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Preface
This document describes how to use transactions with your Berkeley DB applications. It is
intended to describe how to transaction protect your application's data. The APIs used to
perform this task are described here, as are the environment infrastructure and administrative
tasks required by a transactional application. This book also describes multi-threaded and
multi-process DB applications and the requirements they have for deadlock detection.

This book describes Berkeley DB 11g Release 2, which provides library version 11.2.5.3.

This book is aimed at the software engineer responsible for writing a transactional DB
application.

This book assumes that you have already read and understood the concepts contained in the
Getting Started with Berkeley DB guide.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in monospaced font, as are method names. For example:
"DbEnv::open() is a DbEnv class method."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

typedef struct vendor {
    char name[MAXFIELD];             // Vendor name
    char street[MAXFIELD];           // Street name and number
    char city[MAXFIELD];             // City
    char state[3];                   // Two-digit US state code
    char zipcode[6];                 // US zipcode
    char phone_number[13];           // Vendor phone number
} VENDOR; 

In some situations, programming examples are updated from one chapter to the next. When
this occurs, the new code is presented in monospaced bold font. For example:

typedef struct vendor {
    char name[MAXFIELD];             // Vendor name
    char street[MAXFIELD];           // Street name and number
    char city[MAXFIELD];             // City
    char state[3];                   // Two-digit US state code
    char zipcode[6];                 // US zipcode
    char phone_number[13];           // Vendor phone number
    char sales_rep[MAXFIELD];        // Name of sales representative
    char sales_rep_phone[MAXFIELD];  // Sales rep's phone number 
} VENDOR; 
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Note

Finally, notes of special interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a transactional DB application:

• Getting Started with Berkeley DB for C++

• Berkeley DB Getting Started with Replicated Applications for C++

• Berkeley DB Programmer's Reference Guide

• Berkeley DB C++ API Reference Guide

To download the latest Berkeley DB documentation along with white papers and other
collateral, visit http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle Berkeley DB downloads, visit http://www.oracle.com/
technetwork/database/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: http://forums.oracle.com/forums/forum.jspa?forumID=271, or for Oracle
Berkeley DB High Availability at: http://forums.oracle.com/forums/forum.jspa?forumID=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

http://download.oracle.com/docs/cd/E17076_02/html/gsg/CXX/BerkeleyDB-Core-Cxx-GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg_db_rep/CXX/Replication_CXX_GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/BDB_Prog_Reference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/CXX/BDB-CXX_APIReference.pdf
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=271
http://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com
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Chapter 1. Introduction
This book provides a thorough introduction and discussion on transactions as used with
Berkeley DB (DB). It begins by offering a general overview to transactions, the guarantees
they provide, and the general application infrastructure required to obtain full transactional
protection for your data.

This book also provides detailed examples on how to write a transactional application. Both
single threaded and multi-threaded (as well as multi-process applications) are discussed. A
detailed description of various backup and recovery strategies is included in this manual, as is
a discussion on performance considerations for your transactional application.

You should understand the concepts from the Getting Started with Berkeley DB guide before
reading this book.

Transaction Benefits

Transactions offer your application's data protection from application or system failures. That
is, DB transactions offer your application full ACID support:

• Atomicity

Multiple database operations are treated as a single unit of work. Once committed, all write
operations performed under the protection of the transaction are saved to your databases.
Further, in the event that you abort a transaction, all write operations performed during the
transaction are discarded. In this event, your database is left in the state it was in before
the transaction began, regardless of the number or type of write operations you may have
performed during the course of the transaction.

Note that DB transactions can span one or more database handles.

• Consistency

Your databases will never see a partially completed transaction. This is true even if your
application fails while there are in-progress transactions. If the application or system fails,
then either all of the database changes appear when the application next runs, or none of
them appear.

In other words, whatever consistency requirements your application has will never be
violated by DB. If, for example, your application requires every record to include an
employee ID, and your code faithfully adds that ID to its database records, then DB will
never violate that consistency requirement. The ID will remain in the database records until
such a time as your application chooses to delete it.

• Isolation

While a transaction is in progress, your databases will appear to the transaction as if there
are no other operations occurring outside of the transaction. That is, operations wrapped
inside a transaction will always have a clean and consistent view of your databases. They
never have to see updates currently in progress under the protection of another transaction.
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Note, however, that isolation guarantees can be relaxed from the default setting. See
Isolation (page 42) for more information.

• Durability

Once committed to your databases, your modifications will persist even in the event of
an application or system failure. Note that like isolation, your durability guarantee can be
relaxed. See Non-Durable Transactions (page 19) for more information.

A Note on System Failure

From time to time this manual mentions that transactions protect your data against 'system or
application failure.' This is true up to a certain extent. However, not all failures are created
equal and no data protection mechanism can protect you against every conceivable way a
computing system can find to die.

Generally, when this book talks about protection against failures, it means that transactions
offer protection against the likeliest culprits for system and application crashes. So long as
your data modifications have been committed to disk, those modifications should persist even
if your application or OS subsequently fails. And, even if the application or OS fails in the
middle of a transaction commit (or abort), the data on disk should be either in a consistent
state, or there should be enough data available to bring your databases into a consistent state
(via a recovery procedure, for example). You may, however, lose whatever data you were
committing at the time of the failure, but your databases will be otherwise unaffected.

Note

Be aware that many disks have a disk write cache and on some systems it is enabled
by default. This means that a transaction can have committed, and to your application
the data may appear to reside on disk, but the data may in fact reside only in the
write cache at that time. This means that if the disk write cache is enabled and there
is no battery backup for it, data can be lost after an OS crash even when maximum
durability mode is in use. For maximum durability, disable the disk write cache or use
a disk write cache with a battery backup.

Of course, if your disk fails, then the transactional benefits described in this book are only
as good as the backups you have taken. By spreading your data and log files across separate
disks, you can minimize the risk of data loss due to a disk failure, but even in this case it is
possible to conjure a scenario where even this protection is insufficient (a fire in the machine
room, for example) and you must go to your backups for protection.

Finally, by following the programming examples shown in this book, you can write your code
so as to protect your data in the event that your code crashes. However, no programming API
can protect you against logic failures in your own code; transactions cannot protect you from
simply writing the wrong thing to your databases.

Application Requirements

In order to use transactions, your application has certain requirements beyond what is
required of non-transactional protected applications. They are:
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• Environments.

Environments are optional for non-transactional applications, but they are required for
transactional applications.

Environment usage is described in detail in Transaction Basics (page 16).

• Transaction subsystem.

In order to use transactions, you must explicitly enable the transactional subsystem for your
application, and this must be done at the time that your environment is first created.

• Logging subsystem.

The logging subsystem is required for recovery purposes, but its usage also means your
application may require a little more administrative effort than it does when logging is not
in use. See Managing DB Files (page 55) for more information.

• DbTxn handles.

In order to obtain the atomicity guarantee offered by the transactional subsystem (that is,
combine multiple operations in a single unit of work), your application must use transaction
handles. These handles are obtained from your DbEnv objects. They should normally be
short-lived, and their usage is reasonably simple. To complete a transaction and save the
work it performed, you call its commit() method. To complete a transaction and discard its
work, you call its abort() method.

In addition, it is possible to use auto commit if you want to transactional protect a single
write operation. Auto commit allows a transaction to be used without obtaining an explicit
transaction handle. See Auto Commit (page 20) for information on how to use auto
commit.

• Database open requirements.

In addition to using environments and initializing the correct subsystems, your application
must transaction protect the database opens, and any secondary index associations, if
subsequent operations on the databases are to be transaction protected. The database open
and secondary index association are commonly transaction protected using auto commit.

• Deadlock detection.

Typically transactional applications use multiple threads of control when accessing the
database. Any time multiple threads are used on a single resource, the potential for lock
contention arises. In turn, lock contention can lead to deadlocks. See Locks, Blocks, and
Deadlocks (page 29) for more information.

Therefore, transactional applications must frequently include code for detecting and
responding to deadlocks. Note that this requirement is not specific to transactions – you
can certainly write concurrent non-transactional DB applications. Further, not every
transactional application uses concurrency and so not every transactional application
must manage deadlocks. Still, deadlock management is so frequently a characteristic of
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transactional applications that we discuss it in this book. See Concurrency (page 28) for
more information.

Multi-threaded and Multi-process Applications

DB is designed to support multi-threaded and multi-process applications, but their usage
means you must pay careful attention to issues of concurrency. Transactions help your
application's concurrency by providing various levels of isolation for your threads of control. In
addition, DB provides mechanisms that allow you to detect and respond to deadlocks.

Isolation means that database modifications made by one transaction will not normally be
seen by readers from another transaction until the first commits its changes. Different threads
use different transaction handles, so this mechanism is normally used to provide isolation
between database operations performed by different threads.

Note that DB supports different isolation levels. For example, you can configure your
application to see uncommitted reads, which means that one transaction can see data that
has been modified but not yet committed by another transaction. Doing this might mean
your transaction reads data "dirtied" by another transaction, but which subsequently might
change before that other transaction commits its changes. On the other hand, lowering your
isolation requirements means that your application can experience improved throughput due
to reduced lock contention.

For more information on concurrency, on managing isolation levels, and on deadlock
detection, see Concurrency (page 28).

Recoverability

An important part of DB's transactional guarantees is durability. Durability means that once a
transaction has been committed, the database modifications performed under its protection
will not be lost due to system failure.

In order to provide the transactional durability guarantee, DB uses a write-ahead logging
system. Every operation performed on your databases is described in a log before it is
performed on your databases. This is done in order to ensure that an operation can be
recovered in the event of an untimely application or system failure.

Beyond logging, another important aspect of durability is recoverability. That is, backup and
restore. DB supports a normal recovery that runs against a subset of your log files. This is a
routine procedure used whenever your environment is first opened upon application startup,
and it is intended to ensure that your database is in a consistent state. DB also supports
archival backup and recovery in the case of catastrophic failure, such as the loss of a physical
disk drive.

This book describes several different backup procedures you can use to protect your on-
disk data. These procedures range from simple offline backup strategies to hot failovers.
Hot failovers provide not only a backup mechanism, but also a way to recover from a fatal
hardware failure.

This book also describes the recovery procedures you should use for each of the backup
strategies that you might employ.
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For a detailed description of backup and restore procedures, see Managing DB Files (page
55).

Performance Tuning

From a performance perspective, the use of transactions is not free. Depending on how you
configure them, transaction commits usually require your application to perform disk I/O
that a non-transactional application does not perform. Also, for multi-threaded and multi-
process applications, the use of transactions can result in increased lock contention due to
extra locking requirements driven by transactional isolation guarantees.

There is therefore a performance tuning component to transactional applications that is
not applicable for non-transactional applications (although some tuning considerations do
exist whether or not your application uses transactions). Where appropriate, these tuning
considerations are introduced in the following chapters. However, for a more complete
description of them, see the  Transaction tuning  and  Transaction throughput  sections of the
Berkeley DB Programmer's Reference Guide.

http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/transapp_tune.html
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/transapp_throughput.html


9/9/2013 Using Transactions with DB Page 6

Chapter 2. Enabling Transactions
In order to use transactions with your application, you must turn them on. To do this you
must:

• Use an environment (see Environments (page 6) for details).

• Turn on transactions for your environment. You do this by providing the DB_INIT_TXN
flag to the DbEnv::open() method. Note that initializing the transactional subsystem
implies that the logging subsystem is also initialized. Also, note that if you do not initialize
transactions when you first create your environment, then you cannot use transactions
for that environment after that. This is because DB allocates certain structures needed
for transactional locking that are not available if the environment is created without
transactional support.

• Initialize the in-memory cache by passing the DB_INIT_MPOOL flag to the DbEnv::open()
method.

• Initialize the locking subsystem. This is what provides locking for concurrent applications.
It also is used to perform deadlock detection. See Concurrency (page 28) for more
information.

You initialize the locking subsystem by passing the DB_INIT_LOCK flag to the
DbEnv::open() method.

• Initialize the logging subsystem. While this is enabled by default for transactional
applications, we suggest that you explicitly initialize it anyway for the purposes of code
readability. The logging subsystem is what provides your transactional application its
durability guarantee, and it is required for recoverability purposes. See Managing DB
Files (page 55) for more information.

You initialize the logging subsystem by passing the DB_INIT_LOG flag to the DbEnv::open()
method.

• Transaction-enable your databases. If you are using the base API, transaction-enable your
databases. You do this by encapsulating the database open in a transaction. Note that the
common practice is for auto commit to be used to transaction-protect the database open.
To use auto-commit, you must still enable transactions as described here, but you do not
have to explicitly use a transaction when you open your database. An example of this is
given in the next section.

Environments

For simple DB applications, environments are optional. However, in order to transaction
protect your database operations, you must use an environment.

An environment, represents an encapsulation of one or more databases and any associated
log and region files. They are used to support multi-threaded and multi-process applications
by allowing different threads of control to share the in-memory cache, the locking tables,
the logging subsystem, and the file namespace. By sharing these things, your concurrent
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application is more efficient than if each thread of control had to manage these resources on
its own.

By default all DB databases are backed by files on disk. In addition to these files, transactional
DB applications create logs that are also by default stored on disk (they can optionally be
backed using shared memory). Finally, transactional DB applications also create and use
shared-memory regions that are also typically backed by the filesystem. But like databases
and logs, the regions can be maintained strictly in-memory if your application requires it. For
an example of an application that manages all environment files in-memory, see In-Memory
Transaction Example (page 85).

Warning
Using environments with some journaling filesystems might result in log file
corruption. This can occur if the operating system experiences an unclean shutdown
when a log file is being created. Please see Using Recovery on Journaling Filesystems
in the Berkeley DB Programmer's Reference Guide for more information.

File Naming

In order to operate, your DB application must be able to locate its database files, log files,
and region files. If these are stored in the filesystem, then you must tell DB where they are
located (a number of mechanisms exist that allow you to identify the location of these files –
see below). Otherwise, by default they are located in the current working directory.

Specifying the Environment Home Directory

The environment home directory is used to determine where DB files are located. Its location
is identified using one of the following mechanisms, in the following order of priority:

• If no information is given as to where to put the environment home, then the current
working directory is used.

• If a home directory is specified on the DbEnv::open() method, then that location is always
used for the environment home.

• If a home directory is not supplied to DbEnv::open(), then the directory identified by
the DB_HOME environment variable is used if you specify either the DB_USE_ENVIRON
or DB_USE_ENVIRON_ROOT flags to the DbEnv::open() method. Both flags allow you to
identify the path to the environment's home directory using the DB_HOME environment
variable. However, DB_USE_ENVIRON_ROOT is honored only if the process is run with root or
administrative privileges.

Specifying File Locations

By default, all DB files are created relative to the environment home directory. For example,
suppose your environment home is in /export/myAppHome. Also suppose you name your
database data/myDatabase.db. Then in this case, the database is placed in: /export/
myAppHome/data/myDatabase.db.

That said, DB always defers to absolute pathnames. This means that if you provide an
absolute filename when you name your database, then that file is not placed relative to the

../../programmer_reference/transapp_journal.html
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environment home directory. Instead, it is placed in the exact location that you specified for
the filename.

On UNIX systems, an absolute pathname is a name that begins with a forward slash ('/'). On
Windows systems, an absolute pathname is a name that begins with one of the following:

• A backslash ('\').

• Any alphabetic letter, followed by a colon (':'), followed by a backslash ('\').

Note

Try not to use absolute path names for your environment's files. Under certain
recovery scenarios, absolute path names can render your environment unrecoverable.
This occurs if you are attempting to recover your environment on a system that does
not support the absolute path name that you used.

Identifying Specific File Locations

As described in the previous sections, DB will place all its files in or relative to the
environment home directory. You can also cause a specific database file to be placed in
a particular location by using an absolute path name for its name. In this situation, the
environment's home directory is not considered when naming the file.

It is frequently desirable to place database, log, and region files on separate disk drives. By
spreading I/O across multiple drives, you can increase parallelism and improve throughput.
Additionally, by placing log files and database files on separate drives, you improve your
application's reliability by providing your application with a greater chance of surviving a disk
failure.

You can cause DB's files to be placed in specific locations using the following mechanisms:

File Type To Override

database files You can cause database files to be created in a
directory other than the environment home by using the
DbEnv::add_data_dir() method. The directory identified
here must exist. If a relative path is provided, then the
directory location is resolved relative to the environment's
home directory.

This method modifies the directory used for database files
created and managed by a single environment handle; it does
not configure the entire environment. This method may not
be called after the environment has been opened.

You can also set a default data location that is used
by the entire environment by using the add_data_dir
parameter in the environment's DB_CONFIG file. Note that
the add_data_dir parameter overrides any value set by the
DbEnv::set_data_dir() method.
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File Type To Override

Log files You can cause log files to be created in a directory
other than the environment home directory by using the
DbEnv::set_lg_dir() method. The directory identified
here must exist. If a relative path is provided, then the
directory location is resolved relative to the environment's
home directory.

This method modifies the directory used for database files
created and managed by a single environment handle; it does
not configure the entire environment. This method may not
be called after the environment has been opened.

You can also set a default log file location that is used
by the entire environment by using the set_lg_dir
parameter in the environment's DB_CONFIG file. Note that
the set_lg_dir parameter overrides any value set by the
DbEnv::set_lg_dir() method.

Temporary files You can cause temporary files required by the environment to
be created in a directory other than the environment home
directory by using the DbEnv::set_tmp_dir() method. The
directory identified here must exist. If a relative path is
provided, then the directory location is resolved relative to
the environment's home directory.

You can also set a temporary file location by using the
set_tmp_dir parameter in the environment's DB_CONFIG file.
Note that the set_tmp_dir parameter overrides any value
set by the DbEnv::set_tmp_dir() method.

Metadata files You can cause persistent metadata files required by
the replicated applications to be created in a directory
other than the environment home directory by using the
DbEnv::set_metadata_dir() method. The directory
identified here must exist. If a relative path is provided,
then the directory location is resolved relative to the
environment's home directory.

You can also set a metadata directory location by using
the set_metadata_dir parameter in the environment's
DB_CONFIG file. Note that the set_metadata_dir parameter
overrides any value set by the DbEnv::set_metadata_dir()
method.

Region files If backed by the filesystem, region files are always placed in
the environment home directory.
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Note that the DB_CONFIG must reside in the environment home directory. Parameters are
specified in it one parameter to a line. Each parameter is followed by a space, which is
followed by the parameter value. For example:

    add_data_dir /export1/db/env_data_files 

Error Support

To simplify error handling and to aid in application debugging, environments offer several
useful methods. Note that many of these methods are identical to the error handling methods
available for the Db class. They are:

• set_error_stream()

Sets the C++ ostream to be used for displaying error messages issued by the DB library.

• set_errcall()

Defines the function that is called when an error message is issued by DB. The error
prefix and message are passed to this callback. It is up to the application to display this
information correctly.

This is the recommended way to get error messages from DB.

• set_errfile()

Sets the C library FILE * to be used for displaying error messages issued by the DB library.

• set_errpfx()

Sets the prefix used to for any error messages issued by the DB library.

• err()

Issues an error message based upon a DB error code a message text that you supply. The
error message is sent to the callback function as defined by set_errcall(). If that method
has not been used, then the error message is sent to the file defined by set_errfile() or
set_error_stream(). If none of these methods have been used, then the error message is
sent to standard error.

The error message consists of the prefix string (as defined by set_errprefix()), an
optional printf-style formatted message, the DB error message associated with the
supplied error code, and a trailing newline.

• errx()

Behaves identically to err() except that you do not provide the DB error code and so the
DB message text is not displayed.

In addition, you can use the db_strerror() function to directly return the error string
that corresponds to a particular error number. For more information on the db_strerror()
function, see the Error Returns section of the Getting Started with Berkeley DB guide.
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Shared Memory Regions

The subsystems that you enable for an environment (in our case, transaction, logging, locking,
and the memory pool) are described by one or more regions. The regions contain all of
the state information that needs to be shared among threads and/or processes using the
environment.

Regions may be backed by the file system, by heap memory, or by system shared memory.

Regions Backed by Files

By default, shared memory regions are created as files in the environment's home directory
(not the environment's data directory). If it is available, the POSIX mmap interface is used to
map these files into your application's address space. If mmap is not available, then the UNIX
shmget interfaces are used instead (again, if they are available).

In this default case, the region files are named __db.### (for example, __db.001, __db.002,
and so on).

Regions Backed by Heap Memory

If heap memory is used to back your shared memory regions, then you can only open a single
handle for the environment. This means that the environment cannot be accessed by multiple
processes. In this case, the regions are managed only in memory, and they are not written to
the filesystem. You indicate that heap memory is to be used for the region files by specifying
DB_PRIVATE to the DbEnv::open() method.

Note that you can also set this flag by using the set_open_flags parameter in the DB_CONFIG
file. See the Berkeley DB C API Reference Guide for more information.

(For an example of an entirely in-memory transactional application, see In-Memory
Transaction Example (page 85).)

Regions Backed by System Memory

Finally, you can cause system memory to be used for your regions instead of memory-mapped
files. You do this by providing DB_SYSTEM_MEM to the DbEnv::open() method.

When region files are backed by system memory, DB creates a single file in the environment's
home directory. This file contains information necessary to identify the system shared memory
in use by the environment. By creating this file, DB enables multiple processes to share the
environment.

The system memory that is used is architecture-dependent. For example, on systems
supporting X/Open-style shared memory interfaces, such as UNIX systems, the shmget(2) and
related System V IPC interfaces are used. Additionally, VxWorks systems use system memory.
In these cases, an initial segment ID must be specified by the application to ensure that
applications do not overwrite each other's environments, so that the number of segments
created does not grow without bounds. See the DbEnv::set_shm_key() method for more
information.
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On Windows platforms, the use of system memory for the region files is problematic because
the operating system uses reference counting to clean up shared objects in the paging file
automatically. In addition, the default access permissions for shared objects are different
from files, which may cause problems when an environment is accessed by multiple processes
running as different users. See Windows notes or more information.

Security Considerations

When using environments, there are some security considerations to keep in mind:

• Database environment permissions

The directory used for the environment should have its permissions set to ensure that files
in the environment are not accessible to users without appropriate permissions. Applications
that add to the user's permissions (for example, UNIX setuid or setgid applications), must
be carefully checked to not permit illegal use of those permissions such as general file
access in the environment directory.

• Environment variables

Setting the DB_USE_ENVIRON or DB_USE_ENVIRON_ROOT flags so that environment variables
can be used during file naming can be dangerous. Setting those flags in DB applications with
additional permissions (for example, UNIX setuid or setgid applications) could potentially
allow users to read and write databases to which they would not normally have access.

For example, suppose you write a DB application that runs setuid. This means that when
the application runs, it does so under a userid different than that of the application's caller.
This is especially problematic if the application is granting stronger privileges to a user than
the user might ordinarily have.

Now, if the DB_USE_ENVIRON or DB_USE_ENVIRON_ROOT flags are set for the environment,
then the environment that the application is using is modifiable using the DB_HOME
environment variable. In this scenario, if the uid used by the application has sufficiently
broad privileges, then the application's caller can read and/or write databases owned by
another user simply by setting his DB_HOME environment variable to the environment used
by that other user.

Note that this scenario need not be malicious; the wrong environment could be used by the
application simply by inadvertently specifying the wrong path to DB_HOME.

As always, you should use setuid sparingly, if at all. But if you do use setuid, then you
should refrain from specifying the DB_USE_ENVIRON or DB_USE_ENVIRON_ROOT flags for the
environment open. And, of course, if you must use setuid, then make sure you use the
weakest uid possible – preferably one that is used only by the application itself.

• File permissions

By default, DB always creates database and log files readable and writable by the owner
and the group (that is, S_IRUSR, S_IWUSR, S_IRGRP and S_IWGRP; or octal mode 0660 on
historic UNIX systems). The group ownership of created files is based on the system and
directory defaults, and is not further specified by DB.



Library Version 11.2.5.3 Enabling Transactions

9/9/2013 Using Transactions with DB Page 13

• Temporary backing files

If an unnamed database is created and the cache is too small to hold the database in
memory, Berkeley DB will create a temporary physical file to enable it to page the database
to disk as needed. In this case, environment variables such as TMPDIR may be used to
specify the location of that temporary file. Although temporary backing files are created
readable and writable by the owner only (S_IRUSR and S_IWUSR, or octal mode 0600 on
historic UNIX systems), some filesystems may not sufficiently protect temporary files
created in random directories from improper access. To be absolutely safe, applications
storing sensitive data in unnamed databases should use the DbEnv::set_tmp_dir() method
to specify a temporary directory with known permissions.

Opening a Transactional Environment and Database

To enable transactions for your environment, you must initialize the transactional subsystem.
Note that doing this also initializes the logging subsystem. In addition, you must initialize the
memory pool (in-memory cache). You must also initialize the locking subsystem. For example:

#include "db_cxx.h"

...

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_INIT_TXN;     // Initialize transactions

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        myEnv.open(envHome.c_str(), env_flags, 0);

    } catch(DbException &e) {
        std::cerr << "Error opening database environment: "
                  << envHome << std::endl;
        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    try {
        myEnv.close(0);
    } catch(DbException &e) {
        std::cerr << "Error closing database environment: "
                << envHome << std::endl;
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        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    return (EXIT_SUCCESS);
} 

You then create and open your database(s) as you would for a non-transactional system. The
only difference is that you must pass the environment handle to the DbEnv::open() method,
and you must open the database within a transaction. Typically auto commit is used for this
purpose. To do so, pass DB_AUTO_COMMIT to the database open command. It is recommended
that you close all your databases before you close your environment. For example:

#include "db_cxx.h"

...

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_INIT_TXN;     // Initialize transactions

    u_int32_t db_flags = DB_CREATE | DB_AUTO_COMMIT;
    Db *dbp = NULL;
    const char *file_name = "mydb.db";

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        myEnv.open(envHome.c_str(), env_flags, 0);
        dbp = new Db(&myEnv, 0);
        dbp->open(NULL,       // Txn pointer 
                  file_name,  // File name 
                  NULL,       // Logical db name 
                  DB_BTREE,   // Database type (using btree) 
                  db_flags,   // Open flags 
                  0);         // File mode. Using defaults 

    } catch(DbException &e) {
        std::cerr << "Error opening database and environment: "
                  << file_name << ", "
                  << envHome << std::endl;
        std::cerr << e.what() << std::endl;
    }
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    try {
        dbp->close(0);
        myEnv.close(0);
    } catch(DbException &e) {
        std::cerr << "Error closing database and environment: "
                  << file_name << ", "
                  << envHome << std::endl;
        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    return (EXIT_SUCCESS);
} 

Note

Never close a database that has active transactions. Make sure all transactions are
resolved (either committed or aborted) before closing the database.
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Chapter 3. Transaction Basics
Once you have enabled transactions for your environment and your databases, you can use
them to protect your database operations. You do this by acquiring a transaction handle
and then using that handle for any database operation that you want to participate in that
transaction.

You obtain a transaction handle using the DbEnv::txn_begin() method.

Once you have completed all of the operations that you want to include in the transaction,
you must commit the transaction using the DbTxn::commit() method.

If, for any reason, you want to abandon the transaction, you abort it using DbTxn::abort().

Any transaction handle that has been committed or aborted can no longer be used by your
application.

Finally, you must make sure that all transaction handles are either committed or aborted
before closing your databases and environment.

Note

If you only want to transaction protect a single database write operation, you can use
auto commit to perform the transaction administration. When you use auto commit,
you do not need an explicit transaction handle. See Auto Commit (page 20) for more
information.

For example, the following example opens a transactional-enabled environment and database,
obtains a transaction handle, and then performs a write operation under its protection. In the
event of any failure in the write operation, the transaction is aborted and the database is left
in a state as if no operations had ever been attempted in the first place.
#include "db_cxx.h"

...

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_INIT_TXN;     // Initialize transactions

    u_int32_t db_flags = DB_CREATE | DB_AUTO_COMMIT;
    Db *dbp = NULL;
    const char *file_name = "mydb.db";
    const char *keystr ="thekey";
    const char *datastr = "thedata";
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    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        myEnv.open(envHome.c_str(), env_flags, 0);
        dbp = new Db(&myEnv, 0);

        // Open the database. Note that we are using auto commit for 
        // the open, so the database is able to support transactions.
        dbp->open(NULL,       // Txn pointer
                  file_name,  // File name
                  NULL,       // Logical db name
                  DB_BTREE,   // Database type (using btree)
                  db_flags,   // Open flags
                  0);         // File mode. Using defaults

        Dbt key, data;
        key.set_data(keystr);
        key.set_size((strlen(keystr) + 1) * sizeof(char));
        key.set_data(datastr);
        key.set_size((strlen(datastr) + 1) * sizeof(char));

        DbTxn *txn = NULL;
        myEnv.txn_begin(NULL, &txn, 0);
        try {
            db->put(txn, &key, &data, 0);
            txn->commit(0);
        } catch (DbException &e) {
            std::cerr << "Error in transaction: "
                       << e.what() << std::endl;
            txn->abort();
        }

    } catch(DbException &e) {
        std::cerr << "Error opening database and environment: "
                  << file_name << ", "
                  << envHome << std::endl;
        std::cerr << e.what() << std::endl;
    }

    try {
        if (dbp != NULL) 
            dbp->close(0);
        myEnv.close(0);
    } catch(DbException &e) {
        std::cerr << "Error closing database and environment: "
                  << file_name << ", "
                  << envHome << std::endl;
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        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    return (EXIT_SUCCESS);
} 

Committing a Transaction

In order to fully understand what is happening when you commit a transaction, you must
first understand a little about what DB is doing with the logging subsystem. Logging causes
all database write operations to be identified in logs, and by default these logs are backed
by files on disk. These logs are used to restore your databases in the event of a system or
application failure, so by performing logging, DB ensures the integrity of your data.

Moreover, DB performs write-ahead logging. This means that information is written to the logs
before the actual database is changed. This means that all write activity performed under
the protection of the transaction is noted in the log before the transaction is committed. Be
aware, however, that database maintains logs in-memory. If you are backing your logs on disk,
the log information will eventually be written to the log files, but while the transaction is on-
going the log data may be held only in memory.

When you commit a transaction, the following occurs:

• A commit record is written to the log. This indicates that the modifications made by the
transaction are now permanent. By default, this write is performed synchronously to disk so
the commit record arrives in the log files before any other actions are taken.

• Any log information held in memory is (by default) synchronously written to disk. Note that
this requirement can be relaxed, depending on the type of commit you perform. See Non-
Durable Transactions (page 19) for more information. Also, if you are maintaining your
logs entirely in-memory, then this step will of course not be taken. To configure your logging
system for in-memory usage, see Configuring In-Memory Logging (page 71).

• All locks held by the transaction are released. This means that read operations performed
by other transactions or threads of control can now see the modifications without resorting
to uncommitted reads (see Reading Uncommitted Data (page 43) for more information).

To commit a transaction, you simply call DbTxn::commit().

Notice that committing a transaction does not necessarily cause data modified in your memory
cache to be written to the files backing your databases on disk. Dirtied database pages are
written for a number of reasons, but a transactional commit is not one of them. The following
are the things that can cause a dirtied database page to be written to the backing database
file:

• Checkpoints.

Checkpoints cause all dirtied pages currently existing in the cache to be written to disk, and
a checkpoint record is then written to the logs. You can run checkpoints explicitly. For more
information on checkpoints, see Checkpoints (page 55).
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• Cache is full.

If the in-memory cache fills up, then dirtied pages might be written to disk in order to free
up space for other pages that your application needs to use. Note that if dirtied pages are
written to the database files, then any log records that describe how those pages were
dirtied are written to disk before the database pages are written.

Be aware that because your transaction commit caused database modifications recorded
in your logs to be forced to disk, your modifications are by default "persistent" in that they
can be recovered in the event of an application or system failure. However, recovery time is
gated by how much data has been modified since the last checkpoint, so for applications that
perform a lot of writes, you may want to run a checkpoint with some frequency.

Note that once you have committed a transaction, the transaction handle that you used for
the transaction is no longer valid. To perform database activities under the control of a new
transaction, you must obtain a fresh transaction handle.

Non-Durable Transactions

As previously noted, by default transaction commits are durable because they cause the
modifications performed under the transaction to be synchronously recorded in your on-disk
log files. However, it is possible to use non-durable transactions.

You may want non-durable transactions for performance reasons. For example, you might
be using transactions simply for the isolation guarantee. In this case, you might not want a
durability guarantee and so you may want to prevent the disk I/O that normally accompanies a
transaction commit.

There are several ways to remove the durability guarantee for your transactions:

• Specify DB_TXN_NOSYNC using the DbEnv::set_flags() method. This causes DB to not
synchronously force any log data to disk upon transaction commit. That is, the modifications
are held entirely in the in-memory cache and the logging information is not forced to the
filesystem for long-term storage. Note, however, that the logging data will eventually make
it to the filesystem (assuming no application or OS crashes) as a part of DB's management of
its logging buffers and/or cache.

This form of a commit provides a weak durability guarantee because data loss can occur due
to an application or OS crash.

This behavior is specified on a per-environment handle basis. In order for your application
to exhibit consistent behavior, you need to specify this flag for all of the environment
handles used in your application.

You can achieve this behavior on a transaction by transaction basis by specifying
DB_TXN_NOSYNC to the DbTxn::commit() method.

• Specify DB_TXN_WRITE_NOSYNC using the DbEnv::set_flags() method. This causes logging
data to be synchronously written to the OS's file system buffers upon transaction commit.
The data will eventually be written to disk, but this occurs when the operating system
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chooses to schedule the activity; the transaction commit can complete successfully before
this disk I/O is performed by the OS.

This form of commit protects you against application crashes, but not against OS crashes.
This method offers less room for the possibility of data loss than does DB_TXN_NOSYNC.

This behavior is specified on a per-environment handle basis. In order for your application
to exhibit consistent behavior, you need to specify this flag for all of the environment
handles used in your application.

• Maintain your logs entirely in-memory. In this case, your logs are never written to disk. The
result is that you lose all durability guarantees. See Configuring In-Memory Logging (page
71) for more information.

Aborting a Transaction
When you abort a transaction, all database modifications performed under the protection of
the transaction are discarded, and all locks currently held by the transaction are released.
In this event, your data is simply left in the state that it was in before the transaction began
performing data modifications.

Once you have aborted a transaction, the transaction handle that you used for the transaction
is no longer valid. To perform database activities under the control of a new transaction, you
must obtain a fresh transactional handle.

To abort a transaction, call DbTxn::abort().

Auto Commit
While transactions are frequently used to provide atomicity to multiple database operations,
it is sometimes necessary to perform a single database operation under the control of a
transaction. Rather than force you to obtain a transaction, perform the single write operation,
and then either commit or abort the transaction, you can automatically group this sequence of
events using auto commit.

To use auto commit:

1. Open your environment and your databases so that they support transactions. See
Enabling Transactions (page 6) for details.

Note that frequently auto commit is used for the environment or database open. To use
auto commit for either your environment or database open, specify DB_AUTO_COMMIT to
the DbEnv::set_flags() or Db::open() method. If you specify auto commit for the
environment open, then you do not need to also specify auto commit for the database
open.

2. Do not provide a transactional handle to the method that is performing the database
write operation.

Note that auto commit is not available for cursors. You must always open your cursor
using a transaction if you want the cursor's operations to be transactional protected. See
Transactional Cursors (page 23) for details on using transactional cursors.
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Note

Never have more than one active transaction in your thread at a time. This is
especially a problem if you mix an explicit transaction with another operation that
uses auto commit. Doing so can result in undetectable deadlocks.

For example, the following uses auto commit to perform the database write operation:

#include "db_cxx.h"

...

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_INIT_TXN;     // Initialize transactions

    u_int32_t db_flags = DB_CREATE | DB_AUTO_COMMIT;
    Db *dbp = NULL;
    const char *file_name = "mydb.db";
    const char *keystr ="thekey";
    const char *datastr = "thedata";

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        myEnv.open(envHome.c_str(), env_flags, 0);
        dbp = new Db(&myEnv, 0);

        // Open the database. Note that we are using auto commit for 
        // the open, so the database is able to support transactions.
        dbp->open(NULL,       // Txn pointer
                  file_name,  // File name
                  NULL,       // Logical db name */
                  DB_BTREE,   // Database type (using btree)
                  db_flags,   // Open flags
                  0);         // File mode. Using defaults

        Dbt key, data;
        key.set_data(keystr);
        key.set_size((strlen(keystr) + 1) * sizeof(char));
        key.set_data(datastr);
        key.set_size((strlen(datastr) + 1) * sizeof(char));
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        // Perform the write. Because the database was opened to support
        // auto commit, this write is performed using auto commit.
        db->put(NULL, &key, &data, 0);

    } catch(DbException &e) {
        std::cerr << "Error opening database and environment: "
                  << file_name << ", "
                  << envHome << std::endl;
        std::cerr << e.what() << std::endl;
    }

    try {
        if (dbp != NULL) 
            dbp->close(0);
        myEnv.close(0);
    } catch(DbException &e) {
        std::cerr << "Error closing database and environment: "
                  << file_name << ", "
                  << envHome << std::endl;
        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    return (EXIT_SUCCESS);
} 

Nested Transactions

A nested transaction is used to provide a transactional guarantee for a subset of operations
performed within the scope of a larger transaction. Doing this allows you to commit and abort
the subset of operations independently of the larger transaction.

The rules to the usage of a nested transaction are as follows:

• While the nested (child) transaction is active, the parent transaction may not perform any
operations other than to commit or abort, or to create more child transactions.

• Committing a nested transaction has no effect on the state of the parent transaction. The
parent transaction is still uncommitted. However, the parent transaction can now see any
modifications made by the child transaction. Those modifications, of course, are still hidden
to all other transactions until the parent also commits.

• Likewise, aborting the nested transaction has no effect on the state of the parent
transaction. The only result of the abort is that neither the parent nor any other
transactions will see any of the database modifications performed under the protection of
the nested transaction.

• If the parent transaction commits or aborts while it has active children, the child
transactions are resolved in the same way as the parent. That is, if the parent aborts, then
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the child transactions abort as well. If the parent commits, then whatever modifications
have been performed by the child transactions are also committed.

• The locks held by a nested transaction are not released when that transaction commits.
Rather, they are now held by the parent transaction until such a time as that parent
commits.

• Any database modifications performed by the nested transaction are not visible outside
of the larger encompassing transaction until such a time as that parent transaction is
committed.

• The depth of the nesting that you can achieve with nested transaction is limited only by
memory.

To create a nested transaction, simply pass the parent transaction's handle when you created
the nested transaction's handle. For example:
    // parent transaction
    DbTxn *parentTxn, *childTxn;
    ret = myEnv.txn_begin(NULL, &parentTxn, 0);
    // child transaction
    ret = myEnv.txn_begin(parent_txn, &childTxn, 0); 

Transactional Cursors

You can transaction-protect your cursor operations by specifying a transaction handle at the
time that you create your cursor. Beyond that, you do not ever provide a transaction handle
directly to a cursor method.

Note that if you transaction-protect a cursor, then you must make sure that the cursor is
closed before you either commit or abort the transaction. For example:
#include "db_cxx.h"

...

int main(void)
{
    // Environment and database opens omitted
    ...

    DbTxn *txn = NULL;
    Dbc *cursorp = NULL;

    try {

        Dbt key, data;
        key.set_data(keystr);
        key.set_size((strlen(keystr) + 1) * sizeof(char));
        key.set_data(datastr);
        key.set_size((strlen(datastr) + 1) * sizeof(char));
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        DbTxn *txn = NULL;
        myEnv.txn_begin(NULL, &txn, 0);
        try {
            // Get our cursor. Note that we pass the transaction handle 
            // here.
            db.cursor(txn, &cursorp, 0); 

            // Perform our operations. Note that we do not pass a 
            // transaction handle here.
            char *replacementString = "new string";
            while (cursor->get(&key, &data, DB_NEXT) == 0) {
                data.set_data(void *)replacementString);
                data.set_size((strlen(replacementString) + 1) * 
                    sizeof(char));
                cursor->put(&key, &data, DB_CURRENT);
            }

            // We're done. Commit the transaction.
            cursor->close();
            txn->commit(0);
        } catch (DbException &e) {
            std::cerr << "Error in transaction: "
                       << e.what() << std::endl;
            cursor->close();
            txn->abort();
        }

    } catch(DbException &e) {
        std::cerr << "Error opening database and environment: "
                  << file_name << ", "
                  << envHome << std::endl;
        std::cerr << e.what() << std::endl;
    }

    return (EXIT_SUCCESS);
} 

Secondary Indices with Transaction Applications

You can use transactions with your secondary indices so long as you open the secondary index
so that it supports transactions (that is, you wrap the database open in a transaction, or
use auto commit, in the same way as when you open a primary transactional database). In
addition, you must make sure that when you associate the secondary index with the primary
database, the association is performed using a transaction. The easiest thing to do here is to
simply specify DB_AUTO_COMMIT when you perform the association.

All other aspects of using secondary indices with transactions are identical to using secondary
indices without transactions. In addition, transaction-protecting cursors opened against
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secondary indices is performed in exactly the same way as when you use transactional cursors
against a primary database. See Transactional Cursors (page 23) for details.

Note that when you use transactions to protect your database writes, your secondary indices
are protected from corruption because updates to the primary and the secondaries are
performed in a single atomic transaction.

For example:

#include <db_cxx.h>

...

// Environment and primary database open omitted
...

Db my_index(&envp, 0);    // Secondary

// Open the secondary
my_index.open(NULL,              // Transaction pointer
              "my_secondary.db", // On-disk file that holds the database.
              NULL,              // Optional logical database name
              DB_BTREE,          // Database access method
              DB_AUTO_COMMIT,    // Open flags.
              0);                // File mode (using defaults)

// Now associate the primary and the secondary
my_database.associate(NULL,             // Txn id
                      &my_index,        // Associated secondary database
                      get_sales_rep,    // Callback used for key
                                        // extraction. This is described 
                                        // in the Getting Started guide.
                      DB_AUTO_COMMIT);  // Flags 

Configuring the Transaction Subsystem

Most of the configuration activities that you need to perform for your transactional DB
application will involve the locking and logging subsystems. See Concurrency (page 28) and
Managing DB Files (page 55) for details.

However, there are a couple of things that you can do to configure your transaction subsystem
directly. These things are:

• Configure the maximum number of simultaneous transactions needed by your application.
In general, you should not need to do this unless you use deeply nested transactions or
you have many threads all of which have active transactions. In addition, you may need to
configure a higher maximum number of transactions if you are using snapshot isolation. See
Snapshot Isolation Transactional Requirements (page 47) for details.

By default, your application can support 20 active transactions.
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You can set the maximum number of simultaneous transactions supported by your
application using the DbEnv::set_tx_max() method. Note that this method must be called
before the environment has been opened.

If your application has exceeded this maximum value, then any attempt to begin a new
transaction will fail.

This value can also be set using the DB_CONFIG file's set_tx_max parameter. Remember
that the DB_CONFIG must reside in your environment home directory.

• Configure the timeout value for your transactions. This value represents the longest
period of time a transaction can be active. Note, however, that transaction timeouts are
checked only when DB examines its lock tables for blocked locks (see Locks, Blocks, and
Deadlocks (page 29) for more information). Therefore, a transaction's timeout can have
expired, but the application will not be notified until DB has a reason to examine its lock
tables.

Be aware that some transactions may be inappropriately timed out before the transaction
has a chance to complete. You should therefore use this mechanism only if you know your
application might have unacceptably long transactions and you want to make sure your
application will not stall during their execution. (This might happen if, for example, your
transaction blocks or requests too much data.)

Note that by default transaction timeouts are set to 0 seconds, which means that they never
time out.

To set the maximum timeout value for your transactions, use the DbEnv::set_timeout()
method. This method configures the entire environment; not just the handle used to set the
configuration. Further, this value may be set at any time during the application's lifetime.

This value can also be set using the DB_CONFIG file's set_txn_timeout parameter.

For example:

#include "db_cxx.h"

...

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_THREAD     |  // Free-thread the env handle
                          DB_INIT_TXN;     // Initialize transactions

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);
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    try {

        // Configure a maximum transaction timeout of 1 second.
        myEnv.set_timeout(1000000, DB_SET_TXN_TIMEOUT);
        // Configure 40 maximum transactions.
        myEnv.set_tx_max(40);
        myEnv.open(envHome.c_str(), env_flags, 0);

        // From here, you open your databases, proceed with your 
        // database operations, and respond to deadlocks as 
        // is normal (omitted for brevity).

        
        ...
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Chapter 4. Concurrency
DB offers a great deal of support for multi-threaded and multi-process applications even when
transactions are not in use. Many of DB's handles are thread-safe, or can be made thread-safe
by providing the appropriate flag at handle creation time, and DB provides a flexible locking
subsystem for managing databases in a concurrent application. Further, DB provides a robust
mechanism for detecting and responding to deadlocks . All of these concepts are explored in
this chapter.

Before continuing, it is useful to define a few terms that will appear throughout this chapter:

• Thread of control

Refers to a thread that is performing work in your application. Typically, in this book that
thread will be performing DB operations.

Note that this term can also be taken to mean a separate process that is performing work —
DB supports multi-process operations on your databases.

Also, DB is agnostic with regard to the type or style of threads in use in your application. So
if you are using multiple threads (as opposed to multiple processes) to perform concurrent
database access, you are free to use whatever thread package is best for your platform and
application. That said, this manual will use pthreads for its threading examples because
those have the best chance of being supported across a large range of platforms.

• Locking

When a thread of control obtains access to a shared resource, it is said to be locking that
resource. Note that DB supports both exclusive and non-exclusive locks. See Locks (page
29) for more information.

• Free-threaded

Data structures and objects are free-threaded if they can be shared across threads of
control without any explicit locking on the part of the application. Some books, libraries,
and programming languages may use the term thread-safe for data structures or objects
that have this characteristic. The two terms mean the same thing.

For a description of free-threaded DB objects, see Which DB Handles are Free-
Threaded (page 29).

• Blocked

When a thread cannot obtain a lock because some other thread already holds a lock on that
object, the lock attempt is said to be blocked. See Blocks (page 31) for more information.

• Deadlock

Occurs when two or more threads of control attempt to access conflicting resource in such a
way as none of the threads can any longer make further progress.
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For example, if Thread A is blocked waiting for a resource held by Thread B, while at the
same time Thread B is blocked waiting for a resource held by Thread A, then neither thread
can make any forward progress. In this situation, Thread A and Thread B are said to be
deadlocked.

For more information, see Deadlocks (page 34).

Which DB Handles are Free-Threaded

The following describes to what extent and under what conditions individual handles are free-
threaded.

• DbEnv

Free-threaded so long as the DB_THREAD flag is provided to the environment open()
method.

• Db

Free-threaded so long as the DB_THREAD flag is provided to the database open() method, or
if the database is opened using a free-threaded environment handle.

• Dbc

Cursors are not free-threaded. However, they can be used by multiple threads of control so
long as the application serializes access to the handle.

• DbTxn

Access must be serialized by the application across threads of control.

Locks, Blocks, and Deadlocks

It is important to understand how locking works in a concurrent application before continuing
with a description of the concurrency mechanisms DB makes available to you. Blocking and
deadlocking have important performance implications for your application. Consequently,
this section provides a fundamental description of these concepts, and how they affect DB
operations.

Locks

When one thread of control wants to obtain access to an object, it requests a lock for that
object. This lock is what allows DB to provide your application with its transactional isolation
guarantees by ensuring that:

• no other thread of control can read that object (in the case of an exclusive lock), and

• no other thread of control can modify that object (in the case of an exclusive or non-
exclusive lock).
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Lock Resources

When locking occurs, there are conceptually three resources in use:

1. The locker.

This is the thing that holds the lock. In a transactional application, the locker is a
transaction handle. For non-transactional operations, the locker is a cursor or a Db
handle.

2. The lock.

This is the actual data structure that locks the object. In DB, a locked object structure in
the lock manager is representative of the object that is locked.

3. The locked object.

The thing that your application actually wants to lock. In a DB application, the locked
object is usually a database page, which in turn contains multiple database entries (key
and data). However, for Queue databases, individual database records are locked.

You can configure how many total lockers, locks, and locked objects your application is
allowed to support. See Configuring the Locking Subsystem (page 36) for details.

The following figure shows a transaction handle, Txn A, that is holding a lock on database
page 002. In this graphic, Txn A is the locker, and the locked object is page 002. Only a single
lock is in use in this operation.

Types of Locks

DB applications support both exclusive and non-exclusive locks. Exclusive locks are granted
when a locker wants to write to an object. For this reason, exclusive locks are also sometimes
called write locks.

An exclusive lock prevents any other locker from obtaining any sort of a lock on the object.
This provides isolation by ensuring that no other locker can observe or modify an exclusively
locked object until the locker is done writing to that object.

Non-exclusive locks are granted for read-only access. For this reason, non-exclusive locks are
also sometimes called read locks. Since multiple lockers can simultaneously hold read locks on
the same object, read locks are also sometimes called shared locks.
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A non-exclusive lock prevents any other locker from modifying the locked object while
the locker is still reading the object. This is how transactional cursors are able to achieve
repeatable reads; by default, the cursor's transaction holds a read lock on any object that the
cursor has examined until such a time as the transaction is committed or aborted. You can
avoid these read locks by using snapshot isolation. See Using Snapshot Isolation (page 46)
for details.

In the following figure, Txn A and Txn B are both holding read locks on page 002, while Txn
C is holding a write lock on page 003:

Lock Lifetime

A locker holds its locks until such a time as it does not need the lock any more. What this
means is:

1. A transaction holds any locks that it obtains until the transaction is committed or
aborted.

2. All non-transaction operations hold locks until such a time as the operation is completed.
For cursor operations, the lock is held until the cursor is moved to a new position or
closed.

Blocks

Simply put, a thread of control is blocked when it attempts to obtain a lock, but that attempt
is denied because some other thread of control holds a conflicting lock. Once blocked, the
thread of control is temporarily unable to make any forward progress until the requested lock
is obtained or the operation requesting the lock is abandoned.

Be aware that when we talk about blocking, strictly speaking the thread is not what is
attempting to obtain the lock. Rather, some object within the thread (such as a cursor) is
attempting to obtain the lock. However, once a locker attempts to obtain a lock, the entire
thread of control must pause until the lock request is in some way resolved.

For example, if Txn A holds a write lock (an exclusive lock) on object 002, then if Txn B tries
to obtain a read or write lock on that object, the thread of control in which Txn B is running
is blocked:
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However, if Txn A only holds a read lock (a shared lock) on object 002, then only those
handles that attempt to obtain a write lock on that object will block.

Note

The previous description describes DB's default behavior when it cannot obtain a lock.
It is possible to configure DB transactions so that they will not block. Instead, if a lock
is unavailable, the application is immediately notified of a deadlock situation. See No
Wait on Blocks (page 52) for more information.

Blocking and Application Performance

Multi-threaded and multi-process applications typically perform better than simple single-
threaded applications because the application can perform one part of its workload (updating
a database record, for example) while it is waiting for some other lengthy operation to
complete (performing disk or network I/O, for example). This performance improvement is
particularly noticeable if you use hardware that offers multiple CPUs, because the threads and
processes can run simultaneously.

That said, concurrent applications can see reduced workload throughput if their threads of
control are seeing a large amount of lock contention. That is, if threads are blocking on lock
requests, then that represents a performance penalty for your application.
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Consider once again the previous diagram of a blocked write lock request. In that diagram,
Txn C cannot obtain its requested write lock because Txn A and Txn B are both already
holding read locks on the requested object. In this case, the thread in which Txn C is running
will pause until such a time as Txn C either obtains its write lock, or the operation that is
requesting the lock is abandoned. The fact that Txn C's thread has temporarily halted all
forward progress represents a performance penalty for your application.

Moreover, any read locks that are requested while Txn C is waiting for its write lock will also
block until such a time as Txn C has obtained and subsequently released its write lock.

Avoiding Blocks

Reducing lock contention is an important part of performance tuning your concurrent DB
application. Applications that have multiple threads of control obtaining exclusive (write)
locks are prone to contention issues. Moreover, as you increase the numbers of lockers and as
you increase the time that a lock is held, you increase the chances of your application seeing
lock contention.

As you are designing your application, try to do the following in order to reduce lock
contention:

• Reduce the length of time your application holds locks.

Shorter lived transactions will result in shorter lock lifetimes, which will in turn help to
reduce lock contention.

In addition, by default transactional cursors hold read locks until such a time as the
transaction is completed. For this reason, try to minimize the time you keep transactional
cursors opened, or reduce your isolation levels – see below.

• If possible, access heavily accessed (read or write) items toward the end of the transaction.
This reduces the amount of time that a heavily used page is locked by the transaction.

• Reduce your application's isolation guarantees.

By reducing your isolation guarantees, you reduce the situations in which a lock can block
another lock. Try using uncommitted reads for your read operations in order to prevent a
read lock being blocked by a write lock.

In addition, for cursors you can use degree 2 (read committed) isolation, which causes
the cursor to release its read locks as soon as it is done reading the record (as opposed to
holding its read locks until the transaction ends).

Be aware that reducing your isolation guarantees can have adverse consequences for
your application. Before deciding to reduce your isolation, take care to examine your
application's isolation requirements. For information on isolation levels, see Isolation (page
42).

• Use snapshot isolation for read-only threads.
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Snapshot isolation causes the transaction to make a copy of the page on which it is holding
a lock. When a reader makes a copy of a page, write locks can still be obtained for the
original page. This eliminates entirely read-write contention.

Snapshot isolation is described in Using Snapshot Isolation (page 46).

• Consider your data access patterns.

Depending on the nature of your application, this may be something that you can not do
anything about. However, if it is possible to create your threads such that they operate only
on non-overlapping portions of your database, then you can reduce lock contention because
your threads will rarely (if ever) block on one another's locks.

Note

It is possible to configure DB's transactions so that they never wait on blocked
lock requests. Instead, if they are blocked on a lock request, they will notify the
application of a deadlock (see the next section).

You configure this behavior on a transaction by transaction basis. See No Wait on
Blocks (page 52) for more information.

Deadlocks

A deadlock occurs when two or more threads of control are blocked, each waiting on a
resource held by the other thread. When this happens, there is no possibility of the threads
ever making forward progress unless some outside agent takes action to break the deadlock.

For example, if Txn A is blocked by Txn B at the same time Txn B is blocked by Txn A then
the threads of control containing Txn A and Txn B are deadlocked; neither thread can make
any forward progress because neither thread will ever release the lock that is blocking the
other thread.
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When two threads of control deadlock, the only solution is to have a mechanism external
to the two threads capable of recognizing the deadlock and notifying at least one thread
that it is in a deadlock situation. Once notified, a thread of control must abandon the
attempted operation in order to resolve the deadlock. DB's locking subsystem offers a
deadlock notification mechanism. See Configuring Deadlock Detection (page 37) for more
information.

Note that when one locker in a thread of control is blocked waiting on a lock held by another
locker in that same thread of the control, the thread is said to be self-deadlocked.

Deadlock Avoidance

The things that you do to avoid lock contention also help to reduce deadlocks (see Avoiding
Blocks (page 33)). Beyond that, you can also do the following in order to avoid deadlocks:

• Never have more than one active transaction at a time in a thread. A common cause of this
is for a thread to be using auto-commit for one operation while an explicit transaction is in
use in that thread at the same time.

• Make sure all threads access data in the same order as all other threads. So long as threads
lock database pages in the same basic order, there is no possibility of a deadlock (threads
can still block, however).

Be aware that if you are using secondary databases (indexes), it is not possible to obtain
locks in a consistent order because you cannot predict the order in which locks are obtained
in secondary databases. If you are writing a concurrent application and you are using
secondary databases, you must be prepared to handle deadlocks.

• If you are using BTrees in which you are constantly adding and then deleting data, turn
Btree reverse split off. See Reverse BTree Splits (page 53) for more information.

• Declare a read/modify/write lock for those situations where you are reading a record in
preparation of modifying and then writing the record. Doing this causes DB to give your
read operation a write lock. This means that no other thread of control can share a read
lock (which might cause contention), but it also means that the writer thread will not
have to wait to obtain a write lock when it is ready to write the modified data back to the
database.

For information on declaring read/modify/write locks, see Read/Modify/Write (page 51).

The Locking Subsystem

In order to allow concurrent operations, DB provides the locking subsystem. This subsystem
provides inter- and intra- process concurrency mechanisms. It is extensively used by DB
concurrent applications, but it can also be generally used for non-DB resources.

This section describes the locking subsystem as it is used to protect DB resources. In
particular, issues on configuration are examined here. For information on using the locking
subsystem to manage non-DB resources, see the Berkeley DB Programmer's Reference Guide.
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Configuring the Locking Subsystem

You initialize the locking subsystem by specifying DB_INIT_LOCK to the DbEnv::open()
method.

Before opening your environment, you can configure various values for your locking
subsystem. Note that these limits can only be configured before the environment is opened.
Also, these methods configure the entire environment, not just a specific environment handle.

Finally, each bullet below identifies the DB_CONFIG file parameter that can be used to specify
the specific locking limit. If used, these DB_CONFIG file parameters override any value that
you might specify using the environment handle.

The limits that you can configure are as follows:

• The number of lockers supported by the environment. This value is used by the environment
when it is opened to estimate the amount of space that it should allocate for various
internal data structures. By default, 1,000 lockers are supported.

To configure this value, use the DbEnv::set_memory_init() method to configure the
DB_MEM_LOCKER structure.

As an alternative to this method, you can configure this value using the DB_CONFIG file's
set_lk_max_lockers parameter.

• The number of locks supported by the environment. By default, 1,000 locks are supported.

To configure this value, use the DbEnv::set_memory_init() method to configure the
DB_MEM_LOCK structure.

As an alternative to this method, you can configure this value using the DB_CONFIG file's
set_lk_max_locks parameter.

• The number of locked objects supported by the environment. By default, 1,000 objects can
be locked.

To configure this value, use the DbEnv::set_memory_init() method to configure the
DB_MEM_LOCKOBJECT structure.

As an alternative to this method, you can configure this value using the DB_CONFIG file's
set_lk_max_objects parameter.

For a definition of lockers, locks, and locked objects, see Lock Resources (page 30).

For example, to configure the number of locks that your environment can use:

#include "db_cxx.h"

...

int main(void)
{
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    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_THREAD     |  // Free-thread the env handle.
                          DB_INIT_TXN;     // Initialize transactions

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        // Configure max locks
        myEnv.set_lk_max_locks(5000);
        myEnv.set_memory_init(DB_MEM_LOCK, 5000);

        myEnv.open(envHome.c_str(), env_flags, 0);

    } catch(DbException &e) {
        std::cerr << "Error opening database environment: "
                  << envHome << std::endl;
        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    try {
        myEnv.close(0);
    } catch(DbException &e) {
        std::cerr << "Error closing database environment: "
                << envHome << std::endl;
        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    return (EXIT_SUCCESS);
} 

Configuring Deadlock Detection

In order for DB to know that a deadlock has occurred, some mechanism must be used to
perform deadlock detection. There are three ways that deadlock detection can occur:

1. Allow DB to internally detect deadlocks as they occur.

To do this, you use DbEnv::set_lk_detect(). This method causes DB to walk its internal
lock table looking for a deadlock whenever a lock request is blocked. This method also
identifies how DB decides which lock requests are rejected when deadlocks are detected.
For example, DB can decide to reject the lock request for the transaction that has the
most number of locks, the least number of locks, holds the oldest lock, holds the most
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number of write locks, and so forth (see the API reference documentation for a complete
list of the lock detection policies).

You can call this method at any time during your application's lifetime, but typically it is
used before you open your environment.

Note that how you want DB to decide which thread of control should break a deadlock
is extremely dependent on the nature of your application. It is not unusual for some
performance testing to be required in order to make this determination. That said,
a transaction that is holding the most number of locks is usually indicative of the
transaction that has performed the most amount of work. Frequently you will not want
a transaction that has performed a lot of work to abandon its efforts and start all over
again. It is not therefore uncommon for application developers to initially select the
transaction with the minimum number of write locks to break the deadlock.

Using this mechanism for deadlock detection means that your application will never have
to wait on a lock before discovering that a deadlock has occurred. However, walking the
lock table every time a lock request is blocked can be expensive from a performance
perspective.

2. Use a dedicated thread or external process to perform deadlock detection. Note that this
thread must be performing no other database operations beyond deadlock detection.

To externally perform lock detection, you can use either the DbEnv::lock_detect()
method, or use the db_deadlock command line utility. This method (or command) causes
DB to walk the lock table looking for deadlocks.

Note that like DbEnv::set_lk_detect(), you also use this method (or command line
utility) to identify which lock requests are rejected in the event that a deadlock is
detected.

Applications that perform deadlock detection in this way typically run deadlock detection
between every few seconds and a minute. This means that your application may have
to wait to be notified of a deadlock, but you also save the overhead of walking the lock
table every time a lock request is blocked.

3. Lock timeouts.

You can configure your locking subsystem such that it times out any lock that is not
released within a specified amount of time. To do this, use the DbEnv::set_timeout()
method. Note that lock timeouts are only checked when a lock request is blocked or when
deadlock detection is otherwise performed. Therefore, a lock can have timed out and still
be held for some length of time until DB has a reason to examine its locking tables.

Be aware that extremely long-lived transactions, or operations that hold locks for a long
time, may be inappropriately timed out before the transaction or operation has a chance
to complete. You should therefore use this mechanism only if you know your application
will hold locks for very short periods of time.

For example, to configure your application such that DB checks the lock table for deadlocks
every time a lock request is blocked:
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#include "db_cxx.h"

...

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_THREAD     |  // Free-thread the env handle
                          DB_INIT_TXN;     // Initialize transactions

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        // Configure db to perform deadlock detection internally, and to
        // choose the transaction that has performed the least amount 
        // of writing to break the deadlock in the event that one 
        // is detected.
        myEnv.set_lk_detect(DB_LOCK_MINWRITE);
        myEnv.open(envHome.c_str(), env_flags, 0);
     
        // From here, you open your databases, proceed with your 
        // database operations, and respond to deadlocks as 
        // is normal (omitted for brevity).

        
        ...

Finally, the following command line call causes deadlock detection to be run against the
environment contained in /export/dbenv. The transaction with the youngest lock is chosen to
break the deadlock:

> /usr/local/db_install/bin/db_deadlock -h /export/dbenv -a y

For more information, see the  db_deadlock reference documentation.

Resolving Deadlocks

When DB determines that a deadlock has occurred, it will select a thread of control to
resolve the deadlock and then throws DbDeadlockException in that thread. If a deadlock is
detected, the thread must:

1. Cease all read and write operations.

2. Close all open cursors.

http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/db_deadlock.html
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3. Abort the transaction.

4. Optionally retry the operation. If your application retries deadlocked operations, the new
attempt must be made using a new transaction.

Note

If a thread has deadlocked, it may not make any additional database calls using the
handle that has deadlocked.

For example:

// retry_count is a counter used to identify how many times
// we've retried this operation. To avoid the potential for 
// endless looping, we won't retry more than MAX_DEADLOCK_RETRIES 
// times.

// txn is a transaction handle.
// key and data are DBT handles. Their usage is not shown here.
while (retry_count < MAX_DEADLOCK_RETRIES) {
    try {
        envp->txn_begin(NULL, txn, 0);
        dbp->put(txn, &key, &data, 0);
        txn->commit(0);
        return (EXIT_SUCCESS);
    } catch (DbDeadlockException &de) {
        try {
            // Abort the transaction and increment the 
            // retry counter
            txn->abort();
            retry_count++;
            // If we've retried too many times, log it and exit
            if (retry_count >= MAX_DEADLOCK_RETRIES) {
                    envp->errx("Exceeded retry limit. Giving up.");
                    return (EXIT_FAILURE);
            }
        } catch (DbException &ae) {
            envp->err(ae.get_errno(), "txn abort failed.");
            return (EXIT_FAILURE);    
        }
    } catch (DbException &e) {
        try {
            // For a generic error, log it and abort.
            envp->err(e.get_errno(), "Error putting data.");
            txn->abort();
        } catch (DbException &ae) {
            envp->err(ae.get_errno(), "txn abort failed.");
            return (EXIT_FAILURE);    
        }
    }
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} 

Setting Transaction Priorities

Normally when a thread of control must be selected to resolve a deadlock, DB decides which
thread will perform the resolution; you have no way of knowing in advance which thread will
be selected to resolve the deadlock.

However, there may be situations where you know it is better for one thread to resolve a
deadlock over another thread. As an example, if you have a background thread running data
management activities, and another thread responding to user requests, you might want
deadlock resolution to occur in the background thread because you can better afford the
throughput costs there. Under these circumstances, you can identify which thread of control
will be selected for resolved deadlocks by setting a transaction priorities.

When two transactions are deadlocked, DB will abort the transaction with the lowest priority.
By default, every transaction is given a priority of 100. However, you can set a different
priority on a transaction-by-transaction basis by using the DbTxn::set_priority() method.

When two or more transactions are tied for the lowest priority, the tie is broken based on the
policy provided to the DbEnv::lock_detect() method's atype parameter.

A transaction's priority can be changed at any time after the transaction handle has been
created and before the transaction has been resolved (committed or aborted). For example:

#include "db_cxx.h"

...

int main(void)
{
    ...

    try {

        ...
        // Database and environment open omitted for brevity.
        ...
        DbTxn *txn = NULL;
        myEnv.txn_begin(NULL, &txn, 0);
        txn->set_priority(200);

        try {
            db->put(txn, &key, &data, 0);
            txn->commit(0);
        } catch (DbException &e) {
            std::cerr << "Error in transaction: "
                       << e.what() << std::endl;
            txn->abort();
        }
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    } catch(DbException &e) {
        std::cerr << "Error opening database and environment: "
                  << file_name << ", "
                  << envHome << std::endl;
        std::cerr << e.what() << std::endl;
    }

    ...

} 

Isolation

Isolation guarantees are an important aspect of transactional protection. Transactions ensure
the data your transaction is working with will not be changed by some other transaction.
Moreover, the modifications made by a transaction will never be viewable outside of that
transaction until the changes have been committed.

That said, there are different degrees of isolation, and you can choose to relax your isolation
guarantees to one degree or another depending on your application's requirements. The
primary reason why you might want to do this is because of performance; the more isolation
you ask your transactions to provide, the more locking that your application must do. With
more locking comes a greater chance of blocking, which in turn causes your threads to pause
while waiting for a lock. Therefore, by relaxing your isolation guarantees, you can potentially
improve your application's throughput. Whether you actually see any improvement depends,
of course, on the nature of your application's data and transactions.

Supported Degrees of Isolation

DB supports the following levels of isolation:

Degree ANSI Term Definition

1 READ UNCOMMITTED Uncommitted reads means that one transaction
will never overwrite another transaction's dirty
data. Dirty data is data that a transaction has
modified but not yet committed to the underlying
data store. However, uncommitted reads allows
a transaction to see data dirtied by another
transaction. In addition, a transaction may
read data dirtied by another transaction, but
which subsequently is aborted by that other
transaction. In this latter case, the reading
transaction may be reading data that never really
existed in the database.

2 READ COMMITTED Committed read isolation means that degree 1 is
observed, except that dirty data is never read.

In addition, this isolation level guarantees that
data will never change so long as it is addressed
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Degree ANSI Term Definition
by the cursor, but the data may change before
the reading cursor is closed. In the case of a
transaction, data at the current cursor position
will not change, but once the cursor moves, the
previous referenced data can change. This means
that readers release read locks before the cursor
is closed, and therefore, before the transaction
completes. Note that this level of isolation
causes the cursor to operate in exactly the same
way as it does in the absence of a transaction.

3 SERIALIZABLE Committed read is observed, plus the data read
by a transaction, T, will never be dirtied by
another transaction before T completes. This
means that both read and write locks are not
released until the transaction completes.

In addition, no transactions will see phantoms.
Phantoms are records returned as a result of a
search, but which were not seen by the same
transaction when the identical search criteria
was previously used.

This is DB's default isolation guarantee.

By default, DB transactions and transactional cursors offer serializable isolation. You can
optionally reduce your isolation level by configuring DB to use uncommitted read isolation.
See Reading Uncommitted Data (page 43) for more information. You can also configure DB
to use committed read isolation. See Committed Reads (page 45) for more information.

Finally, in addition to DB's normal degrees of isolation, you can also use snapshot isolation.
This allows you to avoid the read locks that serializable isolation requires. See Using Snapshot
Isolation (page 46) for details.

Reading Uncommitted Data

Berkeley DB allows you to configure your application to read data that has been modified but
not yet committed by another transaction; that is, dirty data. When you do this, you may
see a performance benefit by allowing your application to not have to block waiting for write
locks. On the other hand, the data that your application is reading may change before the
transaction has completed.

When used with transactions, uncommitted reads means that one transaction can see data
modified but not yet committed by another transaction. When used with transactional cursors,
uncommitted reads means that any database reader can see data modified by the cursor
before the cursor's transaction has committed.

Because of this, uncommitted reads allow a transaction to read data that may subsequently be
aborted by another transaction. In this case, the reading transaction will have read data that
never really existed in the database.
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To configure your application to read uncommitted data:

1. Open your database such that it will allow uncommitted reads. You do this by specifying
DB_READ_UNCOMMITTED when you open your database.

2. Specify DB_READ_UNCOMMITTED when you create the transaction, open the cursor, or read
a record from the database.

For example, the following opens the database such that it supports uncommitted reads,
and then creates a transaction that causes all reads performed within it to use uncommitted
reads. Remember that simply opening the database to support uncommitted reads is not
enough; you must also declare your read operations to be performed using uncommitted
reads.

#include "db_cxx.h"

...

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_THREAD     |  // Free-thread the env handle
                          DB_INIT_TXN;     // Initialize transactions

    u_int32_t db_flags = DB_CREATE |           // Create the db if it does
                                               // not exist
                         DB_AUTO_COMMIT |      // Enable auto commit
                         DB_READ_UNCOMMITTED;  // Enable uncommitted reads

    Db *dbp = NULL;
    const char *file_name = "mydb.db";
    const char *keystr ="thekey";
    const char *datastr = "thedata";

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        myEnv.open(envHome.c_str(), env_flags, 0);
        dbp = new Db(&myEnv, 0);
        dbp->open(NULL,       // Txn pointer 
                  file_name,  // File name 
                  NULL,       // Logical db name 
                  DB_BTREE,   // Database type (using btree) 
                  db_flags,   // Open flags 
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                  0);         // File mode. Using defaults 

        DbTxn *txn = NULL;
        myEnv.txn_begin(NULL, &txn, DB_READ_UNCOMMITTED);

        // From here, you perform your database reads and writes as
        // normal, committing and aborting the transactions as is 
        // necessary, and testing for deadlock exceptions as normal 
        // (omitted for brevity). 

        ...

Committed Reads

You can configure your transaction so that the data being read by a transactional cursor is
consistent so long as it is being addressed by the cursor. However, once the cursor is done
reading the record (that is, reading records from the page that it currently has locked), the
cursor releases its lock on that record or page. This means that the data the cursor has read
and released may change before the cursor's transaction has completed.

For example, suppose you have two transactions, Ta and Tb. Suppose further that Ta has a
cursor that reads record R, but does not modify it. Normally, Tb would then be unable to
write record R because Ta would be holding a read lock on it. But when you configure your
transaction for committed reads, Tb can modify record R before Ta completes, so long as the
reading cursor is no longer addressing the record or page.

When you configure your application for this level of isolation, you may see better
performance throughput because there are fewer read locks being held by your transactions.
Read committed isolation is most useful when you have a cursor that is reading and/or writing
records in a single direction, and that does not ever have to go back to re-read those same
records. In this case, you can allow DB to release read locks as it goes, rather than hold them
for the life of the transaction.

To configure your application to use committed reads, do one of the following:

• Create your transaction such that it allows committed reads. You do this by specifying
DB_READ_COMMITTED when you open the transaction.

• Specify DB_READ_COMMITTED when you open the cursor.

For example, the following creates a transaction that allows committed reads:

#include "db_cxx.h"

...

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
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                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_THREAD     |  // Free-thread the env handle
                          DB_INIT_TXN;     // Initialize transactions

    // Notice that we do not have to specify any flags to the database to
    // allow committed reads (this is as opposed to uncommitted reads 
    // where we DO have to specify a flag on the database open.
    u_int32_t db_flags = DB_CREATE | DB_AUTO_COMMIT;
    Db *dbp = NULL;
    const char *file_name = "mydb.db";

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        myEnv.open(envHome.c_str(), env_flags, 0);
        dbp = new Db(&myEnv, 0);
        dbp->open(NULL,       // Txn pointer
                  file_name,  // File name
                  NULL,       // Logical db name
                  DB_BTREE,   // Database type (using btree)
                  db_flags,   // Open flags
                  0);         // File mode. Using defaults

        DbTxn *txn = NULL;

        // Open the transaction and enable committed reads. All cursors 
        // open with this transaction handle will use read committed 
        // isolation.
        myEnv.txn_begin(NULL, &txn, DB_READ_COMMITTED);

        // From here, you perform your database reads and writes as
        // normal, committing and aborting the transactions as is
        // necessary, testing for deadlock exceptions as normal 
        // (omitted for brevity). 

        // Using transactional cursors with concurrent applications is 
        // described in more detail in the following section.
        
        ...

Using Snapshot Isolation

By default DB uses serializable isolation. An important side effect of this isolation level is that
read operations obtain read locks on database pages, and then hold those locks until the read
operation is completed. When you are using transactional cursors, this means that read locks
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are held until the transaction commits or aborts. In that case, over time a transactional cursor
can gradually block all other transactions from writing to the database.

You can avoid this by using snapshot isolation. Snapshot isolation uses multiversion
concurrency control to guarantee repeatable reads. What this means is that every time a
writer would take a read lock on a page, instead a copy of the page is made and the writer
operates on that page copy. This frees other writers from blocking due to a read lock held on
the page.

Note

Snapshot isolation is strongly recommended for read-only threads when writer threads
are also running, as this will eliminate read-write contention and greatly improve
transaction throughput for your writer threads. However, in order for snapshot
isolation to work for your reader-only threads, you must of course use transactions for
your DB reads.

Snapshot Isolation Cost

Snapshot isolation does not come without a cost. Because pages are being duplicated before
being operated upon, the cache will fill up faster. This means that you might need a larger
cache in order to hold the entire working set in memory.

If the cache becomes full of page copies before old copies can be discarded, additional I/
O will occur as pages are written to temporary "freezer" files on disk. This can substantially
reduce throughput, and should be avoided if possible by configuring a large cache and keeping
snapshot isolation transactions short.

You can estimate how large your cache should be by taking a checkpoint, followed by a call to
the DbEnv::log_archive() method. The amount of cache required is approximately double
the size of the remaining log files (that is, the log files that cannot be archived).

Snapshot Isolation Transactional Requirements

In addition to an increased cache size, you may also need to increase the number of
transactions that your application supports. (See Configuring the Transaction Subsystem (page
25) for details on how to set this.) In the worst case scenario, you might need to configure
your application for one more transaction for every page in the cache. This is because
transactions are retained until the last page they created is evicted from the cache.

When to Use Snapshot Isolation

Snapshot isolation is best used when all or most of the following conditions are true:

• You can have a large cache relative to your working data set size.

• You require repeatable reads.

• You will be using transactions that routinely work on the entire database, or more
commonly, there is data in your database that will be very frequently written by more than
one transaction.
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• Read/write contention is limiting your application's throughput, or the application is all or
mostly read-only and contention for the lock manager mutex is limiting throughput.

How to use Snapshot Isolation

You use snapshot isolation by:

• Opening the database with multiversion support. You can configure this either when you
open your environment or when you open your database. Use the DB_MULTIVERSION flag to
configure this support.

• Configure your cursor or transaction to use snapshot isolation.

To do this, pass the DB_TXN_SNAPSHOT flag when you open the cursor or create the
transaction. If configured for the transaction, then this flag is not required when the cursor
is opened.

The simplest way to take advantage of snapshot isolation is for queries: keep update
transactions using full read/write locking and use snapshot isolation on read-only transactions
or cursors. This should minimize blocking of snapshot isolation transactions and will avoid
deadlock errors.

If the application has update transactions which read many items and only update a small set
(for example, scanning until a desired record is found, then modifying it), throughput may be
improved by running some updates at snapshot isolation as well. But doing this means that you
must manage deadlock errors. See Resolving Deadlocks (page 39) for details.

The following code fragment turns on snapshot isolation for a transaction:

#include "db_cxx.h"

...

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_INIT_TXN;     // Initialize transactions
                          
    // Note that no special flags are required here for snapshot isolation.
    // This is because it will be enabled at the environment level.
    u_int32_t db_flags = DB_CREATE | DB_AUTO_COMMIT;
    Db *dbp = NULL;
    const char *file_name = "mydb.db";

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);
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    try {

        myEnv.open(envHome.c_str(), env_flags, 0);
        // Support snapshot isolation
        myEnv.set_flags(DB_MULTIVERSION, 1);
        dbp = new Db(&myEnv, 0);
        dbp->open(NULL,       // Txn pointer 
                  file_name,  // File name 
                  NULL,       // Logical db name 
                  DB_BTREE,   // Database type (using btree) 
                  db_flags,   // Open flags 
                  0);         // File mode. Using defaults

    } catch(DbException &e) {
        std::cerr << "Error opening database and environment: "
                  << file_name << ", "
                  << envHome << std::endl;
        std::cerr << e.what() << std::endl;
    }

    ....

    envp->txn_begin(NULL, txn, DB_TXN_SNAPSHOT);

    // Remainder of program omitted for brevity.

 

Transactional Cursors and Concurrent Applications

When you use transactional cursors with a concurrent application, remember that in the event
of a deadlock you must make sure that you close your cursor before you abort and retry your
transaction.

Also, remember that when you are using the default isolation level, every time your cursor
reads a record it locks that record until the encompassing transaction is resolved. This
means that walking your database with a transactional cursor increases the chance of lock
contention.

For this reason, if you must routinely walk your database with a transactional cursor, consider
using a reduced isolation level such as read committed.

Using Cursors with Uncommitted Data

As described in Reading Uncommitted Data (page 43) above, it is possible to relax your
transaction's isolation level such that it can read data modified but not yet committed
by another transaction. You can configure this when you create your transaction handle,
and when you do so then all cursors opened inside that transaction will automatically use
uncommitted reads.
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You can also do this when you create a cursor handle from within a serializable transaction.
When you do this, only those cursors configured for uncommitted reads uses uncommitted
reads.

Either way, you must first configure your database handle to support uncommitted reads
before you can configure your transactions or your cursors to use them.

The following example shows how to configure an individual cursor handle to read
uncommitted data from within a serializable (full isolation) transaction. For an example of
configuring a transaction to perform uncommitted reads in general, see Reading Uncommitted
Data (page 43).

#include "db_cxx.h"

...

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_INIT_TXN;     // Initialize transactions

    u_int32_t db_flags = DB_CREATE |           // Create the db if it does
                                               // not exist
                         DB_AUTO_COMMIT |      // Enable auto commit
                         DB_READ_UNCOMMITTED;  // Enable uncommitted reads

    Db *dbp = NULL;
    const char *file_name = "mydb.db";

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    Dbc *cursorp = NULL;

    try {

        myEnv.open(envHome.c_str(), env_flags, 0);
        dbp = new Db(&myEnv, 0);
        dbp->open(NULL,       // Txn pointer
                  file_name,  // File name
                  NULL,       // Logical db name
                  DB_BTREE,   // Database type (using btree)
                  db_flags,   // Open flags
                  0);         // File mode. Using defaults

        DbTxn *txn = NULL;
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        myEnv.txn_begin(NULL, &txn, 0);
        try {
            // Get our cursor. Note that we pass the transaction 
            // handle here. Note also that we pass the 
            // DB_READ_UNCOMMITTED flag here so as to cause the
            // cursor to perform uncommitted reads.
            db.cursor(txn, &cursorp, DB_READ_UNCOMMITTED); 

            // From here, you perform your cursor reads and writes 
            // as normal, committing and aborting the transactions as 
            // is necessary, and testing for deadlock exceptions as 
            // normal (omitted for brevity). 
        
            ... 

Exclusive Database Handles

In some cases, concurrent applications can benefit from occasionally granting exclusive
access to the entire database to a single database handle. This is desirable when a thread will
perform an operation that touches all or most of the pages in a database.

To configure a handle to have exclusive access to a database, you give it a single write lock to
the entire database. This causes all other threads to block when they attempt to gain a read
or write lock to any part of that database.

The exclusive lock allows for improved throughput because the handle will not attempt to
acquire any further locks once it has the exclusive write lock. It will also never be blocked
waiting for a lock, and there is no possibility of a deadlock/retry cycle.

Note that an exclusive database handle can only have one transaction active for it at a time.

To configure a database handle with an exclusive lock, you use the Db::set_lk_exclusive()
method before you open the database handle. Setting a value of 0 to this method means that
the handle open operation will block until it can obtain the exclusive lock. A non-zero value
means that if the method cannot obtain the exclusive lock immediately when the handle is
opened, the open operation will exit with a DB_LOCK_NOTGRANTED error return.

Once configured and opened, a handled configured with an exclusive database lock will hold
that lock until the handle is closed.

Read/Modify/Write

If you are retrieving a record from the database for the purpose of modifying or deleting it,
you should declare a read-modify-write cycle at the time that you read the record. Doing so
causes DB to obtain write locks (instead of a read locks) at the time of the read. This helps to
prevent deadlocks by preventing another transaction from acquiring a read lock on the same
record while the read-modify-write cycle is in progress.

Note that declaring a read-modify-write cycle may actually increase the amount of blocking
that your application sees, because readers immediately obtain write locks and write locks
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cannot be shared. For this reason, you should use read-modify-write cycles only if you are
seeing a large amount of deadlocking occurring in your application.

In order to declare a read/modify/write cycle when you perform a read operation, pass the
DB_RMW flag to the database or cursor get method.

For example:

// Begin the deadlock retry loop as is normal.
while (retry_count < MAX_DEADLOCK_RETRIES) {
    try {
        envp->txn_begin(NULL, txn, 0);

        ...
        // key and data are DBTs. Their usage is omitted for brevity.
        ...

        // Read the data. Declare the read/modify/write cycle here
        dbp->get(txn, &key, &data, DB_RMW);

        ...
        // Modify the data as is required. (not shown here)
        ...

        // Put the data. Note that you do not have to provide any 
        // additional flags here due to the read/modify/write 
        // cycle. Simply put the data and perform your deadlock 
        // detection as normal.
        dbp->put(txn, &key, &data, 0);
        txn->commit(0);
        return (EXIT_SUCCESS);
    } catch (DbDeadlockException &de) {
        // Deadlock detection and exception handling omitted
        // for brevity
        ...

No Wait on Blocks

Normally when a DB transaction is blocked on a lock request, it must wait until the requested
lock becomes available before its thread-of-control can proceed. However, it is possible to
configure a transaction handle such that it will report a deadlock rather than wait for the
block to clear.

You do this on a transaction by transaction basis by specifying DB_TXN_NOWAIT to the
DbEnv::txn_begin() method.

For example:

    DbTxn *txn = NULL;
    try {
        envp->txn_begin(NULL, &txn, DB_TXN_NOWAIT);
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        ...
    } catch (DbException &de) {
        // Deadlock detection and exception handling omitted
        // for brevity
        ...

Reverse BTree Splits

If your application is using the Btree access method, and your application is repeatedly
deleting then adding records to your database, then you might be able to reduce lock
contention by turning off reverse Btree splits.

As pages are emptied in a database, DB attempts to delete empty pages in order to keep
the database as small as possible and minimize search time. Moreover, when a page in the
database fills up, DB, of course, adds additional pages to make room for more data.

Adding and deleting pages in the database requires that the writing thread lock the parent
page. Consequently, as the number of pages in your database diminishes, your application will
see increasingly more lock contention; the maximum level of concurrency in a database of two
pages is far smaller than that in a database of 100 pages, because there are fewer pages that
can be locked.

Therefore, if you prevent the database from being reduced to a minimum number of pages,
you can improve your application's concurrency throughput. Note, however, that you should do
so only if your application tends to delete and then add the same data. If this is not the case,
then preventing reverse Btree splits can harm your database search time.

To turn off reverse Btree splits, provide the DB_REVSPLITOFF flag to the Db::set_flags()
method.

For example:

#include "db_cxx.h"

...

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize locking
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_THREAD     |  // Free-thread the env handle
                          DB_INIT_TXN;     // Initialize transactions

    u_int32_t db_flags = DB_CREATE | DB_AUTO_COMMIT;
    Db *dbp = NULL;
    const char *file_name = "mydb.db";
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    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        myEnv.open(envHome.c_str(), env_flags, 0);
        dbp = new Db(&myEnv, 0);

        // Turn off BTree reverse split.
        dbp=>set_flags(DB_REVSPLITOFF);

        dbp->open(dbp,        // Pointer to the database 
                  NULL,       // Txn pointer 
                  file_name,  // File name 
                  NULL,       // Logical db name 
                  DB_BTREE,   // Database type (using btree)
                  db_flags,   // Open flags 
                  0);         // File mode. Using defaults

    } catch(DbException &e) {
        std::cerr << "Error opening database and environment: "
                  << file_name << ", " << envHome << std::endl;
        std::cerr << e.what() << std::endl;
    }

    try {
        dbp->close(dbp, 0);
        myEnv.close(0);
    } catch(DbException &e) {
        std::cerr << "Error closing database and environment: "
                  << file_name << ", " << envHome << std::endl;
        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    return (EXIT_SUCCESS);
} 
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Chapter 5. Managing DB Files
DB is capable of storing several types of files on disk:

• Data files, which contain the actual data in your database.

• Log files, which contain information required to recover your database in the event of a
system or application failure.

• Region files, which contain information necessary for the overall operation of your
application.

• Temporary files, which are created only under certain special circumstances. These files
never need to be backed up or otherwise managed and so they are not a consideration
for the topics described in this chapter. See Security Considerations (page 12) for more
information on temporary files.

Of these, you must manage your data and log files by ensuring that they are backed up.
You should also pay attention to the amount of disk space your log files are consuming,
and periodically remove any unneeded files. Finally, you can optionally tune your logging
subsystem to best suit your application's needs and requirements. These topics are discussed
in this chapter.

Checkpoints

Before we can discuss DB file management, we need to describe checkpoints. When databases
are modified (that is, a transaction is committed), the modifications are recorded in DB's logs,
but they are not necessarily reflected in the actual database files on disk.

This means that as time goes on, increasingly more data is contained in your log files that is
not contained in your data files. As a result, you must keep more log files around than you
might actually need. Also, any recovery run from your log files will take increasingly longer
amounts of time, because there is more data in the log files that must be reflected back into
the data files during the recovery process.

You can reduce these problems by periodically running a checkpoint against your environment.
The checkpoint:

• Flushes dirty pages from the in-memory cache. This means that data modifications found in
your in-memory cache are written to the database files on disk. Note that a checkpoint also
causes data dirtied by an uncommitted transaction to also be written to your database files
on disk. In this latter case, DB's normal recovery is used to remove any such modifications
that were subsequently abandoned by your application using a transaction abort.

Normal recovery is describe in Recovery Procedures (page 60).

• Writes a checkpoint record.

• Flushes the log. This causes all log data that has not yet been written to disk to be written.

• Writes a list of open databases.
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There are several ways to run a checkpoint. One way is to use the db_checkpoint command
line utility. (Note, however, that this command line utility cannot be used if your environment
was opened using DB_PRIVATE.)

You can also run a thread that periodically checkpoints your environment for you by calling
the DbEnv::txn_checkpoint() method.

Note that you can prevent a checkpoint from occurring unless more than a specified amount
of log data has been written since the last checkpoint. You can also prevent the checkpoint
from running unless more than a specified amount of time has occurred since the last
checkpoint. These conditions are particularly interesting if you have multiple threads or
processes running checkpoints.

For configuration information, see the  DbEnv::txn_checkpoint() API reference page.

Note that running checkpoints can be quite expensive. DB must flush every dirty page to the
backing database files. On the other hand, if you do not run checkpoints often enough, your
recovery time can be unnecessarily long and you may be using more disk space than you really
need. Also, you cannot remove log files until a checkpoint is run. Therefore, deciding how
frequently to run a checkpoint is one of the most common tuning activity for DB applications.

For example, to run a checkpoint from a separate thread of control:

#include <pthread.h>
#include "db_cxx.h"

...

void *checkpoint_thread(void *);

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_THREAD     |  // Free-thread the env handle
                          DB_INIT_TXN;     // Initialize transactions

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        myEnv.open(envHome.c_str(), env_flags, 0);

        // Start a checkpoint thread.
        pthread_t ptid;
        int ret;
        if ((ret = pthread_create( 

http://download.oracle.com/docs/cd/E17076_02/html/api_reference/CXX/txncheckpoint.html
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            &ptid, NULL, checkpoint_thread, (void *)&myEnv)) != 0) { 
                fprintf(stderr, 
                    "txnapp: failed spawning checkpoint thread: %s\n", 
                    strerror(errno)); 
                myEnv.close(0);
                exit (1); 
        }

        // All other threads and application shutdown code 
        // omitted for brevity. 

        ...
}

void * 
checkpoint_thread(void *arg) { 
    DbEnv *dbenv = arg; 

    // Checkpoint once a minute. 
    for (;; sleep(60)) {
        try {
            dbenv->txn_checkpoint(0, 0, 0));
        } catch(DbException &e) {
            dbenv->err(e.get_errno(), "checkpoint thread"); 
            exit (e.get_errno()); 
        }
    }

    // NOTREACHED 
} 

Backup Procedures

Durability is an important part of your transactional guarantees. It means that once a
transaction has been successfully committed, your application will always see the results of
that transaction.

Of course, no software algorithm can guarantee durability in the face of physical data loss.
Hard drives can fail, and if you have not copied your data to locations other than your primary
disk drives, then you will lose data when those drives fail. Therefore, in order to truly obtain
a durability guarantee, you need to ensure that any data stored on disk is backed up to
secondary or alternative storage, such as secondary disk drives, or offline tapes.

There are three different types of backups that you can perform with DB databases and log
files. They are:

• Offline backups

This type of backup is perhaps the easiest to perform as it involves simply copying database
and log files to an offline storage area. It also gives you a snapshot of the database at a
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fixed, known point in time. However, you cannot perform this type of a backup while you
are performing writes to the database.

• Hot backups

This type of backup gives you a snapshot of your database. Since your application can be
writing to the database at the time that the snapshot is being taken, you do not necessarily
know what the exact state of the database is for that given snapshot.

• Incremental backups

This type of backup refreshes a previously performed backup.

Once you have performed a backup, you can perform catastrophic recovery to restore your
databases from the backup. See Catastrophic Recovery (page 62) for more information.

Note that you can also maintain a hot failover. See Using Hot Failovers (page 67) for more
information.

About Unix Copy Utilities

If you are copying database files you must copy databases atomically, in multiples of the
database page size. In other words, the reads made by the copy program must not be
interleaved with writes by other threads of control, and the copy program must read the
databases in multiples of the underlying database page size. Generally, this is not a problem
because operating systems already make this guarantee and system utilities normally read in
power-of-2 sized chunks, which are larger than the largest possible Berkeley DB database page
size.

On some platforms (most notably, some releases of Solaris), the copy utility (cp) was
implemented using the mmap() system call rather than the read() system call. Because
mmap() did not make the same guarantee of read atomicity as did read(), the cp utility could
create corrupted copies of the databases.

Also, some platforms have implementations of the tar utility that performs 10KB block
reads by default. Even when an output block size is specified, the utility will still not read
the underlying databases in multiples of the specified block size. Again, the result can be a
corrupted backup.

To fix these problems, use the dd utility instead of cp or tar. When you use dd, make sure you
specify a block size that is equal to, or an even multiple of, your database page size. Finally,
if you plan to use a system utility to copy database files, you may want to use a system call
trace utility (for example, ktrace or truss) to make sure you are not using a I/O size that is
smaller than your database page size. You can also use these utilities to make sure the system
utility is not using a system call other than read().

Offline Backups

To create an offline backup:

1. Commit or abort all on-going transactions.

2. Pause all database writes.
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3. Force a checkpoint. See Checkpoints (page 55) for details.

4. Copy all your database files to the backup location. Note that you can simply copy all
of the database files, or you can determine which database files have been written
during the lifetime of the current logs. To do this, use either the DbEnv::log_archive()
method with the DB_ARCH_DATA option, or use the db_archive command with the -s
option.

However, be aware that backing up just the modified databases only works if you
have all of your log files. If you have been removing log files for any reason then using
log_archive() can result in an unrecoverable backup because you might not be notified
of a database file that was modified.

5. Copy the last log file to your backup location. Your log files are named log.xxxxxxxxxx,
where xxxxxxxxxx is a sequential number. The last log file is the file with the highest
number.

Hot Backup

To create a hot backup, you do not have to stop database operations. Transactions may be on-
going and you can be writing to your database at the time of the backup. However, this means
that you do not know exactly what the state of your database is at the time of the backup.

You can use the db_hotbackup command line utility to create a hot backup. This program
optionally runs a checkpoint, and then copies all necessary files to a target directory.

You can also create your own hot backup facility using the DbEnv::backup() method.

Alternatively, you can manually create a hot backup as follows:

1. Set the DB_HOTBACKUP_IN_PROGRESS flag in your environment. For more information, see
the  DbEnv::set_flags() API reference page.

2. Copy all your database files to the backup location. Note that you can simply copy all of
the database files, or you can determine which database files have been written during
the lifetime of the current logs. To do this, use either the DbEnv::log_archive() with
the DB_ARCH_DATA option, or use the db_archive command with the -s option.

3. Copy all logs to your backup location.

4. Reset the DB_HOTBACKUP_IN_PROGRESS flag.

Note
It is important to copy your database files and then your logs. In this way, you can
complete or roll back any database operations that were only partially completed
when you copied the databases.

Incremental Backups

Once you have created a full backup (that is, either a offline or hot backup), you can create
incremental backups. To do this, simply copy all of your currently existing log files to your
backup location.

http://download.oracle.com/docs/cd/E17076_02/html/api_reference/CXX/envset_flags.html
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Incremental backups do not require you to run a checkpoint or to cease database write
operations.

If your application uses the transactional bulk insert optimization, it is important to know that
a database copy taken prior to a bulk loading event can no longer be used as the target of an
incremental backup. This is true because bulk loading omits logging of some record insertions,
so recovery cannot roll forward these insertions. It is recommended that a full backup be
scheduled following a bulk loading event.

For more information, see the description of the DB_TXN_BULK flag in the  DbEnv::txn_begin()
API reference page.

When you are working with incremental backups, remember that the greater the number of
log files contained in your backup, the longer recovery will take. You should run full backups
on some interval, and then do incremental backups on a shorter interval. How frequently you
need to run a full backup is determined by the rate at which your databases change and how
sensitive your application is to lengthy recoveries (should one be required).

You can also shorten recovery time by running recovery against the backup as you take each
incremental backup. Running recovery as you go means that there will be less work for DB to
do if you should ever need to restore your environment from the backup.

Recovery Procedures

DB supports two types of recovery:

• Normal recovery, which is run when your environment is opened upon application startup,
examines only those log records needed to bring the databases to a consistent state since
the last checkpoint. Normal recovery starts with any logs used by any transactions active at
the time of the last checkpoint, and examines all logs from then to the current logs.

• Catastrophic recovery, which is performed in the same way that normal recovery is except
that it examines all available log files. You use catastrophic recovery to restore your
databases from a previously created backup.

Of these two, normal recovery should be considered a routine matter; in fact you should run
normal recovery whenever you start up your application.

Catastrophic recovery is run whenever you have lost or corrupted your database files and
you want to restore from a backup. You also run catastrophic recovery when you create a hot
backup (see Using Hot Failovers (page 67) for more information).

Normal Recovery

Normal recovery examines the contents of your environment's log files, and uses this
information to ensure that your database files are consistent relative to the information
contained in the log files.

Normal recovery also recreates your environment's region files. This has the desired effect of
clearing any unreleased locks that your application may have held at the time of an unclean
application shutdown.

http://download.oracle.com/docs/cd/E17076_02/html/api_reference/CXX/txnbegin.html
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/CXX/txnbegin.html
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Normal recovery is run only against those log files created since the time of your last
checkpoint. For this reason, your recovery time is dependent on how much data has been
written since the last checkpoint, and therefore on how much log file information there is to
examine. If you run checkpoints infrequently, then normal recovery can take a relatively long
time.

Note
You should run normal recovery every time you perform application startup.

To run normal recovery:

• Make sure all your environment handles are closed.

• Normal recovery must be single-threaded.

• Provide the DB_RECOVER flag when you open your environment.

You can also run recovery by pausing or shutting down your application and using the
db_recover command line utility.

For example:
#include "db_cxx.h"

...

void *checkpoint_thread(void *);

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_INIT_TXN   |  // Initialize transactions
                          DB_THREAD     |  // Free-thread the env handle
                          DB_RECOVER;      // Run normal recovery

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        myEnv.open(envHome.c_str(), env_flags, 0);

        ...

        // All other operations are identical from here. Notice, however,
        // that we have not created any other threads of control before
        // recovery is complete. You want to run recovery for
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        // the first thread in your application that opens an environment,
        // but not for any subsequent threads.  

Catastrophic Recovery

Use catastrophic recovery when you are recovering your databases from a previously created
backup. Note that to restore your databases from a previous backup, you should copy the
backup to a new environment directory, and then run catastrophic recovery. Failure to do so
can lead to the internal database structures being out of sync with your log files.

Catastrophic recovery must be run single-threaded.

To run catastrophic recovery:

• Shutdown all database operations.

• Restore the backup to an empty directory.

• Provide the DB_RECOVER_FATAL flag when you open your environment. This environment
open must be single-threaded.

You can also run recovery by pausing or shutting down your application and using the
db_recover command line utility with the the -c option.

Note that catastrophic recovery examines every available log file — not just those log
files created since the last checkpoint as is the case for normal recovery. For this reason,
catastrophic recovery is likely to take longer than does normal recovery.

For example:

#include "db_cxx.h"

...

void *checkpoint_thread(void *);

int main(void)
{
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_INIT_TXN   |  // Initialize transactions
                          DB_THREAD     |  // Free-thread the env handle
                          DB_RECOVER_FATAL;   // Run catastrophic recovery

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {
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        myEnv.open(envHome.c_str(), env_flags, 0);

        ...

        // All other operations are identical from here. Notice, however,
        // that we have not created any other threads of control before
        // recovery is complete. You want to run recovery for
        // the first thread in your application that opens an environment,
        // but not for any subsequent threads.  

Designing Your Application for Recovery

When building your DB application, you should consider how you will run recovery. If you are
building a single threaded, single process application, it is fairly simple to run recovery when
your application first opens its environment. In this case, you need only decide if you want to
run recovery every time you open your application (recommended) or only some of the time,
presumably triggered by a start up option controlled by your application's user.

However, for multi-threaded and multi-process applications, you need to carefully consider
how you will design your application's startup code so as to run recovery only when it makes
sense to do so.

Recovery for Multi-Threaded Applications

If your application uses only one environment handle, then handling recovery for a multi-
threaded application is no more difficult than for a single threaded application. You simply
open the environment in the application's main thread, and then pass that handle to each of
the threads that will be performing DB operations. We illustrate this with our final example in
this book (see Transaction Example (page 75) for more information).

Alternatively, you can have each worker thread open its own environment handle. However, in
this case, designing for recovery is a bit more complicated.

Generally, when a thread performing database operations fails or hangs, it is frequently
best to simply restart the application and run recovery upon application startup as normal.
However, not all applications can afford to restart because a single thread has misbehaved.

If you are attempting to continue operations in the face of a misbehaving thread, then at a
minimum recovery must be run if a thread performing database operations fails or hangs.

Remember that recovery clears the environment of all outstanding locks, including any that
might be outstanding from an aborted thread. If these locks are not cleared, other threads
performing database operations can back up behind the locks obtained but never cleared by
the failed thread. The result will be an application that hangs indefinitely.

To run recovery under these circumstances:

1. Suspend or shutdown all other threads performing database operations.

2. Discarding any open environment handles. Note that attempting to gracefully close these
handles may be asking for trouble; the close can fail if the environment is already in need
of recovery. For this reason, it is best and easiest to simply discard the handle.
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3. Open new handles, running recovery as you open them. See Normal Recovery (page 60)
for more information.

4. Restart all your database threads.

A traditional way to handle this activity is to spawn a watcher thread that is responsible for
making sure all is well with your threads, and performing the above actions if not.

However, in the case where each worker thread opens and maintains its own environment
handle, recovery is complicated for two reasons:

1. For some applications and workloads, it might be worthwhile to give your database
threads the ability to gracefully finalize any on-going transactions. If this is the case,
your code must be capable of signaling each thread to halt DB activities and close its
environment. If you simply run recovery against the environment, your database threads
will detect this and fail in the midst of performing their database operations.

2. Your code must be capable of ensuring only one thread runs recovery before allowing all
other threads to open their respective environment handles. Recovery should be single
threaded because when recovery is run against an environment, it is deleted and then
recreated. This will cause all other processes and threads to "fail" when they attempt
operations against the newly recovered environment. If all threads run recovery when
they start up, then it is likely that some threads will fail because the environment that
they are using has been recovered. This will cause the thread to have to re-execute its
own recovery path. At best, this is inefficient and at worst it could cause your application
to fall into an endless recovery pattern.

Recovery in Multi-Process Applications

Frequently, DB applications use multiple processes to interact with the databases. For
example, you may have a long-running process, such as some kind of server, and then a series
of administrative tools that you use to inspect and administer the underlying databases. Or, in
some web-based architectures, different services are run as independent processes that are
managed by the server.

In any case, recovery for a multi-process environment is complicated for two reasons:

1. In the event that recovery must be run, you might want to notify processes interacting
with the environment that recovery is about to occur and give them a chance to
gracefully terminate. Whether it is worthwhile for you to do this is entirely dependent
upon the nature of your application. Some long-running applications with multiple
processes performing meaningful work might want to do this. Other applications with
processes performing database operations that are likely to be harmed by error conditions
in other processes will likely find it to be not worth the effort. For this latter group, the
chances of performing a graceful shutdown may be low anyway.

2. Unlike single process scenarios, it can quickly become wasteful for every process
interacting with the databases to run recovery when it starts up. This is partly because
recovery does take some amount of time to run, but mostly you want to avoid a situation
where your server must reopen all its environment handles just because you fire up a
command line database administrative utility that always runs recovery.
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DB offers you two methods by which you can manage recovery for multi-process DB
applications. Each has different strengths and weaknesses, and they are described in the next
sections.

Effects of Multi-Process Recovery

Before continuing, it is worth noting that the following sections describe recovery processes
than can result in one process running recovery while other processes are currently actively
performing database operations.

When this happens, the current database operation will abnormally fail, indicating a
DB_RUNRECOVERY condition. This means that your application should immediately abandon
any database operations that it may have on-going, discard any environment handles it has
opened, and obtain and open new handles.

The net effect of this is that any writes performed by unresolved transactions will be lost. For
persistent applications (servers, for example), the services it provides will also be unavailable
for the amount of time that it takes to complete a recovery and for all participating processes
to reopen their environment handles.

Process Registration

One way to handle multi-process recovery is for every process to "register" its environment.
In doing so, the process gains the ability to see if any other applications are using the
environment and, if so, whether they have suffered an abnormal termination. If an abnormal
termination is detected, the process runs recovery; otherwise, it does not.

Note that using process registration also ensures that recovery is serialized across
applications. That is, only one process at a time has a chance to run recovery. Generally this
means that the first process to start up will run recovery, and all other processes will silently
not run recovery because it is not needed.

To cause your application to register its environment, you specify the DB_REGISTER flag
when you open your environment. You may also specify DB_RECOVER. However, it is an error
to specify DB_RECOVER_FATAL when using the DB_REGISTER flag. If during the open, DB
determines that recovery must be run, it will automatically run the correct type of recovery
for you, so long as you specify normal recovery on your environment open. If you do not
specify normal recovery, and you register your environment, then no recovery is run if the
registration process identifies a need for it. In this case, the environment open simply fails by
returning DB_RUNRECOVERY.

Note

If you do not specify normal recovery when you open your first registered environment
in the application, then that application will fail the environment open by returning
DB_RUNRECOVERY. This is because the first process to register must create an internal
registration file, and recovery is forced when that file is created. To avoid an
abnormal termination of the environment open, specify recovery on the environment
open for at least the first process starting in your application.
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In addition, if you specify DB_ENV_FAILCHK when you register your environment, then a fail
check is performed on environment open (fail checks are described in the next section). If,
during the fail check process, an abnormal termination is detected for any of the processes
involved in the application, DB releases any read locks held by the dead process and performs
transaction aborts as necessary. This is done in an attempt to clean up the environment.

In this situation, if a general cleanup of the environment is not possible and normal recovery
is not specified on environment open, then the open will abort, returning DB_RUNRECOVERY.
However, if this situation occurs and recovery was specified, then the appropriate type of
recovery (normal or fatal) is run so as to bring the environment back to a healthy state.

Be aware that there are some limitations/requirements if you want your various processes to
coordinate recovery using registration:

1. There can be only one environment handle per environment per process. In the case of
multi-threaded processes, the environment handle must be shared across threads.

2. All processes sharing the environment must use registration. If registration is not
uniformly used across all participating processes, then you can see inconsistent results in
terms of your application's ability to recognize that recovery must be run.

Failure Checking

For very large and robust multi-process applications, the most common way to ensure all the
processes are working as intended is to make use of a watchdog process. To assist a watchdog
process, DB offers a failure checking mechanism.

When a thread of control fails with open environment handles, the result is that there may
be resources left locked or corrupted. Other threads of control may encountered these
unavailable resources quickly or not at all, depending on data access patterns.

In any case, the DB failure checking mechanism allows a watchdog to detect if an environment
is unusable as a result of a thread of control failure. It should be called periodically (for
example, once a minute) from the watchdog process. If the environment is deemed unusable,
then the watchdog process is notified that recovery should be run. It is then up to the
watchdog to actually run recovery. It is also the watchdog's responsibility to decide what to do
about currently running processes before running recovery. The watchdog could, for example,
attempt to gracefully shutdown or kill all relevant processes before running recovery.

Note that failure checking need not be run from a separate process, although conceptually
that is how the mechanism is meant to be used. This same mechanism could be used in a
multi-threaded application that wants to have a watchdog thread.

To use failure checking you must:

1. Provide an is_alive() call back using the Dbenv::set_isalive() method. DB uses this
method to determine whether a specified process and thread is alive when the failure
checking is performed.

2. Possibly provide a thread_id callback that uniquely identifies a process and thread of
control. This callback is only necessary if the standard process and thread identification
functions for your platform are not sufficient to for use by failure checking. This is rarely



Library Version 11.2.5.3 Managing DB Files

9/9/2013 Using Transactions with DB Page 67

necessary and is usually because the thread and/or process ids used by your system
cannot fit into an unsigned integer.

You provide this callback using the DbEnv::set_thread_id() method. See the API
reference for this method for more information on when setting a thread id callback
might be necessary.

3. Call the DbEnv::failchk() method periodically. You can do this either periodically (once
per minute, for example), or whenever a thread of control exits for your application.

If this method determines that a thread of control exited holding read locks, those locks
are automatically released. If the thread of control exited with an unresolved transaction,
that transaction is aborted. If any other problems exist beyond these such that the
environment must be recovered, the method will return DB_RUNRECOVERY.

Using Hot Failovers

You can maintain a backup that can be used for failover purposes. Hot failovers differ from
the backup and restore procedures described previously in this chapter in that data used
for traditional backups is typically copied to offline storage. Recovery time for a traditional
backup is determined by:

• How quickly you can retrieve that storage media. Typically storage media for critical
backups is moved to a safe facility in a remote location, so this step can take a relatively
long time.

• How fast you can read the backup from the storage media to a local disk drive. If you have
very large backups, or if your storage media is very slow, this can be a lengthy process.

• How long it takes you to run catastrophic recovery against the newly restored backup. As
described earlier in this chapter, this process can be lengthy because every log file must be
examined during the recovery process.

When you use a hot failover, the backup is maintained at a location that is reasonably fast
to access. Usually, this is a second disk drive local to the machine. In this situation, recovery
time is very quick because you only have to reopen your environment and database, using the
failover environment for the environment open.

Hot failovers obviously do not protect you from truly catastrophic disasters (such as a fire in
your machine room) because the backup is still local to the machine. However, you can guard
against more mundane problems (such as a broken disk drive) by keeping the backup on a
second drive that is managed by an alternate disk controller.

To maintain a hot failover:

1. Copy all the active database files to the failover directory. Use the db_archive command
line utility with the -s option to identify all the active database files.

2. Identify all the inactive log files in your production environment and move these to the
failover directory. Use the db_archive command with no command line options to obtain
a list of these log files.
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3. Identify the active log files in your production environment, and copy these to the
failover directory. Use the db_archive command with the -l option to obtain a list of
these log files.

4. Run catastrophic recovery against the failover directory. Use the db_recover command
with the -c option to do this.

5. Optionally copy the backup to an archival location.

Once you have performed this procedure, you can maintain an active hot backup by repeating
steps 2 - 5 as often as is required by your application.

Note

If you perform step 1, steps 2-5 must follow in order to ensure consistency of your hot
backup.

Note

Rather than use the previous procedure, you can use the db_hotbackup command line
utility to do the same thing. This utility will (optionally) run a checkpoint and then
copy all necessary files to a target directory for you.

To actually perform a failover, simply:

1. Shut down all processes which are running against the original environment.

2. If you have an archival copy of the backup environment, you can optionally try copying
the remaining log files from the original environment and running catastrophic recovery
against that backup environment. Do this only if you have a an archival copy of the
backup environment.

This step can allow you to recover data created or modified in the original environment,
but which did not have a chance to be reflected in the hot backup environment.

3. Reopen your environment and databases as normal, but use the backup environment
instead of the production environment.

Removing Log Files

By default DB does not delete log files for you. For this reason, DB's log files will eventually
grow to consume an unnecessarily large amount of disk space. To guard against this, you
should periodically take administrative action to remove log files that are no longer in use by
your application.

You can remove a log file if all of the following are true:

• the log file is not involved in an active transaction.

• a checkpoint has been performed after the log file was created.

• the log file is not the only log file in the environment.
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• the log file that you want to remove has already been included in an offline or hot backup.
Failure to observe this last condition can cause your backups to be unusable.

DB provides several mechanisms to remove log files that meet all but the last criteria (DB
has no way to know which log files have already been included in a backup). The following
mechanisms make it easy to remove unneeded log files, but can result in an unusable backup
if the log files are not first saved to your archive location. All of the following mechanisms
automatically delete unneeded log files for you:

• Run the db_archive command line utility with the -d option.

• From within your application, call the DbEnv::log_archive() method with the
DB_ARCH_REMOVE flag.

• Call DbEnv::log_set_config() method with the DB_LOG_AUTO_REMOVE flag. Note that
this flag can be set at any point in the lifetime of your application. Setting this parameter
affects all environment handles opened against the environment; not just the handle used
to set the flag.

Note that unlike the other log removal mechanisms identified here, this method actually
causes log files to be removed on an on-going basis as they become unnecessary. This is
extremely desirable behavior if what you want is to use the absolute minimum amount of
disk space possible for your application. This mechanism will leave you with the log files
that are required to run normal recovery. However, it is highly likely that this mechanism
will prevent you from running catastrophic recovery.

Do NOT use this mechanism if you want to be able to perform catastrophic recovery, or if
you want to be able to maintain a hot backup.

In order to safely remove log files and still be able to perform catastrophic recovery, use the
db_archive command line utility as follows:

1. Run either a normal or hot backup as described in Backup Procedures (page 57). Make
sure that all of this data is safely stored to your backup media before continuing.

2. If you have not already done so, perform a checkpoint. See Checkpoints (page 55) for
more information.

3. If you are maintaining a hot backup, perform the hot backup procedure as described in
Using Hot Failovers (page 67).

4. Run the db_archive command line utility with the -d option against your production
environment.

5. Run the db_archive command line utility with the -d option against your failover
environment, if you are maintaining one.

Configuring the Logging Subsystem

You can configure the following aspects of the logging subsystem:
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• Size of the log files.

• Size of the logging subsystem's region. See Configuring the Logging Region Size (page 71).

• Maintain logs entirely in-memory. See Configuring In-Memory Logging (page 71) for more
information.

• Size of the log buffer in memory. See Setting the In-Memory Log Buffer Size (page 72).

• On-disk location of your log files. See Identifying Specific File Locations (page 8).

Setting the Log File Size

Whenever a pre-defined amount of data is written to a log file (10 MB by default), DB stops
using the current log file and starts writing to a new file. You can change the maximum
amount of data contained in each log file by using the DbEnv::set_lg_max() method. Note
that this method can be used at any time during an application's lifetime.

Setting the log file size to something larger than its default value is largely a matter of
convenience and a reflection of the application's preference in backup media and frequency.
However, if you set the log file size too low relative to your application's traffic patterns, you
can cause yourself trouble.

From a performance perspective, setting the log file size to a low value can cause your active
transactions to pause their writing activities more frequently than would occur with larger log
file sizes. Whenever a transaction completes the log buffer is flushed to disk. Normally other
transactions can continue to write to the log buffer while this flush is in progress. However,
when one log file is being closed and another created, all transactions must cease writing to
the log buffer until the switch over is completed.

Beyond performance concerns, using smaller log files can cause you to use more physical files
on disk. As a result, your application could run out of log sequence numbers, depending on
how busy your application is.

Every log file is identified with a 10 digit number. Moreover, the maximum number of log files
that your application is allowed to create in its lifetime is 2,000,000,000.

For example, if your application performs 6,000 transactions per second for 24 hours a day,
and you are logging 500 bytes of data per transaction into 10 MB log files, then you will run
out of log files in around 221 years:

     (10 * 2^20 * 2000000000) / (6000 * 500 * 365 * 60 *60 * 24) = 221 

However, if you were writing 2000 bytes of data per transaction, and using 1 MB log files, then
the same formula shows you running out of log files in 5 years time.

All of these time frames are quite long, to be sure, but if you do run out of log files after, say,
5 years of continuous operations, then you must reset your log sequence numbers. To do so:

1. Backup your databases as if to prepare for catastrophic failure. See Backup
Procedures (page 57) for more information.

2. Reset the log file's sequence number using the db_load utility's -r option.
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3. Remove all of the log files from your environment. Note that this is the only situation in
which all of the log files are removed from an environment; in all other cases, at least a
single log file is retained.

4. Restart your application.

Configuring the Logging Region Size

The logging subsystem's default region size is 60 KB. The logging region is used to store
filenames, and so you may need to increase its size if a large number of files (that is, if you
have a very large number of databases) will be opened and registered with DB's log manager.

You can set the size of your logging region by using the DbEnv::set_lg_region() method.
Note that this method can only be called before the first environment handle for your
application is opened.

Configuring In-Memory Logging

It is possible to configure your logging subsystem such that logs are maintained entirely in
memory. When you do this, you give up your transactional durability guarantee. Without
log files, you have no way to run recovery so any system or software failures that you might
experience can corrupt your databases.

However, by giving up your durability guarantees, you can greatly improve your application's
throughput by avoiding the disk I/O necessary to write logging information to disk. In this
case, you still retain your transactional atomicity, consistency, and isolation guarantees.

To configure your logging subsystem to maintain your logs entirely in-memory:

• Make sure your log buffer is capable of holding all log information that can accumulate
during the longest running transaction. See Setting the In-Memory Log Buffer Size (page
72) for details.

• Do not run normal recovery when you open your environment. In this configuration, there
are no log files available against which you can run recovery. As a result, if you specify
recovery when you open your environment, it is ignored.

• Specify DB_LOG_IN_MEMORY to the DbEnv::log_set_config() method. Note that you must
specify this before your application opens its first environment handle.

For example:

#include "db_cxx.h"

...

int main(void)
{
    // Set the normal flags for a transactional subsystem. Note that
    // we DO NOT specify DB_RECOVER.
    u_int32_t env_flags = DB_CREATE     |  // If the environment does not
                                           // exist, create it.
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                          DB_INIT_LOCK  |  // Initialize locking
                          DB_INIT_LOG   |  // Initialize logging
                          DB_INIT_MPOOL |  // Initialize the cache
                          DB_THREAD     |  // Free-thread the env handle
                          DB_INIT_TXN;     // Initialize transactions

    std::string envHome("/export1/testEnv");
    DbEnv myEnv(0);

    try {

        // Indicate that logging is to be performed only in memory. 
        // Doing this means that we give up our transactional durability
        // guarantee.
        myEnv.log_set_config(DB_LOG_IN_MEMORY, 1);

        // Configure the size of our log memory buffer. This must be
        // large enough to hold all the logging information likely
        // to be created for our longest running transaction. The
        // default size for the logging buffer is 1 MB when logging
        // is performed in-memory. For this example, we arbitrarily
        // set the logging buffer to 5 MB.
        myEnv.set_lg_bsize(5 * 1024 * 1024);

        // Open the environment as normal.
        myEnv.open(envHome.c_str(), env_flags, 0);

    } catch(DbException &e) {
        std::cerr << "Error opening database and environment: "
                  << file_name << ", "
                  << envHome << std::endl;
        std::cerr << e.what() << std::endl;
    }

    // From here, you open databases, create transactions and 
    // perform database operations exactly as you would if you 
    // were logging to disk. This part is omitted for brevity.  

Setting the In-Memory Log Buffer Size

When your application is configured for on-disk logging (the default behavior for transactional
applications), log information is stored in-memory until the storage space fills up, or a
transaction commit forces the log information to be flushed to disk.

It is possible to increase the amount of memory available to your file log buffer. Doing so
improves throughput for long-running transactions, or for transactions that produce a large
amount of data.

When you have your logging subsystem configured to maintain your log entirely in memory
(see Configuring In-Memory Logging (page 71)), it is very important to configure your log
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buffer size because the log buffer must be capable of holding all log information that can
accumulate during the longest running transaction. You must make sure that the in-memory
log buffer size is large enough that no transaction will ever span the entire buffer. You must
also avoid a state where the in-memory buffer is full and no space can be freed because a
transaction that started the first log "file" is still active.

When your logging subsystem is configured for on-disk logging, the default log buffer space is
32 KB. When in-memory logging is configured, the default log buffer space is 1 MB.

You can increase your log buffer space using the DbEnv::set_lg_bsize() method. Note that
this method can only be called before the first environment handle for your application is
opened.
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Chapter 6. Summary and Examples
Throughout this manual we have presented the concepts and mechanisms that you need to
provide transactional protection for your application. In this chapter, we summarize these
mechanisms, and we provide a complete example of a multi-threaded transactional DB
application.

Anatomy of a Transactional Application

Transactional applications are characterized by performing the following activities:

1. Create your environment handle.

2. Open your environment, specifying that the following subsystems be used:

• Transactional Subsystem (this also initializes the logging subsystem).

• Memory pool (the in-memory cache).

• Logging subsystem.

• Locking subsystem (if your application is multi-process or multi-threaded).

It is also highly recommended that you run normal recovery upon first environment open.
Normal recovery examines only those logs required to ensure your database files are
consistent relative to the information found in your log files.

3. Optionally spawn off any utility threads that you might need. Utility threads can be used
to run checkpoints periodically, or to periodically run a deadlock detector if you do not
want to use DB's built-in deadlock detector.

4. Open whatever database handles that you need.

5. Spawn off worker threads. How many of these you need and how they split their DB
workload is entirely up to your application's requirements. However, any worker threads
that perform write operations will do the following:

a. Begin a transaction.

b. Perform one or more read and write operations.

c. Commit the transaction if all goes well.

d. Abort and retry the operation if a deadlock is detected.

e. Abort the transaction for most other errors.

6. On application shutdown:

a. Make sure there are no opened cursors.
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b. Make sure there are no active transactions. Either abort or commit all transactions
before shutting down.

c. Close your databases.

d. Close your environment.

Note

Robust DB applications should monitor their worker threads to make sure they have
not died unexpectedly. If a thread does terminate abnormally, you must shutdown
all your worker threads and then run normal recovery (you will have to reopen your
environment to do this). This is the only way to clear any resources (such as a lock or
a mutex) that the abnormally exiting worker thread might have been holding at the
time that it died.

Failure to perform this recovery can cause your still-functioning worker threads to
eventually block forever while waiting for a lock that will never be released.

In addition to these activities, which are all entirely handled by code within your application,
there are some administrative activities that you should perform:

• Periodically checkpoint your application. Checkpoints will reduce the time to run recovery
in the event that one is required. See Checkpoints (page 55) for details.

• Periodically back up your database and log files. This is required in order to fully obtain the
durability guarantee made by DB's transaction ACID support. See Backup Procedures (page
57) for more information.

• You may want to maintain a hot failover if 24x7 processing with rapid restart in the face of a
disk hit is important to you. See Using Hot Failovers (page 67) for more information.

Transaction Example

The following code provides a fully functional example of a multi-threaded transactional DB
application. For improved portability across platforms, this examples uses pthreads to provide
threading support.

The example opens an environment and database and then creates 5 threads, each of which
writes 500 records to the database. The keys used for these writes are pre-determined
strings, while the data is a random value. This means that the actual data is arbitrary and
therefore uninteresting; we picked it only because it requires minimum code to implement
and therefore will stay out of the way of the main points of this example.

Each thread writes 10 records under a single transaction before committing and writing
another 10 (this is repeated 50 times). At the end of each transaction, but before committing,
each thread calls a function that uses a cursor to read every record in the database. We do
this in order to make some points about database reads in a transactional environment.

Of course, each writer thread performs deadlock detection as described in this manual. In
addition, normal recovery is performed when the environment is opened.



Library Version 11.2.5.3 Summary and Examples

9/9/2013 Using Transactions with DB Page 76

We start with our normal include directives:

// File TxnGuide.cpp

// We assume an ANSI-compatible compiler
#include <db_cxx.h>
#include <pthread.h>
#include <iostream>

#ifdef _WIN32
extern int getopt(int, char * const *, const char *);
#else
#include <unistd.h>
#endif  

We also need a directive that we use to identify how many threads we want our program to
create:
// Run 5 writers threads at a time.
#define NUMWRITERS 5 

Next we declare a couple of global variables (used by our threads), and we provide our
forward declarations for the functions used by this example.
// Printing of pthread_t is implementation-specific, so we
// create our own thread IDs for reporting purposes.
int global_thread_num;
pthread_mutex_t thread_num_lock;

// Forward declarations
int countRecords(Db *, DbTxn *);
int openDb(Db **, const char *, const char *, DbEnv *, u_int32_t);
int usage(void);
void *writerThread(void *);  

We now implement our usage function, which identifies our only command line parameter:
// Usage function
int
usage()
{
    std::cerr << " [-h <database_home_directory>]" << std::endl;
    return (EXIT_FAILURE);
}  

With that, we have finished up our program's housekeeping, and we can now move on to the
main part of our program. As usual, we begin with main(). First we declare all our variables,
and then we initialize our DB handles.
int
main(int argc, char *argv[])
{
    // Initialize our handles
    Db *dbp = NULL;
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    DbEnv *envp = NULL; 

    pthread_t writerThreads[NUMWRITERS];
    int ch, i;
    u_int32_t envFlags;
    char *dbHomeDir;

    // Application name
    const char *progName = "TxnGuide";

    // Database file name
    const char *fileName = "mydb.db";  

Now we need to parse our command line. In this case, all we want is to know where our
environment directory is. If the -h option is not provided when this example is run, the
current working directory is used instead.

    // Parse the command line arguments
#ifdef _WIN32
    dbHomeDir = ".\\";
#else
    dbHomeDir = "./";
#endif
    while ((ch = getopt(argc, argv, "h:")) != EOF)
        switch (ch) {
        case 'h':
            dbHomeDir = optarg;
            break;
        case '?':
        default:
            return (usage());
        }  

Next we create our database handle, and we define our environment open flags. There are a
few things to notice here:

• We specify DB_RECOVER, which means that normal recovery is run every time we start the
application. This is highly desirable and recommended for most applications.

• We also specify DB_THREAD, which means our environment handle will be free-threaded.
This is very important because we will be sharing the environment handle across threads.

    // Env open flags
    envFlags =
      DB_CREATE     |  // Create the environment if it does not exist
      DB_RECOVER    |  // Run normal recovery.
      DB_INIT_LOCK  |  // Initialize the locking subsystem
      DB_INIT_LOG   |  // Initialize the logging subsystem
      DB_INIT_TXN   |  // Initialize the transactional subsystem. This
                       // also turns on logging.
      DB_INIT_MPOOL |  // Initialize the memory pool (in-memory cache)
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      DB_THREAD;       // Cause the environment to be free-threaded

    try {
        // Create and open the environment 
        envp = new DbEnv(0);  

Now we configure how we want deadlock detection performed. In our case, we will cause
DB to perform deadlock detection by walking its internal lock tables looking for a block
every time a lock is requested. Further, in the event of a deadlock, the thread that holds the
youngest lock will receive the deadlock notification.
        // Indicate that we want db to internally perform deadlock 
        // detection.  Also indicate that the transaction with 
        // the fewest number of write locks will receive the 
        // deadlock notification in the event of a deadlock.
        envp->set_lk_detect(DB_LOCK_MINWRITE);  

Now we open our environment.
        // If we had utility threads (for running checkpoints or 
        // deadlock detection, for example) we would spawn those
        // here. However, for a simple example such as this,
        // that is not required.

        envp->open(dbHomeDir, envFlags, 0); 

Now we call the function that will open our database for us. This is not very interesting,
except that you will notice that we are specifying DB_DUPSORT. This is required purely by the
data that we are writing to the database, and it is only necessary if you run the application
more than once without first deleting the environment.

The implementation of open_db() is described later in this section.
        // Open the database
        openDb(&dbp, progName, fileName, envp, DB_DUPSORT);  

Now we create our threads. In this example we are using pthreads for our threading package.
A description of threading (beyond how it impacts DB usage) is beyond the scope of this
manual. However, the things that we are doing here should be familiar to anyone who has
prior experience with any threading package. We are simply initializing a mutex, creating
our threads, and then joining our threads, which causes our program to wait until the joined
threads have completed before continuing operations in the main thread.
        // Initialize a pthread mutex. Used to help provide thread ids.
        (void)pthread_mutex_init(&thread_num_lock, NULL);

        // Start the writer threads.
        for (i = 0; i < NUMWRITERS; i++)
            (void)pthread_create(&writerThreads[i], NULL,
                writerThread, (void *)dbp);

        // Join the writers
        for (i = 0; i < NUMWRITERS; i++)
            (void)pthread_join(writerThreads[i], NULL);
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    } catch(DbException &e) {
        std::cerr << "Error opening database environment: "
                  << dbHomeDir << std::endl;
        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }  

Finally, to wrap up main(), we close out our database and environment handle, as is normal
for any DB application. Notice that this is where our err label is placed in our application. If
any database operation prior to this point in the program returns an error status, the program
simply jumps to this point and closes our handles if necessary before exiting the application
completely.

    try {
        // Close our database handle if it was opened.
        if (dbp != NULL)
            dbp->close(0);

        // Close our environment if it was opened.
        if (envp != NULL)
            envp->close(0);
    } catch(DbException &e) {
        std::cerr << "Error closing database and environment."
                  << std::endl;
        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    // Final status message and return.

    std::cout << "I'm all done." << std::endl;
    return (EXIT_SUCCESS);
}  

Now that we have completed main(), we need to implement the function that our writer
threads will actually run. This is where the bulk of our transactional code resides.

We start as usual with variable declarations and initialization.

// A function that performs a series of writes to a
// Berkeley DB database. The information written
// to the database is largely nonsensical, but the
// mechanisms of transactional commit/abort and
// deadlock detection are illustrated here.
void *
writerThread(void *args)
{
    int j, thread_num;
    int max_retries = 20;   // Max retry on a deadlock
    char *key_strings[] = {"key 1", "key 2", "key 3", "key 4",
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                           "key 5", "key 6", "key 7", "key 8",
                           "key 9", "key 10"};

    Db *dbp = (Db *)args;
    DbEnv *envp = dbp->get_env();  

Now we want a thread number for reporting purposes. It is possible to use the pthread_t
value directly for this purpose, but how that is done unfortunately differs depending on the
pthread implementation you are using. So instead we use a mutex-protected global variable to
obtain a simple integer for our reporting purposes.

Note that we are also use this thread id for initializing a random number generator, which we
do here. We use this random number generator for data generation.
    // Get the thread number
    (void)pthread_mutex_lock(&thread_num_lock);
    global_thread_num++;
    thread_num = global_thread_num;
    (void)pthread_mutex_unlock(&thread_num_lock); 
    
    // Initialize the random number generator 
    srand((u_int)pthread_self());  

Now we begin the loop that we use to write data to the database. Notice that in this top loop,
we begin a new transaction. We will actually use 50 transactions per writer thread, although
we will only ever have one active transaction per thread at a time. Within each transaction,
we will perform 10 database writes.

By combining multiple writes together under a single transaction, we increase the likelihood
that a deadlock will occur. Normally, you want to reduce the potential for a deadlock and in
this case the way to do that is to perform a single write per transaction. To avoid deadlocks,
we could be using auto commit to write to our database for this workload.

However, we want to show deadlock handling and by performing multiple writes per
transaction we can actually observe deadlocks occurring. We also want to underscore the idea
that you can combing multiple database operations together in a single atomic unit of work in
order to improve the efficiency of your writes.
    // Perform 50 transactions
    for (int i=0; i<50; i++) {
        DbTxn *txn;
        bool retry = true;
        int retry_count = 0;
        // while loop is used for deadlock retries
        while (retry) {
            // try block used for deadlock detection and
            // general db exception handling
            try {

                // Begin our transaction. We group multiple writes in
                // this thread under a single transaction so as to
                // (1) show that you can atomically perform multiple 
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                // writes at a time, and (2) to increase the chances 
                // of a deadlock occurring so that we can observe our 
                // deadlock detection at work.

                // Normally we would want to avoid the potential for 
                // deadlocks, so for this workload the correct thing 
                // would be to perform our puts with auto commit. But 
                // that would excessively simplify our example, so we 
                // do the "wrong" thing here instead.
                txn = NULL;
                envp->txn_begin(NULL, &txn, 0);  

Now we begin the inner loop that we use to actually perform the write.

                // Perform the database write for this transaction.
                for (j = 0; j < 10; j++) {
                    Dbt key, value;
                    key.set_data(key_strings[j]);
                    key.set_size((strlen(key_strings[j]) + 1) *
                        sizeof(char));

                    int payload = rand() + i;
                    value.set_data(&payload);
                    value.set_size(sizeof(int));

                    // Perform the database put
                    dbp->put(txn, &key, &value, 0);
                }  

Having completed the inner database write loop, we could simply commit the transaction and
continue on to the next block of 10 writes. However, we want to first illustrate a few points
about transactional processing so instead we call our countRecords() function before calling
the transaction commit. countRecords() uses a cursor to read every record in the database
and return a count of the number of records that it found.

                // countRecords runs a cursor over the entire database.
                // We do this to illustrate issues of deadlocking
                std::cout << thread_num <<  " : Found " 
                          <<  countRecords(dbp, NULL)    
                          << " records in the database." << std::endl;

                std::cout << thread_num <<  " : committing txn : " << i 
                          << std::endl;

                // commit
                try {
                    txn->commit(0);
                    retry = false;
                    txn = NULL;
                } catch (DbException &e) {
                    std::cout << "Error on txn commit: "
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                              << e.what() << std::endl;
                }  

Finally, we finish our try block. Notice how we examine the exceptions to determine whether
we need to abort (or abort/retry in the case of a deadlock) our current transaction.

           } catch (DbDeadlockException &de) {
                // First thing we MUST do is abort the transaction.
                if (txn != NULL)
                    (void)txn->abort();

                // Now we decide if we want to retry the operation.
                // If we have retried less than max_retries,
                // increment the retry count and goto retry.
                if (retry_count < max_retries) {
                    std::cout << "############### Writer " << thread_num
                              << ": Got DB_LOCK_DEADLOCK.\n"
                              << "Retrying write operation."
                              << std::endl;
                    retry_count++;
                    retry = true;
                 } else {
                    // Otherwise, just give up.
                    std::cerr << "Writer " << thread_num
                              << ": Got DeadLockException and out of "
                              << "retries. Giving up." << std::endl;
                    retry = false;
                 }
           } catch (DbException &e) {
                std::cerr << "db put failed" << std::endl;
                std::cerr << e.what() << std::endl;
                if (txn != NULL)
                    txn->abort();
                retry = false;
           } catch (std::exception &ee) {
            std::cerr << "Unknown exception: " << ee.what() << std::endl;
            return (0);
          }
        }
    }
    return (0);
}  

We want to back up for a moment and take a look at the call to countRecords(). If you look
at the countRecords() function prototype at the beginning of this example, you will see
that the function's second parameter takes a transaction handle. However, our usage of the
function here does not pass a transaction handle through to the function.

Because countRecords() reads every record in the database, if used incorrectly the thread
will self-deadlock. The writer thread has just written 500 records to the database, but
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because the transaction used for that write has not yet been committed, each of those 500
records are still locked by the thread's transaction. If we then simply run a non-transactional
cursor over the database from within the same thread that has locked those 500 records,
the cursor will block when it tries to read one of those transactional protected records. The
thread immediately stops operation at that point while the cursor waits for the read lock it
has requested. Because that read lock will never be released (the thread can never make any
forward progress), this represents a self-deadlock for the the thread.

There are three ways to prevent this self-deadlock:

1. We can move the call to countRecords() to a point after the thread's transaction has
committed.

2. We can allow countRecords() to operate under the same transaction as all of the writes
were performed (this is what the transaction parameter for the function is for).

3. We can reduce our isolation guarantee for the application by allowing uncommitted reads.

For this example, we choose to use option 3 (uncommitted reads) to avoid the deadlock. This
means that we have to open our database such that it supports uncommitted reads, and we
have to open our cursor handle so that it knows to perform uncommitted reads.

Note that in In-Memory Transaction Example (page 85), we simply perform the cursor
operation using the same transaction as is used for the thread's writes.

The following is the countRecords() implementation. There is not anything particularly
interesting about this function other than specifying uncommitted reads when we open the
cursor handle, but we include the function here anyway for the sake of completeness.

// This simply counts the number of records contained in the
// database and returns the result.
//
// Note that this method exists only for illustrative purposes.
// A more straight-forward way to count the number of records in
// a database is to use the Database.getStats() method.
int
countRecords(Db *dbp, DbTxn *txn)
{

    Dbc *cursorp = NULL;
    int count = 0;

    try {
        // Get the cursor
        dbp->cursor(txn, &cursorp, DB_READ_UNCOMMITTED);

        Dbt key, value;
        while (cursorp->get(&key, &value, DB_NEXT) == 0) {
            count++;
        }
    } catch (DbDeadlockException &de) {
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        std::cerr << "countRecords: got deadlock" << std::endl;
        cursorp->close();
        throw de;
    } catch (DbException &e) {
        std::cerr << "countRecords error:" << std::endl;
        std::cerr << e.what() << std::endl;
    }

    if (cursorp != NULL) {
        try {
            cursorp->close();
        } catch (DbException &e) {
            std::cerr << "countRecords: cursor close failed:" << std::endl;
            std::cerr << e.what() << std::endl;
        }
    }

    return (count);
}  

Finally, we provide the implementation of our openDb() function. This function should hold
no surprises for you. Note, however, that we do specify uncommitted reads when we open the
database. If we did not do this, then our countRecords() function would cause our thread to
self-deadlock because the cursor could not be opened to support uncommitted reads (that flag
on the cursor open would, in fact, be silently ignored by DB).

// Open a Berkeley DB database
int
openDb(Db **dbpp, const char *progname, const char *fileName,
  DbEnv *envp, u_int32_t extraFlags)
{
    int ret;
    u_int32_t openFlags;

    try {
        Db *dbp = new Db(envp, 0);

        // Point to the new'd Db
        *dbpp = dbp;

        if (extraFlags != 0)
            ret = dbp->set_flags(extraFlags);

        // Now open the database
        openFlags = DB_CREATE              | // Allow database creation
                    DB_READ_UNCOMMITTED    | // Allow uncommitted reads
                    DB_AUTO_COMMIT         | /* Allow auto commit */
                    DB_THREAD;               /* Cause the database to
                                                be free-threaded */
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        dbp->open(NULL,       // Txn pointer
                  fileName,   // File name
                  NULL,       // Logical db name
                  DB_BTREE,   // Database type (using btree)
                  openFlags,  // Open flags
                  0);         // File mode. Using defaults
    } catch (DbException &e) {
        std::cerr << progname << "open_db: db open failed:" << std::endl;
        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    return (EXIT_SUCCESS);
}  

This completes our transactional example. If you would like to experiment with this code, you
can find the example in the following location in your DB distribution:

DB_INSTALL/examples_cxx/txn_guide

In-Memory Transaction Example

DB is sometimes used for applications that simply need to cache data retrieved from some
other location (such as a remote database server). DB is also often used in embedded systems.

In both cases, applications may want to use transactions for atomicity, consistency, and
isolation guarantees, but they may also want to forgo the durability guarantee entirely. In
doing so, they can keep their DB environment and databases entirely in-memory so as to avoid
the performance impact of unneeded disk I/O.

To do this:

• Refrain from specifying a home directory when you open your environment. The exception
to this is if you are using the DB_CONFIG configuration file — in that case you must identify
the environment's home directory so that the configuration file can be found.

• Configure your environment to back your regions from system memory instead of the
filesystem.

• Configure your logging subsystem such that log files are kept entirely in-memory.

• Increase the size of your in-memory log buffer so that it is large enough to hold the largest
set of concurrent write operations.

• Increase the size of your in-memory cache so that it can hold your entire data set. You do
not want your cache to page to disk.

• Do not specify a file name when you open your database(s).

As an example, this section takes the transaction example provided in Transaction
Example (page 75) and it updates that example so that the environment, database, log
files, and regions are all kept entirely in-memory.
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For illustration purposes, we also modify this example so that uncommitted reads are no
longer used to enable the countRecords() function. Instead, we simply provide a transaction
handle to countRecords() so as to avoid the self-deadlock. Be aware that using a transaction
handle here rather than uncommitted reads will work just as well as if we had continued
to use uncommitted reads. However, the usage of the transaction handle here will probably
cause more deadlocks than using read-uncommitted does, because more locking is being
performed in this case.

To begin, we simplify the beginning of our example a bit. Because we no longer need an
environment home directory, we can remove all the code that we used to determine path
delimiters and include the getopt function. We can also remove our usage() function
because we no longer require any command line arguments.
// File TxnGuideInMemory.cpp

// We assume an ANSI-compatible compiler
#include <db_cxx.h>
#include <pthread.h>
#include <iostream>

// Run 5 writers threads at a time.
#define NUMWRITERS 5

// Printing of pthread_t is implementation-specific, so we
// create our own thread IDs for reporting purposes.
int global_thread_num;
pthread_mutex_t thread_num_lock;

// Forward declarations
int countRecords(Db *, DbTxn *);
int openDb(Db **, const char *, const char *, DbEnv *, u_int32_t);
int usage(void);
void *writerThread(void *);  

Next, in our main(), we also eliminate some variables that this example no longer needs. In
particular, we are able to remove the dbHomeDir and fileName variables. We also remove all
our getopt code.
int
main(void)
{
    // Initialize our handles
    Db *dbp = NULL;
    DbEnv *envp = NULL;

    pthread_t writerThreads[NUMWRITERS];
    int i;
    u_int32_t envFlags;

    // Application name
    const char *progName = "TxnGuideInMemory";  
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Next we create our environment as always. However, we add DB_PRIVATE to our environment
open flags. This flag causes our environment to back regions using our application's heap
memory rather than by using the filesystem. This is the first important step to keeping our DB
data entirely in-memory.

We also remove the DB_RECOVER flag from the environment open flags. Because our
databases, logs, and regions are maintained in-memory, there will never be anything to
recover.

Note that we show the additional code here in bold.

    // Env open flags
    envFlags =
      DB_CREATE     |  // Create the environment if it does not exist
      DB_INIT_LOCK  |  // Initialize the locking subsystem
      DB_INIT_LOG   |  // Initialize the logging subsystem
      DB_INIT_TXN   |  // Initialize the transactional subsystem. This
                       // also turns on logging.
      DB_INIT_MPOOL |  // Initialize the memory pool (in-memory cache)
      DB_PRIVATE    |  // Region files are not backed by the filesystem.
                       // Instead, they are backed by heap memory.
      DB_THREAD;       // Cause the environment to be free-threaded

    try {
        // Create the environment 
        envp = new DbEnv(0); 

Now we configure our environment to keep the log files in memory, increase the log buffer
size to 10 MB, and increase our in-memory cache to 10 MB. These values should be more than
enough for our application's workload.

        // Specify in-memory logging
        envp->log_set_config(DB_LOG_IN_MEMORY, 1);

        // Specify the size of the in-memory log buffer.
        envp->set_lg_bsize(10 * 1024 * 1024);

        // Specify the size of the in-memory cache
        envp->set_cachesize(0, 10 * 1024 * 1024, 1); 

Next, we open the environment and setup our lock detection. This is identical to how the
example previously worked, except that we do not provide a location for the environment's
home directory.

        // Indicate that we want db to internally perform deadlock 
        // detection.  Also indicate that the transaction with 
        // the fewest number of write locks will receive the 
        // deadlock notification in the event of a deadlock.
        envp->set_lk_detect(DB_LOCK_MINWRITE);

        // Open the environment
        envp->open(NULL, envFlags, 0); 
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When we call openDb(), which is what we use to open our database, we no not provide a
database filename for the third parameter. When the filename is NULL, the database is not
backed by the filesystem.
        // If we had utility threads (for running checkpoints or 
        // deadlock detection, for example) we would spawn those
        // here. However, for a simple example such as this,
        // that is not required.

        // Open the database
        openDb(&dbp, progName, NULL,
            envp, DB_DUPSORT);
        

After that, our main() function is unchanged, except that when we check for exceptions on
the database open, we change the error message string so as to not reference the database
filename.
        // Initialize a pthread mutex. Used to help provide thread ids.
        (void)pthread_mutex_init(&thread_num_lock, NULL);

        // Start the writer threads.
        for (i = 0; i < NUMWRITERS; i++)
            (void)pthread_create(
                &writerThreads[i], NULL,
                writerThread,
                (void *)dbp);

        // Join the writers
        for (i = 0; i < NUMWRITERS; i++)
            (void)pthread_join(writerThreads[i], NULL);

    } catch(DbException &e) {
        std::cerr << "Error opening database environment: "
                  << std::endl;
        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    try {
        // Close our database handle if it was opened.
        if (dbp != NULL)
            dbp->close(0);

        // Close our environment if it was opened.
        if (envp != NULL)
            envp->close(0);
    } catch(DbException &e) {
        std::cerr << "Error closing database and environment."
                  << std::endl;
        std::cerr << e.what() << std::endl;
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        return (EXIT_FAILURE);
    }

    // Final status message and return.

    std::cout << "I'm all done." << std::endl;
    return (EXIT_SUCCESS);
} 

That completes main(). The bulk of our writerThread() function implementation is
unchanged from the initial transaction example, except that we now pass countRecords a
transaction handle, rather than configuring our application to perform uncommitted reads.
Both mechanisms work well-enough for preventing a self-deadlock. However, the individual
count in this example will tend to be lower than the counts seen in the previous transaction
example, because countRecords() can no longer see records created but not yet committed
by other threads.

// A function that performs a series of writes to a
// Berkeley DB database. The information written
// to the database is largely nonsensical, but the
// mechanism of transactional commit/abort and
// deadlock detection is illustrated here.
void *
writerThread(void *args)
{
    Db *dbp = (Db *)args;
    DbEnv *envp = dbp->get_env(dbp);

    int j, thread_num;
    int max_retries = 20;   // Max retry on a deadlock
    char *key_strings[] = {"key 1", "key 2", "key 3", "key 4",
                           "key 5", "key 6", "key 7", "key 8",
                           "key 9", "key 10"};

    // Get the thread number
    (void)pthread_mutex_lock(&thread_num_lock);
    global_thread_num++;
    thread_num = global_thread_num;
    (void)pthread_mutex_unlock(&thread_num_lock);

    // Initialize the random number generator 
    srand((u_int)pthread_self());

    // Perform 50 transactions
    for (int i=0; i<50; i++) {
        DbTxn *txn;
        bool retry = true;
        int retry_count = 0;
        // while loop is used for deadlock retries
        while (retry) {
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            // try block used for deadlock detection and
            // general db exception handling
            try {

                // Begin our transaction. We group multiple writes in
                // this thread under a single transaction so as to
                // (1) show that you can atomically perform multiple 
                // writes at a time, and (2) to increase the chances 
                // of a deadlock occurring so that we can observe our 
                // deadlock detection at work.

                // Normally we would want to avoid the potential for 
                // deadlocks, so for this workload the correct thing 
                // would be to perform our puts with auto commit. But 
                // that would excessively simplify our example, so we 
                // do the "wrong" thing here instead.
                txn = NULL;
                envp->txn_begin(NULL, &txn, 0);
                // Perform the database write for this transaction.
                for (j = 0; j < 10; j++) {
                    Dbt key, value;
                    key.set_data(key_strings[j]);
                    key.set_size((strlen(key_strings[j]) + 1) *
                        sizeof(char));

                    int payload = rand() + i;
                    value.set_data(&payload);
                    value.set_size(sizeof(int));

                    // Perform the database put
                    dbp->put(txn, &key, &value, 0);
                }

                // countRecords runs a cursor over the entire database.
                // We do this to illustrate issues of deadlocking
                std::cout << thread_num <<  " : Found "
                          <<  countRecords(dbp, txn)
                          << " records in the database." << std::endl;

                std::cout << thread_num <<  " : committing txn : " << i
                          << std::endl;

                // commit
                try {
                    txn->commit(0);
                    retry = false;
                    txn = NULL;
                } catch (DbException &e) {
                    std::cout << "Error on txn commit: "
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                              << e.what() << std::endl;
                }
            } catch (DbDeadlockException &de) {
                // First thing we MUST do is abort the transaction.
                if (txn != NULL)
                    (void)txn->abort();

                // Now we decide if we want to retry the operation.
                // If we have retried less than max_retries,
                // increment the retry count and goto retry.
                if (retry_count < max_retries) {
                    std::cout << "############### Writer " << thread_num
                              << ": Got DB_LOCK_DEADLOCK.\n"
                              << "Retrying write operation."
                              << std::endl;
                    retry_count++;
                    retry = true;
                 } else {
                    // Otherwise, just give up.
                    std::cerr << "Writer " << thread_num
                              << ": Got DeadLockException and out of "
                              << "retries. Giving up." << std::endl;
                    retry = false;
                 }
           } catch (DbException &e) {
                std::cerr << "db put failed" << std::endl;
                std::cerr << e.what() << std::endl;
                if (txn != NULL)
                    txn->abort();
                retry = false;
           } catch (std::exception &ee) {
            std::cerr << "Unknown exception: " << ee.what() << std::endl;
            return (0);
          }
        }
    }
    return (0);
} 

Next we update countRecords(). The only difference here is that we no longer specify
DB_READ_UNCOMMITTED when we open our cursor. Note that even this minor change
is not required. If we do not configure our database to support uncommitted reads,
DB_READ_UNCOMMITTED on the cursor open will be silently ignored. However, we remove the
flag anyway from the cursor open so as to avoid confusion.

int
countRecords(Db *dbp, DbTxn *txn)
{

    Dbc *cursorp = NULL;
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    int count = 0;

    try {
        // Get the cursor
        dbp->cursor(txn, &cursorp, 0);

        Dbt key, value;
        while (cursorp->get(&key, &value, DB_NEXT) == 0) {
            count++;
        }
    } catch (DbDeadlockException &de) {
        std::cerr << "countRecords: got deadlock" << std::endl;
        cursorp->close();
        throw de;
    } catch (DbException &e) {
        std::cerr << "countRecords error:" << std::endl;
        std::cerr << e.what() << std::endl;
    }

    if (cursorp != NULL) {
        try {
            cursorp->close();
        } catch (DbException &e) {
            std::cerr << "countRecords: cursor close failed:" << std::endl;
            std::cerr << e.what() << std::endl;
        }
    }

    return (count);
} 

Finally, we update openDb(). This involves removing DB_READ_UNCOMMITTED from the open
flags.

// Open a Berkeley DB database
int
openDb(Db **dbpp, const char *progname, const char *fileName,
  DbEnv *envp, u_int32_t extraFlags)
{
    int ret;
    u_int32_t openFlags;

    try {
        Db *dbp = new Db(envp, 0);

        // Point to the new'd Db
        *dbpp = dbp;

        if (extraFlags != 0)
            ret = dbp->set_flags(extraFlags);
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        // Now open the database
        openFlags = DB_CREATE   |      // Allow database creation
                    DB_THREAD        |        
                    DB_AUTO_COMMIT;    // Allow auto commit

        dbp->open(NULL,       // Txn pointer
                  fileName,   // File name
                  NULL,       // Logical db name
                  DB_BTREE,   // Database type (using btree)
                  openFlags,  // Open flags
                  0);         // File mode. Using defaults
    } catch (DbException &e) {
        std::cerr << progname << ": openDb: db open failed:" << std::endl;
        std::cerr << e.what() << std::endl;
        return (EXIT_FAILURE);
    }

    return (EXIT_SUCCESS);
} 

This completes our in-memory transactional example. If you would like to experiment with
this code, you can find the example in the following location in your DB distribution:

DB_INSTALL/examples_cxx/txn_guide
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