and each of the replicas.

On the master, you configure the application to send a heartbeat on a defined interval when
it is otherwise idle. Do this by using the Environment.setReplicationTimeout() method.
You pass this method the ReplicationTimeoutType.HEARTBEAT_SEND constant. You must
also provide the method a value representing the period between heartbeats in microseconds.
Note that the heartbeat is sent only if the system is idle.

On the replica, you configure the application to listen for a heartbeat. The time that you
configure here is the amount of time the replica will wait for some message from the master
(either the heartbeat or some other message) before concluding that the connection is
lost. You do this using the Environment.setReplicationTimeout() method. You pass this
method the ReplicationTimeoutType.HEARTBEAT_MONITOR constant and a timeout value in
microseconds.

For best results, configure the heartbeat monitor for a longer time interval than the heartbeat
send interval.

9/9/2013 Using Replication with DB Page 38

Chapter 4. Replica versus Master Processes
Every environment participating in a replicated application must know whether it is a master
or replica. The reason for this is because, simply, the master can modify the database
while replicas cannot. As a result, not only will you open databases differently depended
on whether the environment is running as a master, but the environment will frequently
behave quite a bit differently depending on whether it thinks it is operating as the read/write
interface for your database.

Moreover, an environment must also be capable of gracefully switching between master and
replica states. This means that the environment must be able to detect when it has switched
states.

Not surprisingly, a large part of your application's code will be tied up in knowing which state
a given environment is in and then in the logic of how to behave depending on its state.

This chapter shows you how to determine your environment's state, and it then shows you
some sample code on how an application might behave depending on whether it is a master or
a replica in a replicated application.

Determining State

In order to determine whether your code is running as a master or a replica, you must write
your application as an implementation of com.sleepycat.db.EventHandler. This class gives
you a series of methods within which you can detect and respond to various events that occur
in your DB code. Some, but not all, of these methods have to do with elections:

Some of the more commonly handled events are described below. For a complete list of
events, see the com.sleepycat.db.EventHandler javadoc page.

• EventHandler.handlePanicEvent()

An error has occured in the Berkeley DB library requiring your application to shut down and
then run recovery.

• EventHandler.handleRepClientEvent()

The local environment is now a replica.

• EventHandler.handleRepConnectBrokenEvent()

A previously established connection between two sites in the replication group has been
broken.

• EventHandler.handleRepConnectEstablishedEvent()

A connection has been established between two sites in the replication group.

• EventHandler.handleRepConnectTryFailedEvent()

An attempt was made to establish a connection to a known remote site, but the connection
attempt failed.

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 39

• EventHandler.handleRepDupmasterEvent()

A duplicate master has been discovered in the replication group.

• EventHandler.handleRepElectedEvent()

The local site has just won an election and is now the master. Your code should now
reconfigure itself to operation as a master site.

• EventHandler.handleRepElectionFailedEvent()

The local site's attempt to initiate or participate in a replication master election failed, due
to the lack of timely message response from a sufficient number of remote sites.

• EventHandler.handleRepJoinFailureEvent()

The local site could not synchronize with the master because an internal initialization was
required, but internal initialization has been turned off

• EventHandler.handleRepLocalSiteRemovedEvent()

The local site has been removed from the group.

• EventHandler.handleRepNewMasterEvent()

An election was held and a new environment was made a master. However, the current
environment is not the master. This event exists so that you can cause your code to take
some unique action in the event that the replication groups switches masters.

• EventHandler.handleRepMasterEvent()

The local environment is now a master.

• EventHandler.handleRepMasterFailureEvent()

The connection to the remote master replication site has failed.

• EventHandler.handleRepPermFailedEvent()

The Replication Manager did not receive enough acknowledgements to ensure the
transaction's durability within the replicationg group. The Replication Manager has therefore
flushed the transaction to the master's local disk for storage.

How the Replication Manager knows whether the acknowledgements it has received is
determined by the ack policy you have set for your applicaton. See Identifying Permanent
Message Policies (page 33) for more information.

• EventHandler.handleRepSiteAddedEvent()

A new site has joined the replication group.

• EventHandler.handleRepSiteRemovedEvent()

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 40

An existing site has been removed from the replication group.

• EventHandler.handleRepStartupDoneEvent()

The replica has completed startup synchronization and is now processing log records
received from the master.

• EventHandler.handleWriteFailedEvent()

A Berkeley DB write to stable storage failed.

Note that these events are raised whenever the state is established. That is, when the current
environment becomes a replica, and that includes at application startup, the event is raised.
Also, when an election is held and a replica is elected to be a master, then the event occurs.

The EventHandler implementation is fairly simple. First you detect the event, and then you
record the state change in some data member maintained in a location that is convenient to
you.

For example:

package db.repquote;

// We make our main class an EventHandler implementation
...
import com.sleepycat.db.EventHandler;
...

public class MyReplicationClass implements EventHandler
{

...

// Somewhere we provide a data member that is used to track
// whether we are a master server. This could be in our main
// class, or it could be part of a supporting class.
private boolean isMaster;

...

isMaster = false;

...

// In the code where we open our environment and start replication,
// we must identify the class that is the event handler. In this
// example, we are performing this from within the class that
// implements com.sleepycat.db.EventHandler so we identify
// "this" class as the event handler
envConfig.setEventHandler(this);

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 41

That done, we still need to implement the methods required for handling replication events.
For a simple application like this one, these implementations can be trivial.
 public void handleRepClientEvent()
 {
 dbenv.setIsMaster(false);
 }

 public void handleRepConnectBrokenEvent()
 {
 // Ignored for now.
 }

 public void handleRepConnectEstablishedEvent()
 {
 // Ignored for now.
 }

 public void handleRepConnectTryFailedEvent()
 {
 // Ignored for now.
 }

 public void handleRepMasterEvent()
 {
 dbenv.setIsMaster(true);
 }

 public void handleRepNewMasterEvent(int envId)
 {
 // Ignored for now
 }

 public void handleWriteFailedEvent(int errorCode)
 {
 System.err.println("Write to stable storage failed!" +
 "Operating system error code:" + errorCode);
 System.err.println("Continuing....");
 }

 public void handleRepStartupDoneEvent()
 {
 System.out.println("Replication startup is completed.");
 }

 public void handleRepPermFailedEvent()
 {
 System.out.println("This application failed to receive enough" +
 "acks for a permanent message. The transaction is flushed" +
 "to disk on this master host.");

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 42

 }

 public void handleRepLocalSiteRemovedEvent()
 {
 // Ignored for now.
 }

 public void handleRepSiteAddedEvent()
 {
 // Ignored for now.
 }

 public void handleRepSiteRemovedEvent()
 {
 // Ignored for now.
 }

 public void handleRepElectedEvent()
 {
 // Safely ignored for Replication Manager applications.
 }

 public void handleRepElectionFailedEvent()
 {
 // Safely ignored for Replication Manager applications that do
 // not manage their own master selection.
 }

 public void handleRepJoinFailureEvent()
 {
 // Safely ignored since this application did not turn off AUTOINIT.
 }

 public void handleRepMasterFailureEvent()
 {
 // Safely ignored for Replication Manager applications that do
 // not manage their own master selection.
 }

 public void handleRepDupmasterEvent()
 {
 // Safely ignored for Replication Manager applications that do
 // not manage their own master selection.
 }

 public void handlePanicEvent()
 {
 System.err.println("Panic encountered!");
 System.err.println("Shutting down.");

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 43

 System.err.println("You should restart, running recovery.");
 try {
 terminate();
 } catch (DatabaseException dbe) {
 System.err.println("Caught an exception during " +
 "termination in handlePanicEvent: " + dbe.toString());
 }
 System.exit(-1);
 }

Of course, this only gives us the current state of the environment. We still need the code that
determines what to do when the environment changes state and how to behave depending on
the state (described in the next section).

Processing Loop

Typically the central part of any replication application is some sort of a continuous loop that
constantly checks the state of the environment (whether it is a replica or a master), opens
and/or closes the databases as is necessary, and performs other useful work. A loop such as
this one must of necessity take special care to know whether it is operating on a master or a
replica environment because all of its activities are dependent upon that state.

The flow of activities through the loop will generally be as follows:

1. Check whether the environment has changed state. If it has, you might want to reopen
your database handles, especially if you opened your replica's database handles as
read-only. In this case, you might need to reopen them as read-write. However, if
you always open your database handles as read-write, then it is not automatically
necessary to reopen the databases due to a state change. Instead, you could check for a
ReplicationHandleDeadException exception when you use your database handle(s). If
you see this, then you need to reopen your database handle(s).

2. If the databases are closed, create new database handles, configure the handle as
is appropriate, and then open the databases. Note that handle configuration will be
different, depending on whether the handle is opened as a replica or a master. At a
minimum, the master should be opened with database creation privileges, whereas the
replica does not need to be. You must also open the master such that its databases are
read-write. You can open replicas with read-only databases, so long as you are prepared
to close and then reopen the handle in the event the client becomes a master.

Also, note that if the local environment is a replica, then it is possible that databases do
not currently exist. In this case, the database open attempts will fail. Your code will have
to take this corner case into account (described below).

3. Once the databases are opened, check to see if the local environment is a master. If it is,
do whatever it is a master should do for your application.

Remember that the code for your master should include some way for you to tell the
master to exit gracefully.

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 44

4. If the local environment is not a master, then do whatever it is your replica environments
should do. Again, like the code for your master environments, you should provide a way
for your replicas to exit the processing loop gracefully.

The following code fragment illustrates these points (note that we fill out this fragment with a
working example next in this chapter):

// loop to manage replication activities
public int doloop()
{
 Database db = null;

// Infinite loop. We exit depending on how the master and replica code
// is written.
for (;;) {
 /* If dbp is not opened, we need to open it. */
 if (db == null) {
 // Create the handle and then configure it. Before you open
 // it, you have to decide what open flags to use:
 DatabaseConfig dbconf = new DatabaseConfig();
 dbconf.setType(DatabaseType.BTREE);
 if (isMaster) {
 dbconf.setAllowCreate(true);
 }

 // Now you can open your database handle, passing to it the
 // optins selected above.

 try {
 db = dbenv.openDatabase
 (null, progname, null, dbconf);
 } catch(java.io.FileNotFoundException e) {
 // Put your error handling code here.
 }
 }

 // Now that the databases have been opened, continue with general
 // processing, depending on whether we are a master or a replica.
 if (isMaster) {
 // Do master stuff here. Don't forget to include a way to
 // gracefully exit the loop.
 } else {
 // Do replica stuff here. As is the case with the master
 // code, be sure to include a way to gracefully exit the
 // loop.
 }
}

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 45

Example Processing Loop

In this section we take the example processing loop that we presented in the previous
section and we flesh it out to provide a more complete example. We do this by updating
the doloop() function that our original transaction application used (see Method:
SimpleTxn.doloop() (page 16)) to fully support our replicated application.

In the following example code, code that we add to the original example is presented in bold.

To begin, we must implement a way to track whether our application is running as a master
or a client. There are many ways to do this, but in this case what we will do is extend
com.sleepycat.db.Environment to carry the information. We do this by creating the
RepQuoteEnvironment class.

package db.repquote;

import com.sleepycat.db.DatabaseException;
import com.sleepycat.db.Environment;
import com.sleepycat.db.EnvironmentConfig;

public class RepQuoteEnvironment extends Environment
{
 private boolean isMaster;

 public RepQuoteEnvironment(final java.io.File host,
 EnvironmentConfig config)
 throws DatabaseException, java.io.FileNotFoundException
 {
 super(host, config);
 isMaster = false;
 }

 boolean getIsMaster()
 {
 return isMaster;
 }

 public void setIsMaster(boolean isMaster)
 {
 this.isMaster = isMaster;
 }
}

Next, we go to RepQuoteExampleGSG.java and we include the RepQuoteEnvironment
class as well as the EventHandler class. We then cause our RepQuoteExampleGSG class to
implement EventHandler. We also change our environment handle to be an instance of
RepQuoteEnvironment instead of Environment.

Note that we also import the com.sleepycat.db.ReplicationHandleDeadException class.
We will discuss what that exception is used for a little later in this example.

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 46

package db.repquote;

import java.io.FileNotFoundException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import java.lang.Thread;
import java.lang.InterruptedException;

import com.sleepycat.db.Cursor;
import com.sleepycat.db.Database;
import com.sleepycat.db.DatabaseConfig;
import com.sleepycat.db.DatabaseEntry;
import com.sleepycat.db.DatabaseException;
import com.sleepycat.db.DatabaseType;
import com.sleepycat.db.EnvironmentConfig;
import com.sleepycat.db.EventHandler;
import com.sleepycat.db.LockMode;
import com.sleepycat.db.OperationStatus;
import com.sleepycat.db.ReplicationHandleDeadException;
import com.sleepycat.db.ReplicationHostAddress;
import com.sleepycat.db.ReplicationManagerSiteConfig;

import db.repquote.RepConfig;
import db.repquote.RepQuoteEnvironment

public class RepQuoteExampleGSG implements EventHandler
{
 private RepConfig repConfig;
 private RepQuoteEnvironment dbenv;

That done, we can skip the main() method and our class constructor, because they do not
change. Instead, we skip down to our init() method where we take care of opening our
environment and setting the event handler.

To update our init() method, we only need to do a couple of things. First, we identify the
current class as the event handler. Then, when we open our environment, we instantiate a
RepQuoteEnvironment class instead of an Environment class.

 public int init(RepConfig config)
 throws DatabaseException
 {
 int ret = 0;
 repConfig = config;
 EnvironmentConfig envConfig = new EnvironmentConfig();
 envConfig.setErrorStream(System.err);
 envConfig.setErrorPrefix(RepConfig.progname);

 envConfig.addReplicationManagerSite(repConfig.getThisHost());

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 47

 for (ReplicationHostAddress host =
 repConfig.getFirstOtherHost(); host != null;
 host = repConfig.getNextOtherHost()){

 ReplicationManagerSiteConfig repmgrRemoteSiteConfig =
 new ReplicationManagerSiteConfig(host.host, host.port);
 repmgrRemoteSiteConfig.setBootstrapHelper(true);
 envConfig.addReplicationManagerSite(
 repmgrRemoteSiteConfig);
 }

 envConfig.setReplicationPriority(repConfig.priority);

 envConfig.setReplicationManagerAckPolicy(
 ReplicationManagerAckPolicy.ALL);
 envConfig.setCacheSize(RepConfig.CACHESIZE);
 envConfig.setTxnNoSync(true);

 envConfig.setEventHandler(this);

 envConfig.setAllowCreate(true);
 envConfig.setRunRecovery(true);
 envConfig.setThreaded(true);
 envConfig.setInitializeReplication(true);
 envConfig.setInitializeLocking(true);
 envConfig.setInitializeLogging(true);
 envConfig.setInitializeCache(true);
 envConfig.setTransactional(true);
 envConfig.setVerboseReplication(appConfig.verbose);
 try {
 dbenv = new RepQuoteEnvironment(repConfig.getHome(),
 envConfig);
 } catch(FileNotFoundException e) {
 System.err.println("FileNotFound exception: " + e.toString());
 System.err.println(
 "Ensure that the environment directory is pre-created.");
 ret = 1;
 }

 // start Replication Manager
 dbenv.replicationManagerStart(3, repConfig.startPolicy);
 return ret;
 }

That done, we need to implement the methods required for responding to
replication events. These methods are required because we are now implementing
com.sleepycat.db.EventHandler. While we are required to provide an implementation for
all of these methods, for our simple application we are really only interested in these because
they allow us to track whether a replication instance is a master.

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 48

 public void handleRepClientEvent()
 {
 dbenv.setIsMaster(false);
 }

 public void handleRepConnectBrokenEvent()
 {
 // Ignored for now.
 }

 public void handleRepConnectEstablishedEvent()
 {
 // Ignored for now.
 }

 public void handleRepConnectTryFailedEvent()
 {
 // Ignored for now.
 }

 public void handleRepMasterEvent()
 {
 dbenv.setIsMaster(true);
 }

 public void handleRepNewMasterEvent(int envId)
 {
 // Ignored for now.
 }

 public void handleWriteFailedEvent(int errorCode)
 {
 System.err.println("Write to stable storage failed!" +
 "Operating system error code:" + errorCode);
 System.err.println("Continuing....");
 }

 public void handleRepStartupDoneEvent()
 {
 // Ignored for now.
 }

 public void handleRepPermFailedEvent()
 {
 // Ignored for now.
 }

 public void handleRepLocalSiteRemovedEvent()
 {

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 49

 // Ignored for now.
 }

 public void handleRepSiteAddedEvent()
 {
 // Ignored for now.
 }

 public void handleRepSiteRemovedEvent()
 {
 // Ignored for now.
 }

 public void handleRepElectedEvent()
 {
 // Safely ignored for Replication Manager applications.
 }

 public void handleRepElectionFailedEvent()
 {
 // Safely ignored for Replication Manager applications that do
 // not manage their own master selection.
 }

 public void handleRepJoinFailureEvent()
 {
 // Safely ignored since this application did not turn off AUTOINIT.
 }

 public void handleRepMasterFailureEvent()
 {
 // Safely ignored for Replication Manager applications that do
 // not manage their own master selection.
 }

 public void handleRepDupmasterEvent()
 {
 // Safely ignored for Replication Manager applications that do
 // not manage their own master selection.
 }

 public void handlePanicEvent()
 {
 System.err.println("Panic encountered!");
 System.err.println("Shutting down.");
 System.err.println("You should restart, running recovery.");
 try {
 terminate();
 } catch (DatabaseException dbe) {

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 50

 System.err.println("Caught an exception during " +
 "termination in handlePanicEvent: " + dbe.toString());
 }
 System.exit(-1);
 }

That done, we need to update our doloop() method.

We begin by updating our DatabaseConfig instance to determine which options to use,
depending on whether the application is running as a master.

 public int doloop()
 throws DatabaseException
 {
 Database db = null;

 for (;;)
 {
 if (db == null) {
 DatabaseConfig dbconf = new DatabaseConfig();
 dbconf.setType(DatabaseType.BTREE);
 if (dbenv.getIsMaster()) {
 dbconf.setAllowCreate(true);
 }
 dbconf.setTransactional(true);

When we open the database, we modify our error handling to account for the case where
the database does not yet exist. This can happen if our code is running as a replica and the
Replication Manager has not yet had a chance to create the databases for us. Recall that
replicas never write to their own databases directly, and so they cannot create databases on
their own.

If we detect that the database does not yet exist, we simply close the database handle, sleep
for a short period of time and then continue processing. This gives the Replication Manager a
chance to create the database so that our replica can continue operations.

 try {
 db = dbenv.openDatabase
 (null, RepConfig.progname, null, dbconf);
 } catch (java.io.FileNotFoundException e) {
 System.err.println("no stock database available yet.");
 if (db != null) {
 db.close(true);
 db = null;
 }
 try {
 Thread.sleep(RepConfig.SLEEPTIME);
 } catch (InterruptedException ie) {}
 continue;
 }
 }

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 51

Next we modify our prompt, so that if the local process is running as a replica, we can tell
from the shell that the prompt is for a read-only process.

 BufferedReader stdin =
 new BufferedReader(new InputStreamReader(System.in));

 // listen for input, and add it to the database.
 System.out.print("QUOTESERVER");
 if (!dbenv.getIsMaster())
 System.out.print("(read-only)");
 System.out.print("> ");
 System.out.flush();
 String nextline = null;
 try {
 nextline = stdin.readLine();
 } catch (IOException ioe) {
 System.err.println("Unable to get data from stdin");
 break;
 }
 String[] words = nextline.split("\\s");

When we collect data from the prompt, there is a case that says if no data is entered
then show the entire stocks database. This display is performed by our print_stocks()
method (which has not required a modification since we first introduced it in Method:
SimpleTxn.printStocks() (page 18)).

When we call printStocks(), we check for a dead replication handle. Dead replication
handles happen whenever a replication election results in a previously committed transaction
becoming invalid. This is an error scenario caused by a new master having a slightly older
version of the data than the original master and so all replicas must modify their database(s)
to reflect that of the new master. In this situation, some number of previously committed
transactions may have to be unrolled. From the replica's perspective, the database handles
should all be closed and then opened again.

 // A blank line causes the DB to be dumped to stdout.
 if (words.length == 0 ||
 (words.length == 1 && words[0].length() == 0)) {
 try {
 printStocks(db);
 } catch (DeadlockException de) {
 continue;
 // Dead replication handles are caused by an election
 // resulting in a previously committing read becoming
 // invalid. Close the db handle and reopen.
 } catch (ReplicationHandleDeadException rhde) {
 db.close(true); // close no sync.
 db = null;
 continue;
 } catch (DatabaseException e) {
 System.err.println("Got db exception reading " +
 "replication DB: " + e.toString());

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 52

 break;
 }
 continue;
 }

 if (words.length == 1 &&
 (words[0].compareToIgnoreCase("quit") == 0 ||
 words[0].compareToIgnoreCase("exit") == 0)) {
 break;
 } else if (words.length != 2) {
 System.err.println("Format: TICKER VALUE");
 continue;
 }

That done, we need to add a little error checking to our command prompt to make sure the
user is not attempting to modify the database at a replica. Remember, replicas must never
modify their local databases on their own. This guards against that happening due to user
input at the prompt.
 if (!dbenv.getIsMaster()) {
 System.err.println("Can't update client.");
 continue;
 }

 DatabaseEntry key = new DatabaseEntry(words[0].getBytes());
 DatabaseEntry data = new DatabaseEntry(words[1].getBytes());

 db.put(null, key, data);
 }
 if (db != null)
 db.close(true);
 return 0;
 }

With that completed, we are all done updating our application for replication. The only
remaining method, printStocks(), is unmodified from when we originally introduced it. For
details on that function, see Method: SimpleTxn.printStocks() (page 18).

Running It

To run our replicated application, we need to make sure each participating environment has
its own unique home directory. We can do this by running each site on a separate networked
machine, but that is not strictly necessary; multiple instances of this code can run on the
same machine provided the environment home restriction is observed.

To run a process, make sure the environment home exists and then start the process using
the -h option to specify that directory. You must also use the -l or -L option to identify the
local host and port that this process will use to listen for replication messages (-L means that
this is a group creator), and the -r option to identify the other processes in the replication
group. Finally, use the -p option to specify a priority. The process that you designate to have
the highest priority will become the master.

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 53

> mkdir env1
> java db.repquote_gsg.RepQuoteExampleGSG -h env1 -L localhost:8080 \
-p 10
No stock database yet available.
No stock database yet available.

Now, start another process. This time, change the environment home to something else, use
the -l flag to at least change the port number the process is listening on, and use the -r
option to identify the host and port of the other replication process:

> mkdir env2
> java db.repquote_gsg.RepQuoteExampleGSG -h env2 -l localhost:8081 \
-r localhost:8080 -p 20

After a short pause, the second process should display the master prompt:

QUOTESERVER >

And the first process should display the read-only prompt:

QUOTESERVER (read-only)>

Now go to the master process and give it a couple of stocks and stock prices:

QUOTESERVER> FAKECO 9.87
QUOTESERVER> NOINC .23
QUOTESERVER>

Then, go to the replica and hit return at the prompt to see the new values:

QUOTESERVER (read-only)>
 Symbol Price
 ====== =====
 FAKECO 9.87
 NOINC .23
QUOTESERVER (read-only)>

Doing the same at the master results in the same thing:

QUOTESERVER>
 Symbol Price
 ====== =====
 FAKECO 9.87
 NOINC .23
QUOTESERVER>

You can change a stock by simply entering the stock value and new price at the master's
prompt:

QUOTESERVER> FAKECO 10.01
QUOTESERVER>

Then, go to either the master or the replica to see the updated database. On the master:

Library Version 11.2.5.3 Replica versus Master Processes

9/9/2013 Using Replication with DB Page 54

QUOTESERVER>
 Symbol Price
 ====== =====
 FAKECO 10.01
 NOINC .23
QUOTESERVER>

And on the replica:

QUOTESERVER (read-only)>
 Symbol Price
 ====== =====
 FAKECO 10.01
 NOINC .23
QUOTESERVER (read-only)>

Finally, to quit the applications, simply type quit at both prompts. On the replica:

QUOTESERVER (read-only)> quit
>

And on the master as well:

QUOTESERVER> quit
>

9/9/2013 Using Replication with DB Page 55

Chapter 5. Additional Features
Beyond the basic functionality that we have discussed so far in this book, there are several
replication features that you should understand. These are all optional to use, but provide
useful functionality under the right circumstances.

These additional features are:

1. Delayed Synchronization (page 55)

2. Managing Blocking Operations (page 55)

3. Stop Auto-Initialization (page 56)

4. Client to Client Transfer (page 57)

5. Bulk Transfers (page 58)

Delayed Synchronization

When a replication group has a new master, all replicas must synchronize with that master.
This means they must ensure that the contents of their local database(s) are identical to that
contained by the new master.

This synchronization process can result in quite a lot of network activity. It can also put a
large strain on the master server, especially if is part of a large replication group or if there is
somehow a large difference between the master's database(s) and the contents of its replicas.

It is therefore possible to delay synchronization for any replica that discovers it has a new
master. You would do this so as to give the master time to synchronize other replicas before
proceeding with the delayed replicas.

To delay synchronization of a replica environment, you specify
ReplicationConfig.DELAYCLIENT and true to Environment.setReplicationConfig(). To
turn off delayed synchronization, specify false for the ReplicationConfig.DELAYCLIENT
field.

If you use delayed synchronization, then you must manually synchronize the replica at some
future time. Until you do this, the replica is out of sync with the master, and it will ignore all
database changes forwarded to it from the master.

You synchronize a delayed replica by calling Environment.syncReplication() on the replica
that has been delayed.

Managing Blocking Operations

When a replica is in the process of synchronizing with its master, DB operations are blocked
at some points during this process until the synchronization is completed. For replicas with a
heavy read load, these blocked operations may represent an unacceptable loss in throughput.

You can configure DB so that it will not block when synchronization is
in process. Instead, the DB operation will fail, immediately throwing a

Library Version 11.2.5.3 Additional Features

9/9/2013 Using Replication with DB Page 56

com.sleepycat.db.ReplicationLockoutException exception. When this happens, it is up
to your application to determine what action to take (that is, logging the event, making an
appropriate user response, retrying the operation, and so forth).

To turn off blocking on synchronization, specify ReplicationConfig.NOWAIT and true to
Environment.setReplicationConfig(). To turn off this feature, specify false for the
ReplicationConfig.NOWAIT field.

Stop Auto-Initialization

As stated in the previous section, when a replication replica is synchronizing with its master,
it will block DB operations at some points during this process until the synchronization is
completed. You can turn off this behavior (see Managing Blocking Operations (page 55)), but
for replicas that have been out of touch from their master for a very long time, this may not
be enough.

If a replica has been out of touch from its master long enough, it may find that it is not
possible to perform synchronization. When this happens, by default the master and replica
internally decide to completely re-initialize the replica. This re-initialization involves
discarding the replica's current database(s) and transferring new ones to it from the master.
Depending on the size of the master's databases, this can take a long time, during which
time the replica will be completely non-responsive when it comes to performing database
operations.

It is possible that there is a time of the day when it is better to perform a replica re-
initialization. Or, you simply might want to decide to bring the replica up to speed
by restoring its databases using a hot-backup taken from the master. Either way,
you can decide to prevent automatic-initialization of your replica. To do this specify
ReplicationConfig.AUTOINIT and false to Environment.setReplicationConfig().

Read-Your-Writes Consistency

In a distributed system, the changes made at the master are not always instantaneously
available at every replica, although they eventually will be. In general, replicas not directly
involved in contributing to the acknowledgement of a transaction commit will lag behind other
replicas because they do not synchronize their commits with the master.

For this reason, you might want to make use of the read-your-writes consistency feature. This
feature allows you to ensure that a replica is at least current enough to have the changes
made by a specific transaction. Because transactions are applied serially, by ensuring a replica
has a specific commit applied to it, you know that all transaction commits occurring prior to
the specified transaction have also been applied to the replica.

You determine whether a transaction has been applied to a replica by generating a commit
token at the master. You then transfer this commit token to the replica, where it is used to
determine whether the replica is consistent enough relative to the master.

For example, suppose the you have a web application where a replication group is
implemented within a load balanced web server group. Each request to the web server

Library Version 11.2.5.3 Additional Features

9/9/2013 Using Replication with DB Page 57

consists of an update operation followed by read operations (say, from the same client), The
read operations naturally expect to see the data from the updates executed by the same
request. However, the read operations might have been routed to a replica that did not
execute the update.

In such a case, the update request would generate a commit token, which would be
resubmitted by the browser, along with subsequent read requests. The read request could be
directed at any one of the available web servers by a load balancer. The replica which services
the read request would use that commit token to determine whether it can service the read
operation. If the replica is current enough, it can immediately execute the transaction and
satisfy the request.

What action the replica takes if it is not consistent enough to service the read request is up
to you as the application developer. You can do anything from blocking while you wait for the
transaction to be applied locally, to rejecting the read request outright.

For more information, see the Read your writes consistency section in the Berkeley DB
Replication chapter of the Berkeley DB Programmer's Reference Guide.

Client to Client Transfer

It is possible to use a replica instead of a master to synchronize another replica. This serves to
take the request load off a master that might otherwise occur if multiple replicas attempted
to synchronize with the master at the same time.

For best results, use this feature combined with the delayed synchronization feature (see
Delayed Synchronization (page 55)).

For example, suppose your replication group consists of four environments. Upon application
startup, all three replicas will immediately attempt to synchronize with the master. But at the
same time, the master itself might be busy with a heavy database write load.

To solve this problem, delay synchronization for two of the three replicas. Allow the third
replica to synchronize as normal with the master. Then, start synchronization for each of
the delayed replicas (since this is a manual process, you can do them one at a time if that
best suits your application). Assuming you have configured replica to replica synchronization
correctly, the delayed replicas will synchronize using the up-to-date replica, rather than using
the master.

When you are using the Replication Manager, you configure replica to replica synchronization
by declaring an environment to be a peer of another environment. If an environment is a peer,
then it can be used for synchronization purposes.

Identifying Peers

You can designate one replica to be a peer of another for replica to replica synchronization.
You might want to do this if you have machines that you know are on fast, reliable network
connections and so you are willing to accept the overhead of waiting for acknowledgments
from those specific machines.

Library Version 11.2.5.3 Additional Features

9/9/2013 Using Replication with DB Page 58

Note that peers are not required to be a bi-directional. That is, just because machine A
declares machine B to be a peer, that does not mean machine B must also declare machine A
to be a peer.

You declare a peer for the current environment when you add that environment to the
list of known sites. You do this by constructing a ReplicationHostAddress object
that specifies true for the isPeer parameter, and then providing that object to
EnvironmentConfig.replicationManagerAddRemoteSite() when you add the remote site
to the local replication site.

Bulk Transfers

By default, messages are sent from the master to replicas as they are generated. This can
degrade replication performance because the various participating environments must handle
a fair amount of network I/O activity.

You can alleviate this problem by configuring your master environment for bulk transfers.
Bulk transfers simply cause replication messages to accumulate in a buffer until a triggering
event occurs. When this event occurs, the entire contents of the buffer is sent to the replica,
thereby eliminating excessive network I/O.

Note that if you are using replica to replica transfers, then you might want any replica that
can service replication requests to also be configured for bulk transfers.

The events that result in a bulk transfer of replication messages to a replica will differ
depending on if the transmitting environment is a master or a replica.

If the servicing environment is a master environment, then bulk transfer occurs when:

1. Bulk transfers are configured for the master environment, and

2. the message buffer is full or

3. a permanent record (for example, a transaction commit or a checkpoint record) is placed
in the buffer for the replica.

If the servicing environment is a replica environment (that is, replica to replica transfers are
in use), then a bulk transfer occurs when:

1. Bulk transfers are configured for the transmitting replica, and

2. the message buffer is full or

3. the replica servicing the request is able to completely satisfy the request with the
contents of the message buffer.

To configure bulk transfers, specify ReplicationConfig.BULK and true to
Environment.setReplicationConfig(). To turn off this feature, specify false for the
ReplicationConfig.BULK field.

	Getting Started with Replicated Berkeley DB Applications
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information
	Contact Us

	Chapter 1. Introduction
	Overview
	Replication Environments
	Replication Databases
	Communications Layer
	Selecting a Master

	Replication Benefits
	The Replication APIs
	Replication Manager Overview
	Replication Base API Overview

	Holding Elections
	Influencing Elections
	Winning Elections
	Switching Masters

	Permanent Message Handling
	When Not to Manage Permanent Messages
	Managing Permanent Messages
	Implementing Permanent Message Handling

	Chapter 2. Transactional Application
	Application Overview
	Program Listing
	Class: RepConfig
	Class: SimpleTxn
	Method: SimpleTxn.main()
	Method: SimpleTxn.init()
	Method: SimpleTxn.doloop()
	Method: SimpleTxn.printStocks()

	Chapter 3. The DB Replication Manager
	Starting and Stopping Replication
	Managing Election Policies
	Selecting the Number of Threads

	Adding the Replication Manager to SimpleTxn
	Permanent Message Handling
	Identifying Permanent Message Policies
	Setting the Permanent Message Timeout
	Adding a Permanent Message Policy to RepQuoteExampleGSG

	Managing Election Times
	Managing Election Timeouts
	Managing Election Retry Times

	Managing Connection Retries
	Managing Heartbeats

	Chapter 4. Replica versus Master Processes
	Determining State
	Processing Loop
	Example Processing Loop
	Running It

	Chapter 5. Additional Features
	Delayed Synchronization
	Managing Blocking Operations
	Stop Auto-Initialization
	Read-Your-Writes Consistency
	Client to Client Transfer
	Identifying Peers

	Bulk Transfers

