
Oracle Berkeley DB

Programmer's Reference
Guide

11g Release 2
Library Version 11.2.5.3

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at: http://
www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks are reserved. No
third-party use is permitted without the express prior written consent of Oracle.

Other names may be trademarks of their respective owners.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology Network forum at:
http://forums.oracle.com/forums/forum.jspa?forumID=271

Published 9/9/2013

http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/oslicense-093458.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

9/9/2013 DB Reference Guide Page iii

Table of Contents
Preface ... xii

Conventions Used in this Book ... xii
For More Information .. xii

Contact Us ... xiii
1. Introduction .. 1

An introduction to data management .. 1
Mapping the terrain: theory and practice ... 1

Data access and data management .. 2
Relational databases .. 3
Object-oriented databases .. 4
Network databases .. 4
Clients and servers ... 5

What is Berkeley DB? ... 6
Data Access Services ... 7
Data management services .. 7
Design ... 8

What Berkeley DB is not ... 8
Berkeley DB is not a relational database ... 9
Berkeley DB is not an object-oriented database 10
Berkeley DB is not a network database .. 10
Berkeley DB is not a database server .. 11

Do you need Berkeley DB? .. 11
What other services does Berkeley DB provide? .. 12
What does the Berkeley DB distribution include? ... 12
Where does Berkeley DB run? .. 12
The Berkeley DB products .. 13

Berkeley DB Data Store ... 14
Berkeley DB Concurrent Data Store .. 14
Berkeley DB Transactional Data Store .. 14
Berkeley DB High Availability .. 15

2. Access Method Configuration ... 16
What are the available access methods? ... 16

Btree ... 16
Hash .. 16
Heap ... 16
Queue .. 16
Recno .. 16

Selecting an access method .. 16
Btree or Heap? ... 17

Disk Space Usage .. 17
Record Access .. 17
Record Creation/Deletion .. 18
Cursor Operations ... 18
Which Access Method Should You Use? .. 19

Hash or Btree? ... 19
Queue or Recno? ... 20

9/9/2013 DB Reference Guide Page iv

Logical record numbers ... 21
General access method configuration .. 23

Selecting a page size ... 23
Selecting a cache size .. 24
Selecting a byte order .. 25
Duplicate data items .. 26
Non-local memory allocation .. 27

Btree access method specific configuration ... 27
Btree comparison .. 27
Btree prefix comparison .. 29
Minimum keys per page .. 30
Retrieving Btree records by logical record number 30
Compression .. 32

Custom compression .. 33
Programmer Notes .. 36

Hash access method specific configuration .. 37
Page fill factor ... 37
Specifying a database hash .. 37
Hash table size ... 37

Heap access method specific configuration ... 38
Queue and Recno access method specific configuration 38

Managing record-based databases .. 38
Record Delimiters ... 38
Record Length ... 39
Record Padding Byte Value .. 39

Selecting a Queue extent size ... 39
Flat-text backing files .. 40
Logically renumbering records .. 40

3. Access Method Operations .. 42
Database open .. 42
Opening multiple databases in a single file ... 43

Configuring databases sharing a file .. 43
Caching databases sharing a file .. 43
Locking in databases based on sharing a file ... 43

Partitioning databases ... 44
Specifying partition keys ... 44
Partitioning callback .. 46
Placing partition files ... 48

Retrieving records .. 48
Storing records ... 49
Deleting records .. 49
Database statistics ... 49
Database truncation ... 50
Database upgrade .. 50
Database verification and salvage ... 50
Flushing the database cache ... 51
Database close .. 51
Secondary indexes ... 52

Error Handling With Secondary Indexes .. 56

9/9/2013 DB Reference Guide Page v

Foreign key indexes ... 56
Cursor operations .. 59

Retrieving records with a cursor .. 60
Cursor position flags .. 60
Retrieving specific key/data pairs .. 60
Retrieving based on record numbers ... 61
Special-purpose flags ... 61

Storing records with a cursor .. 62
Deleting records with a cursor .. 64
Duplicating a cursor ... 64
Equality Join .. 64

Example ... 66
Data item count ... 68
Cursor close .. 68

4. Access Method Wrapup .. 69
Data alignment ... 69
Retrieving and updating records in bulk ... 69

Bulk retrieval ... 69
Bulk updates .. 71
Bulk deletes .. 71

Partial record storage and retrieval .. 72
Storing C/C++ structures/objects ... 74
Retrieved key/data permanence for C/C++ ... 76
Error support .. 76
Cursor stability ... 77
Database limits ... 77
Disk space requirements .. 78

Btree ... 78
Hash .. 79

Specifying a Berkeley DB schema using SQL DDL ... 81
Access method tuning ... 81
Access method FAQ .. 83

5. Java API ... 86
Java configuration ... 86
Compatibility .. 87
Java programming notes .. 87
Java FAQ ... 88

6. C# API ... 91
Compatibility .. 92

7. Standard Template Library API .. 93
Dbstl introduction .. 93

Standards compatible ... 93
Performance overhead .. 93
Portability ... 93

Dbstl typical use cases .. 94
Dbstl examples ... 94
Berkeley DB configuration .. 96

Registering database and environment handles .. 97
Truncate requirements .. 97

9/9/2013 DB Reference Guide Page vi

Auto commit support ... 98
Database and environment identity checks ... 98
Products, constructors and configurations ... 98

Using advanced Berkeley DB features with dbstl ... 99
Using bulk retrieval iterators .. 99
Using the DB_RMW flag ... 100
Using secondary index database and secondary containers 100

Using transactions in dbstl .. 100
Using dbstl in multithreaded applications .. 101
Working with primitive types .. 102

Storing strings ... 103
Store and Retrieve data or objects of complex types 104

Storing varying length objects ... 104
Storing by marshaling objects ... 104
Using a DbstlDbt wrapper object .. 105

Storing arbitrary sequences .. 106
The SequenceLenFunct function ... 106
The SequenceCopyFunct function .. 107

Notes ... 107
Dbstl persistence .. 107

Direct database get .. 107
Change persistence .. 109
Object life time and persistence ... 109

Dbstl container specific notes .. 111
db_vector specific notes .. 111
Associative container specific notes .. 112

Using dbstl efficiently .. 112
Using iterators efficiently ... 112
Using containers efficiently .. 113

Dbstl memory management ... 114
Freeing memory .. 114
Type specific notes .. 114

DbEnv/Db .. 114
DbstlDbt ... 115

Dbstl miscellaneous notes ... 115
Special notes about trivial methods .. 115
Using correct container and iterator public types 116

Dbstl known issues ... 116
8. Berkeley DB Architecture .. 118

The big picture .. 118
Programming model .. 121
Programmatic APIs .. 121

C .. 121
C++ .. 121
STL .. 122
Java ... 123
Dbm/Ndbm, Hsearch ... 123

Scripting languages ... 123
Perl ... 123

9/9/2013 DB Reference Guide Page vii

PHP ... 123
Tcl ... 123

Supporting utilities ... 123
9. The Berkeley DB Environment .. 126

Database environment introduction ... 126
Creating a database environment .. 126
Sizing a database environment ... 128
Opening databases within the environment .. 130
Error support .. 131
DB_CONFIG configuration file ... 132
File naming .. 132

Specifying file naming to Berkeley DB .. 133
Filename resolution in Berkeley DB ... 133
Examples ... 134

Shared memory regions .. 135
Security ... 136
Encryption .. 137
Remote filesystems ... 139
Environment FAQ .. 139

10. Berkeley DB Concurrent Data Store Applications ... 141
Concurrent Data Store introduction ... 141
Handling failure in Data Store and Concurrent Data Store applications 143
Architecting Data Store and Concurrent Data Store applications 144

11. Berkeley DB Transactional Data Store Applications .. 148
Transactional Data Store introduction ... 148
Why transactions? ... 148
Terminology .. 148
Handling failure in Transactional Data Store applications 149
Architecting Transactional Data Store applications ... 150
Opening the environment ... 155
Opening the databases ... 158
Recoverability and deadlock handling ... 160
Atomicity ... 164
Isolation .. 165
Degrees of isolation .. 168

Snapshot Isolation .. 168
Transactional cursors ... 169
Nested transactions .. 172
Environment infrastructure ... 173
Deadlock detection ... 174
Checkpoints .. 175
Database and log file archival .. 177
Log file removal .. 180
Recovery procedures ... 181
Hot failover .. 183
Using Recovery on Journaling Filesystems .. 184
Recovery and filesystem operations ... 185
Berkeley DB recoverability .. 186
Transaction tuning .. 188

9/9/2013 DB Reference Guide Page viii

Transaction throughput .. 191
Transaction FAQ ... 193

12. Berkeley DB Replication .. 195
Replication introduction ... 195
Replication environment IDs .. 196
Replication environment priorities ... 196
Building replicated applications .. 197
Replication Manager methods ... 198
Base API Methods ... 200
Building the communications infrastructure .. 201
Connecting to a new site ... 202
Managing Replication Manager Group Membership .. 203

Adding Sites to a Replication Group .. 203
Removing Sites from a Replication Group .. 204
Primordial Startups ... 205
Upgrading Groups .. 205

Managing Replication Files .. 206
Running Replication Manager in multiple processes ... 207

One replication process and multiple subordinate processes 207
Persistence of local site network address configuration 208
Programming considerations .. 208
Handling failure .. 208
Other miscellaneous rules .. 209

Running Replication using the db_replicate Utility .. 209
One Replication Process and Multiple Subordinate Processes 209
Common Use Case ... 210
Avoiding Rollback ... 211
When to Consider an Integrated HA Application 212

Choosing a Replication Manager Ack Policy .. 212
Elections .. 213
Synchronizing with a master .. 216

Delaying client synchronization .. 216
Client-to-client synchronization .. 216
Blocked client operations ... 217
Clients too far out-of-date to synchronize ... 217

Initializing a new site .. 217
Bulk transfer ... 218
Transactional guarantees .. 218
Master Leases .. 222

Changing Group Size ... 225
Read your writes consistency ... 226

Getting a token ... 226
Token handling .. 227
Using a token to check or wait for a transaction 227

Clock Skew ... 227
Using Replication Manager message channels .. 228

DB_CHANNEL .. 229
Sending messages over a message channel .. 229

Message Responses ... 229

9/9/2013 DB Reference Guide Page ix

Receiving messages .. 230
Special considerations for two-site replication groups 230
Network partitions .. 231
Replication FAQ ... 233
Ex_rep: a replication example ... 234
Ex_rep_base: a TCP/IP based communication infrastructure 236
Ex_rep_base: putting it all together .. 237
Ex_rep_chan: a Replication Manager channel example 238

13. Distributed Transactions .. 240
Introduction .. 240
Berkeley DB XA Implementation ... 240
Building a Global Transaction Manager .. 240

Communicating with multiple Berkeley DB environments 241
Recovering from GTM failure ... 241
Managing the Global Transaction ID (GID) name space 241
Maintaining state for each distributed transaction. 242
Recovering from the failure of a single environment 242
Recovering from GTM failure ... 243

XA Introduction .. 244
Configuring Berkeley DB with the Tuxedo System ... 245

Update the Resource Manager File in Tuxedo ... 245
Build the Transaction Manager Server .. 245
Update the UBBCONFIG File .. 245

Restrictions on XA Transactions .. 246
XA: Frequently Asked Questions .. 247

14. Application Specific Logging and Recovery .. 249
Introduction to application specific logging and recovery 249
Defining application-specific log records ... 250
Automatically generated functions .. 252
Application configuration .. 255

15. Programmer Notes .. 258
Signal handling .. 258
Error returns to applications .. 258
Environment variables ... 260
Multithreaded applications .. 260
Berkeley DB handles ... 261
Name spaces ... 262

C Language Name Space .. 262
Filesystem Name Space ... 263

Memory-only or Flash configurations .. 263
Disk drive caches ... 265
Copying or moving databases ... 266
Compatibility with historic UNIX interfaces .. 267
Run-time configuration .. 267
Performance Event Monitoring .. 268

Using the DTrace Provider .. 269
Using SystemTap .. 269
Example Scripts ... 269
Performance Events Reference ... 271

9/9/2013 DB Reference Guide Page x

Programmer notes FAQ ... 275
16. The Locking Subsystem ... 276

Introduction to the locking subsystem .. 276
Configuring locking ... 277
Configuring locking: sizing the system .. 277
Standard lock modes ... 279
Deadlock detection ... 280
Deadlock detection using timers ... 281
Deadlock debugging .. 282
Locking granularity ... 285
Locking without transactions ... 286
Locking with transactions: two-phase locking ... 286
Berkeley DB Concurrent Data Store locking conventions 287
Berkeley DB Transactional Data Store locking conventions 287
Locking and non-Berkeley DB applications ... 289

17. The Logging Subsystem ... 291
Introduction to the logging subsystem .. 291
Configuring logging ... 291
Log file limits ... 292

18. The Memory Pool Subsystem .. 294
Introduction to the memory pool subsystem ... 294
Configuring the memory pool ... 295
Warming the memory pool .. 296

The warm_cache() function .. 300
19. The Transaction Subsystem .. 302

Introduction to the transaction subsystem ... 302
Configuring transactions ... 303
Transaction limits ... 303

Transaction IDs .. 303
Cursors ... 304
Multiple Threads of Control .. 304

20. Sequences .. 305
21. Berkeley DB Extensions: Tcl ... 306

Loading Berkeley DB with Tcl ... 306
Installing as a Tcl Package .. 306
Loading Berkeley DB with Tcl .. 306

Using Berkeley DB with Tcl ... 307
Tcl API programming notes .. 307
Tcl error handling ... 308
Tcl FAQ .. 309

22. Berkeley DB Extensions ... 310
Using Berkeley DB with Apache .. 310
Using Berkeley DB with Perl .. 311
Using Berkeley DB with PHP .. 311

23. Dumping and Reloading Databases ... 314
The db_dump and db_load utilities ... 314
Dump output formats .. 314
Loading text into databases .. 315

24. Additional References .. 316

9/9/2013 DB Reference Guide Page xi

Additional references .. 316
Technical Papers on Berkeley DB .. 316
Background on Berkeley DB Features ... 316
Database Systems Theory ... 317

9/9/2013 DB Reference Guide Page xii

Preface
Welcome to Berkeley DB (DB). This document provides an introduction and usage notes for
skilled programmers who wish to use the Berkeley DB APIs.

This document reflects Berkeley DB 11g Release 2, which provides DB library version 11.2.5.3.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Structure names are represented in monospaced font, as are method names. For example:
"DB->open() is a method on a DB handle."

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a monospaced font on a shaded background. For example:

/* File: gettingstarted_common.h */
typedef struct stock_dbs {
 DB *inventory_dbp; /* Database containing inventory information */
 DB *vendor_dbp; /* Database containing vendor information */

 char *db_home_dir; /* Directory containing the database files */
 char *inventory_db_name; /* Name of the inventory database */
 char *vendor_db_name; /* Name of the vendor database */
} STOCK_DBS;

Note

Finally, notes of interest are represented using a note block such as this.

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

• Getting Started with Transaction Processing for C

• Berkeley DB Getting Started with Replicated Applications for C

• Berkeley DB C API Reference Guide

• Berkeley DB C++ API Reference Guide

• Berkeley DB STL API Reference Guide

• Berkeley DB TCL API Reference Guide

http://download.oracle.com/docs/cd/E17076_02/html/gsg_txn/C/BerkeleyDB-Core-C-Txn.pdf
http://download.oracle.com/docs/cd/E17076_02/html/gsg_db_rep/C/Replication_C_GSG.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/C/BDB-C_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/CXX/BDB-CXX_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/STL/BDB-STL_APIReference.pdf
http://download.oracle.com/docs/cd/E17076_02/html/api_reference/TCL/BDB-TCL_APIReference.pdf

9/9/2013 DB Reference Guide Page xiii

• Berkeley DB Installation and Build Guide

• Berkeley DB Upgrade Guide

• Berkeley DB Getting Started with the SQL APIs

To download the latest Berkeley DB documentation along with white papers and other
collateral, visit http://www.oracle.com/technetwork/indexes/documentation/index.html.

For the latest version of the Oracle Berkeley DB downloads, visit http://www.oracle.com/
technetwork/database/berkeleydb/downloads/index.html.

Contact Us

You can post your comments and questions at the Oracle Technology (OTN) forum for Oracle
Berkeley DB at: http://forums.oracle.com/forums/forum.jspa?forumID=271, or for Oracle
Berkeley DB High Availability at: http://forums.oracle.com/forums/forum.jspa?forumID=272.

For sales or support information, email to: berkeleydb-info_us@oracle.com You can subscribe
to a low-volume email announcement list for the Berkeley DB product family by sending email
to: bdb-join@oss.oracle.com

http://download.oracle.com/docs/cd/E17076_02/html/installation/BDB_Installation.pdf
http://download.oracle.com/docs/cd/E17076_02/html/upgrading/BDB_Upgrading.pdf
http://download.oracle.com/docs/cd/E17076_02/html/bdb-sql/BDB-SQL-Guide.pdf
http://www.oracle.com/technetwork/indexes/documentation/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=271
http://forums.oracle.com/forums/forum.jspa?forumID=272
mailto:berkeleydb-info_us@oracle.com
mailto:bdb-join@oss.oracle.com

9/9/2013 DB Reference Guide Page 1

Chapter 1. Introduction

An introduction to data management

Cheap, powerful computing and networking have created countless new applications that
could not have existed a decade ago. The advent of the World-Wide Web, and its influence in
driving the Internet into homes and businesses, is one obvious example. Equally important,
though, is the shift from large, general-purpose desktop and server computers toward smaller,
special-purpose devices with built-in processing and communications services.

As computer hardware has spread into virtually every corner of our lives, of course, software
has followed. Software developers today are building applications not just for conventional
desktop and server environments, but also for handheld computers, home appliances,
networking hardware, cars and trucks, factory floor automation systems, cellphones, and
more.

While these operating environments are diverse, the problems that software engineers must
solve in them are often strikingly similar. Most systems must deal with the outside world,
whether that means communicating with users or controlling machinery. As a result, most
need some sort of I/O system. Even a simple, single-function system generally needs to handle
multiple tasks, and so needs some kind of operating system to schedule and manage control
threads. Also, many computer systems must store and retrieve data to track history, record
configuration settings, or manage access.

Data management can be very simple. In some cases, just recording configuration in a flat
text file is enough. More often, though, programs need to store and search a large amount of
data, or structurally complex data. Database management systems are tools that programmers
can use to do this work quickly and efficiently using off-the-shelf software.

Of course, database management systems have been around for a long time. Data storage is a
problem dating back to the earliest days of computing. Software developers can choose from
hundreds of good, commercially-available database systems. The problem is selecting the one
that best solves the problems that their applications face.

Mapping the terrain: theory and practice

The first step in selecting a database system is figuring out what the choices are. Decades of
research and real-world deployment have produced countless systems. We need to organize
them somehow to reduce the number of options.

One obvious way to group systems is to use the common labels that vendors apply to them.
The buzzwords here include "network," "relational," "object-oriented," and "embedded," with
some cross-fertilization like "object-relational" and "embedded network". Understanding
the buzzwords is important. Each has some grounding in theory, but has also evolved into a
practical label for categorizing systems that work in a certain way.

All database systems, regardless of the buzzwords that apply to them, provide a few common
services. All of them store data, for example. We'll begin by exploring the common services

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 2

that all systems provide, and then examine the differences among the different kinds of
systems.

Data access and data management

Fundamentally, database systems provide two services.

The first service is data access. Data access means adding new data to the database
(inserting), finding data of interest (searching), changing data already stored (updating), and
removing data from the database (deleting). All databases provide these services. How they
work varies from category to category, and depends on the record structure that the database
supports.

Each record in a database is a collection of values. For example, the record for a Web site
customer might include a name, email address, shipping address, and payment information.
Records are usually stored in tables. Each table holds records of the same kind. For example,
the customer table at an e-commerce Web site might store the customer records for every
person who shopped at the site. Often, database records have a different structure from the
structures or instances supported by the programming language in which an application is
written. As a result, working with records can mean:

• using database operations like searches and updates on records; and

• converting between programming language structures and database record types in the
application.

The second service is data management. Data management is more complicated than data
access. Providing good data management services is the hard part of building a database
system. When you choose a database system to use in an application you build, making sure it
supports the data management services you need is critical.

Data management services include allowing multiple users to work on the database
simultaneously (concurrency), allowing multiple records to be changed instantaneously
(transactions), and surviving application and system crashes (recovery). Different database
systems offer different data management services. Data management services are entirely
independent of the data access services listed above. For example, nothing about relational
database theory requires that the system support transactions, but most commercial
relational systems do.

Concurrency means that multiple users can operate on the database at the same time.
Support for concurrency ranges from none (single-user access only) to complete (many readers
and writers working simultaneously).

Transactions permit users to make multiple changes appear at once. For example, a transfer
of funds between bank accounts needs to be a transaction because the balance in one account
is reduced and the balance in the other increases. If the reduction happened before the
increase, than a poorly-timed system crash could leave the customer poorer; if the bank used
the opposite order, then the same system crash could make the customer richer. Obviously,
both the customer and the bank are best served if both operations happen at the same
instant.

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 3

Transactions have well-defined properties in database systems. They are atomic, so that the
changes happen all at once or not at all. They are consistent, so that the database is in a legal
state when the transaction begins and when it ends. They are typically isolated, which means
that any other users in the database cannot interfere with them while they are in progress.
And they are durable, so that if the system or application crashes after a transaction finishes,
the changes are not lost. Together, the properties of atomicity, consistency, isolation, and
durability are known as the ACID properties.

As is the case for concurrency, support for transactions varies among databases. Some offer
atomicity without making guarantees about durability. Some ignore isolatability, especially in
single-user systems; there's no need to isolate other users from the effects of changes when
there are no other users.

Another important data management service is recovery. Strictly speaking, recovery is
a procedure that the system carries out when it starts up. The purpose of recovery is to
guarantee that the database is complete and usable. This is most important after a system
or application crash, when the database may have been damaged. The recovery process
guarantees that the internal structure of the database is good. Recovery usually means that
any completed transactions are checked, and any lost changes are reapplied to the database.
At the end of the recovery process, applications can use the database as if there had been no
interruption in service.

Finally, there are a number of data management services that permit copying of data. For
example, most database systems are able to import data from other sources, and to export it
for use elsewhere. Also, most systems provide some way to back up databases and to restore
in the event of a system failure that damages the database. Many commercial systems allow
hot backups, so that users can back up databases while they are in use. Many applications
must run without interruption, and cannot be shut down for backups.

A particular database system may provide other data management services. Some provide
browsers that show database structure and contents. Some include tools that enforce data
integrity rules, such as the rule that no employee can have a negative salary. These data
management services are not common to all systems, however. Concurrency, recovery, and
transactions are the data management services that most database vendors support.

Deciding what kind of database to use means understanding the data access and data
management services that your application needs. Berkeley DB is an embedded database that
supports fairly simple data access with a rich set of data management services. To highlight its
strengths and weaknesses, we can compare it to other database system categories.

Relational databases

Relational databases are probably the best-known database variant, because of the success
of companies like Oracle. Relational databases are based on the mathematical field of set
theory. The term "relation" is really just a synonym for "set" -- a relation is just a set of
records or, in our terminology, a table. One of the main innovations in early relational systems
was to insulate the programmer from the physical organization of the database. Rather than
walking through arrays of records or traversing pointers, programmers make statements about
tables in a high-level language, and the system executes those statements.

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 4

Relational databases operate on tuples, or records, composed of values of several different
data types, including integers, character strings, and others. Operations include searching for
records whose values satisfy some criteria, updating records, and so on.

Virtually all relational databases use the Structured Query Language, or SQL. This language
permits people and computer programs to work with the database by writing simple
statements. The database engine reads those statements and determines how to satisfy them
on the tables in the database.

SQL is the main practical advantage of relational database systems. Rather than writing a
computer program to find records of interest, the relational system user can just type a query
in a simple syntax, and let the engine do the work. This gives users enormous flexibility; they
do not need to decide in advance what kind of searches they want to do, and they do not
need expensive programmers to find the data they need. Learning SQL requires some effort,
but it's much simpler than a full-blown high-level programming language for most purposes.
And there are a lot of programmers who have already learned SQL.

Object-oriented databases

Object-oriented databases are less common than relational systems, but are still fairly
widespread. Most object-oriented databases were originally conceived as persistent storage
systems closely wedded to particular high-level programming languages like C++. With the
spread of Java, most now support more than one programming language, but object-oriented
database systems fundamentally provide the same class and method abstractions as do object-
oriented programming languages.

Many object-oriented systems allow applications to operate on objects uniformly, whether
they are in memory or on disk. These systems create the illusion that all objects are in
memory all the time. The advantage to object-oriented programmers who simply want object
storage and retrieval is clear. They need never be aware of whether an object is in memory
or not. The application simply uses objects, and the database system moves them between
disk and memory transparently. All of the operations on an object, and all its behavior, are
determined by the programming language.

Object-oriented databases aren't nearly as widely deployed as relational systems. In order
to attract developers who understand relational systems, many of the object-oriented
systems have added support for query languages very much like SQL. In practice, though,
object-oriented databases are mostly used for persistent storage of objects in C++ and Java
programs.

Network databases

The "network model" is a fairly old technique for managing and navigating application data.
Network databases are designed to make pointer traversal very fast. Every record stored in a
network database is allowed to contain pointers to other records. These pointers are generally
physical addresses, so fetching the record to which it refers just means reading it from disk by
its disk address.

Network database systems generally permit records to contain integers, floating point
numbers, and character strings, as well as references to other records. An application can

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 5

search for records of interest. After retrieving a record, the application can fetch any record
to which it refers, quickly.

Pointer traversal is fast because most network systems use physical disk addresses as pointers.
When the application wants to fetch a record, the database system uses the address to fetch
exactly the right string of bytes from the disk. This requires only a single disk access in all
cases. Other systems, by contrast, often must do more than one disk read to find a particular
record.

The key advantage of the network model is also its main drawback. The fact that pointer
traversal is so fast means that applications that do it will run well. On the other hand, storing
pointers all over the database makes it very hard to reorganize the database. In effect,
once you store a pointer to a record, it is difficult to move that record elsewhere. Some
network databases handle this by leaving forwarding pointers behind, but this defeats the
speed advantage of doing a single disk access in the first place. Other network databases
find, and fix, all the pointers to a record when it moves, but this makes reorganization very
expensive. Reorganization is often necessary in databases, since adding and deleting records
over time will consume space that cannot be reclaimed without reorganizing. Without periodic
reorganization to compact network databases, they can end up with a considerable amount of
wasted space.

Clients and servers

Database vendors have two choices for system architecture. They can build a server to
which remote clients connect, and do all the database management inside the server.
Alternatively, they can provide a module that links directly into the application, and does all
database management locally. In either case, the application developer needs some way of
communicating with the database (generally, an Application Programming Interface (API) that
does work in the process or that communicates with a server to get work done).

Almost all commercial database products are implemented as servers, and applications
connect to them as clients. Servers have several features that make them attractive.

First, because all of the data is managed by a separate process, and possibly on a separate
machine, it's easy to isolate the database server from bugs and crashes in the application.

Second, because some database products (particularly relational engines) are quite large,
splitting them off as separate server processes keeps applications small, which uses less disk
space and memory. Relational engines include code to parse SQL statements, to analyze them
and produce plans for execution, to optimize the plans, and to execute them.

Finally, by storing all the data in one place and managing it with a single server, it's easier
for organizations to back up, protect, and set policies on their databases. The enterprise
databases for large companies often have several full-time administrators caring for them,
making certain that applications run quickly, granting and denying access to users, and making
backups.

However, centralized administration can be a disadvantage in some cases. In particular, if
a programmer wants to build an application that uses a database for storage of important
information, then shipping and supporting the application is much harder. The end user needs

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 6

to install and administer a separate database server, and the programmer must support not
just one product, but two. Adding a server process to the application creates new opportunity
for installation mistakes and run-time problems.

What is Berkeley DB?

So far, we have discussed database systems in general terms. It is time now to consider
Berkeley DB in particular and see how it fits into the framework we have introduced. The key
question is, what kinds of applications should use Berkeley DB?

Berkeley DB is an Open Source embedded database library that provides scalable, high-
performance, transaction-protected data management services to applications. Berkeley DB
provides a simple function-call API for data access and management.

By "Open Source," we mean Berkeley DB is distributed under a license that conforms to
the Open Source Definition. This license guarantees Berkeley DB is freely available for use
and redistribution in other Open Source applications. Oracle Corporation sells commercial
licenses allowing the redistribution of Berkeley DB in proprietary applications. In all cases the
complete source code for Berkeley DB is freely available for download and use.

Berkeley DB is "embedded" because it links directly into the application. It runs in the same
address space as the application. As a result, no inter-process communication, either over
the network or between processes on the same machine, is required for database operations.
Berkeley DB provides a simple function-call API for a number of programming languages,
including C, C++, Java, Perl, Tcl, Python, and PHP. All database operations happen inside the
library. Multiple processes, or multiple threads in a single process, can all use the database
at the same time as each uses the Berkeley DB library. Low-level services like locking,
transaction logging, shared buffer management, memory management, and so on are all
handled transparently by the library.

The Berkeley DB library is extremely portable. It runs under almost all UNIX and Linux
variants, Windows, and a number of embedded real-time operating systems. It runs on
both 32-bit and 64-bit systems. It has been deployed on high-end Internet servers, desktop
machines, and on palmtop computers, set-top boxes, in network switches, and elsewhere.
Once Berkeley DB is linked into the application, the end user generally does not know that
there is a database present at all.

Berkeley DB is scalable in a number of respects. The database library itself is quite compact
(under 300 kilobytes of text space on common architectures), which means it is small enough
to run in tightly constrained embedded systems, but yet it can take advantage of gigabytes of
memory and terabytes of disk if you are using hardware that has those resources.

Each of Berkeley DB's database files can contain up to 256 terabytes of data, assuming
the underlying filesystem is capable of supporting files of that size. Note that Berkeley DB
applications often use multiple database files. This means that the amount of data your
Berkeley DB application can manage is really limited only by the constraints imposed by your
operating system, filesystem, and physical hardware.

Berkeley DB also supports high concurrency, allowing thousands of users to operate on the
same database files at the same time.

http://www.opensource.org/osd.html

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 7

Berkeley DB generally outperforms relational and object-oriented database systems in
embedded applications for a couple of reasons. First, because the library runs in the same
address space, no inter-process communication is required for database operations. The cost
of communicating between processes on a single machine, or among machines on a network,
is much higher than the cost of making a function call. Second, because Berkeley DB uses a
simple function-call interface for all operations, there is no query language to parse, and no
execution plan to produce.

Data Access Services

Berkeley DB applications can choose the storage structure that best suits the application.
Berkeley DB supports hash tables, Btrees, simple record-number-based storage, and persistent
queues. Programmers can create tables using any of these storage structures, and can mix
operations on different kinds of tables in a single application.

Hash tables are generally good for very large databases that need predictable search and
update times for random-access records. Hash tables allow users to ask, "Does this key exist?"
or to fetch a record with a known key. Hash tables do not allow users to ask for records with
keys that are close to a known key.

Btrees are better for range-based searches, as when the application needs to find all records
with keys between some starting and ending value. Btrees also do a better job of exploiting
locality of reference. If the application is likely to touch keys near each other at the same
time, the Btrees work well. The tree structure keeps keys that are close together near one
another in storage, so fetching nearby values usually does not require a disk access.

Record-number-based storage is natural for applications that need to store and fetch records,
but that do not have a simple way to generate keys of their own. In a record number table,
the record number is the key for the record. Berkeley DB will generate these record numbers
automatically.

Queues are well-suited for applications that create records, and then must deal with those
records in creation order. A good example is on-line purchasing systems. Orders can enter the
system at any time, but should generally be filled in the order in which they were placed.

Data management services

Berkeley DB offers important data management services, including concurrency, transactions,
and recovery. All of these services work on all of the storage structures.

Many users can work on the same database concurrently. Berkeley DB handles locking
transparently, ensuring that two users working on the same record do not interfere with one
another.

The library provides strict ACID transaction semantics, by default. However, applications are
allowed to relax the isolation guarantees the database system makes.

Multiple operations can be grouped into a single transaction, and can be committed or
rolled back atomically. Berkeley DB uses a technique called two-phase locking to be sure
that concurrent transactions are isolated from one another, and a technique called write-

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 8

ahead logging to guarantee that committed changes survive application, system, or hardware
failures.

When an application starts up, it can ask Berkeley DB to run recovery. Recovery restores
the database to a clean state, with all committed changes present, even after a crash. The
database is guaranteed to be consistent and all committed changes are guaranteed to be
present when recovery completes.

An application can specify, when it starts up, which data management services it will use.
Some applications need fast, single-user, non-transactional Btree data storage. In that case,
the application can disable the locking and transaction systems, and will not incur the
overhead of locking or logging. If an application needs to support multiple concurrent users,
but does not need transactions, it can turn on locking without transactions. Applications that
need concurrent, transaction-protected database access can enable all of the subsystems.

In all these cases, the application uses the same function-call API to fetch and update records.

Design

Berkeley DB was designed to provide industrial-strength database services to application
developers, without requiring them to become database experts. It is a classic C-library
style toolkit, providing a broad base of functionality to application writers. Berkeley DB was
designed by programmers, for programmers: its modular design surfaces simple, orthogonal
interfaces to core services, and it provides mechanism (for example, good thread support)
without imposing policy (for example, the use of threads is not required). Just as importantly,
Berkeley DB allows developers to balance performance against the need for crash recovery
and concurrent use. An application can use the storage structure that provides the fastest
access to its data and can request only the degree of logging and locking that it needs.

Because of the tool-based approach and separate interfaces for each Berkeley DB subsystem,
you can support a complete transaction environment for other system operations. Berkeley DB
even allows you to wrap transactions around the standard UNIX file read and write operations!
Further, Berkeley DB was designed to interact correctly with the native system's toolset, a
feature no other database package offers. For example, on UNIX systems Berkeley DB supports
hot backups (database backups while the database is in use), using standard UNIX system
utilities, for example, dump, tar, cpio, pax or even cp. On other systems which do not support
filesystems with read isolation, Berkeley DB provides a tool for safely copying files.

Finally, because scripting language interfaces are available for Berkeley DB (notably Tcl and
Perl), application writers can build incredibly powerful database engines with little effort. You
can build transaction-protected database applications using your favorite scripting languages,
an increasingly important feature in a world using CGI scripts to deliver HTML.

What Berkeley DB is not

In contrast to most other database systems, Berkeley DB provides relatively simple data access
services.

Records in Berkeley DB are (key, value) pairs. Berkeley DB supports only a few logical
operations on records. They are:

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 9

• Insert a record in a table.

• Delete a record from a table.

• Find a record in a table by looking up its key.

• Update a record that has already been found.

Notice that Berkeley DB never operates on the value part of a record. Values are simply
payload, to be stored with keys and reliably delivered back to the application on demand.

Both keys and values can be arbitrary byte strings, either fixed-length or variable-length.
As a result, programmers can put native programming language data structures into the
database without converting them to a foreign record format first. Storage and retrieval are
very simple, but the application needs to know what the structure of a key and a value is in
advance. It cannot ask Berkeley DB, because Berkeley DB doesn't know.

This is an important feature of Berkeley DB, and one worth considering more carefully. On the
one hand, Berkeley DB cannot provide the programmer with any information on the contents
or structure of the values that it stores. The application must understand the keys and values
that it uses. On the other hand, there is literally no limit to the data types that can be store
in a Berkeley DB database. The application never needs to convert its own program data into
the data types that Berkeley DB supports. Berkeley DB is able to operate on any data type the
application uses, no matter how complex.

Because both keys and values can be up to four gigabytes in length, a single record can store
images, audio streams, or other large data values. Large values are not treated specially in
Berkeley DB. They are simply broken into page-sized chunks, and reassembled on demand
when the application needs them. Unlike some other database systems, Berkeley DB offers no
special support for binary large objects (BLOBs).

Berkeley DB is not a relational database

While Berkeley DB does provide a set of optional SQL APIs, usually all access to data stored in
Berkeley DB is performed using the traditional Berkeley DB APIs.

The traditional Berkeley DB APIs are the way that most Berkeley DB users will use Berkeley
DB. Although the interfaces are fairly simple, they are non-standard in that they do not
support SQL statements.

That said, Berkeley DB does provide a set of SQL APIs that behave nearly identically to
SQLite. By using these APIs you can interface with Berkeley DB using SQL statements. For Unix
systems, these APIs are not available by default, while for Windows systems they are available
by default. For more information, see the Berkeley DB Getting Started with the SQL APIs
guide.

Be aware that SQL support is a double-edged sword. One big advantage of relational databases
is that they allow users to write simple declarative queries in a high-level language. The
database system knows everything about the data and can carry out the command. This means
that it's simple to search for data in new ways, and to ask new questions of the database. No
programming is required.

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 10

On the other hand, if a programmer can predict in advance how an application will access
data, then writing a low-level program to get and store records can be faster. It eliminates the
overhead of query parsing, optimization, and execution. The programmer must understand
the data representation, and must write the code to do the work, but once that's done, the
application can be very fast.

Unless Berkeley DB is used with its SQL APIs, it has no notion of schema and data types in
the way that relational systems do. Schema is the structure of records in tables, and the
relationships among the tables in the database. For example, in a relational system the
programmer can create a record from a fixed menu of data types. Because the record types
are declared to the system, the relational engine can reach inside records and examine
individual values in them. In addition, programmers can use SQL to declare relationships
among tables, and to create indices on tables. Relational engines usually maintain these
relationships and indices automatically.

In Berkeley DB, the key and value in a record are opaque to Berkeley DB. They may have
a rich internal structure, but the library is unaware of it. As a result, Berkeley DB cannot
decompose the value part of a record into its constituent parts, and cannot use those parts
to find values of interest. Only the application, which knows the data structure, can do that.
Berkeley DB does support indices on tables and automatically maintain those indices as their
associated tables are modified.

Berkeley DB is not a relational system. Relational database systems are semantically rich
and offer high-level database access. Compared to such systems, Berkeley DB is a high-
performance, transactional library for record storage. It is possible to build a relational
system on top of Berkeley DB (indeed, this is what the Berkeley DB SQL API really is). In
fact, the popular MySQL relational system uses Berkeley DB for transaction-protected table
management, and takes care of all the SQL parsing and execution. It uses Berkeley DB for the
storage level, and provides the semantics and access tools.

Berkeley DB is not an object-oriented database

Object-oriented databases are designed for very tight integration with object-oriented
programming languages. Berkeley DB is written entirely in the C programming language.
It includes language bindings for C++, Java, and other languages, but the library has no
information about the objects created in any object-oriented application. Berkeley DB never
makes method calls on any application object. It has no idea what methods are defined on
user objects, and cannot see the public or private members of any instance. The key and
value part of all records are opaque to Berkeley DB.

Berkeley DB cannot automatically page in objects as they are accessed, as some object-
oriented databases do. The object-oriented application programmer must decide what records
are required, and must fetch them by making method calls on Berkeley DB objects.

Berkeley DB is not a network database

Berkeley DB does not support network-style navigation among records, as network databases
do. Records in a Berkeley DB table may move around over time, as new records are added to
the table and old ones are deleted. Berkeley DB is able to do fast searches for records based
on keys, but there is no way to create a persistent physical pointer to a record. Applications
can only refer to records by key, not by address.

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 11

Berkeley DB is not a database server

Berkeley DB is not a standalone database server. It is a library, and runs in the address space
of the application that uses it. If more than one application links in Berkeley DB, then all
can use the same database at the same time; the library handles coordination among the
applications, and guarantees that they do not interfere with one another.

It is possible to build a server application that uses Berkeley DB for data management. For
example, many commercial and open source Lightweight Directory Access Protocol (LDAP)
servers use Berkeley DB for record storage. LDAP clients connect to these servers over the
network. Individual servers make calls through the Berkeley DB API to find records and return
them to clients. On its own, however, Berkeley DB is not a server.

Do you need Berkeley DB?

Berkeley DB is an ideal database system for applications that need fast, scalable, and reliable
embedded database management. For applications that need different services, however, it
can be a poor choice.

First, do you need the ability to access your data in ways you cannot predict in advance? If
your users want to be able to enter SQL queries to perform complicated searches that you
cannot program into your application to begin with, then you should consider a relational
engine instead. Berkeley DB requires a programmer to write code in order to run a new kind of
query.

On the other hand, if you can predict your data access patterns up front — and in particular
if you need fairly simple key/value lookups — then Berkeley DB is a good choice. The queries
can be coded up once, and will then run very quickly because there is no SQL to parse and
execute.

Second, are there political arguments for or against a standalone relational server? If
you're building an application for your own use and have a relational system installed with
administrative support already, it may be simpler to use that than to build and learn Berkeley
DB. On the other hand, if you'll be shipping many copies of your application to customers, and
don't want your customers to have to buy, install, and manage a separate database system,
then Berkeley DB may be a better choice.

Third, are there any technical advantages to an embedded database? If you're building an
application that will run unattended for long periods of time, or for end users who are not
sophisticated administrators, then a separate server process may be too big a burden. It will
require separate installation and management, and if it creates new ways for the application
to fail, or new complexities to master in the field, then Berkeley DB may be a better choice.

The fundamental question is, how closely do your requirements match the Berkeley DB
design? Berkeley DB was conceived and built to provide fast, reliable, transaction-protected
record storage. The library itself was never intended to provide interactive query support,
graphical reporting tools, or similar services that some other database systems provide. We
have tried always to err on the side of minimalism and simplicity. By keeping the library small
and simple, we create fewer opportunities for bugs to creep in, and we guarantee that the

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 12

database system stays fast, because there is very little code to execute. If your application
needs that set of features, then Berkeley DB is almost certainly the best choice for you.

What other services does Berkeley DB provide?

Berkeley DB also provides core database services to developers. These services include:

Page cache management:
The page cache provides fast access to a cache of database pages, handling the
I/O associated with the cache to ensure that dirty pages are written back to the
file system and that new pages are allocated on demand. Applications may use the
Berkeley DB shared memory buffer manager to serve their own files and pages.

Transactions and logging:
The transaction and logging systems provide recoverability and atomicity for multiple
database operations. The transaction system uses two-phase locking and write-ahead
logging protocols to ensure that database operations may be undone or redone in the
case of application or system failure. Applications may use Berkeley DB transaction
and logging subsystems to protect their own data structures and operations from
application or system failure.

Locking:
The locking system provides multiple reader or single writer access to objects. The
Berkeley DB access methods use the locking system to acquire the right to read or
write database pages. Applications may use the Berkeley DB locking subsystem to
support their own locking needs.

By combining the page cache, transaction, locking, and logging systems, Berkeley DB provides
the same services found in much larger, more complex and more expensive database systems.
Berkeley DB supports multiple simultaneous readers and writers and guarantees that all
changes are recoverable, even in the case of a catastrophic hardware failure during a
database update.

Developers may select some or all of the core database services for any access method or
database. Therefore, it is possible to choose the appropriate storage structure and the right
degrees of concurrency and recoverability for any application. In addition, some of the
subsystems (for example, the Locking subsystem) can be called separately from the Berkeley
DB access method. As a result, developers can integrate non-database objects into their
transactional applications using Berkeley DB.

What does the Berkeley DB distribution include?

The Berkeley DB distribution includes complete source code for the Berkeley DB library,
including all three Berkeley DB products and their supporting utilities, as well as complete
documentation in HTML format. The distribution includes prebuilt binaries and libraries for a
small number of platforms. The distribution does not include hard-copy documentation.

Where does Berkeley DB run?

Berkeley DB requires only underlying IEEE/ANSI Std 1003.1 (POSIX) system calls and can be
ported easily to new architectures by adding stub routines to connect the native system

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 13

interfaces to the Berkeley DB POSIX-style system calls. See the Berkeley DB Porting Guide for
more information.

Berkeley DB will autoconfigure and run on almost any modern UNIX, POSIX or Linux systems,
and on most historical UNIX platforms. Berkeley DB will autoconfigure and run on almost any
GNU gcc toolchain-based embedded platform, including Cygwin, OpenLinux and others. See
the Berkeley DB Installation and Build Guide for more information.

The Berkeley DB distribution includes support for QNX Neutrino. See the Berkeley DB
Installation and Build Guide for more information.

The Berkeley DB distribution includes support for VxWorks. See the Berkeley DB Installation
and Build Guide for more information.

The Berkeley DB distribution includes support for Windows/NT, Windows/2000 and Windows/
XP, via the Microsoft Visual C++ 6.0 and .NET development environments. See the Berkeley DB
Installation and Build Guide for more information.

The Berkeley DB products

Oracle provides four Berkeley DB products, each differing by the level of database support
that they offer.

• Berkeley DB Data Store

• Berkeley DB Concurrent Data Store

• Berkeley DB Transactional Data Store

• Berkeley DB High Availability

Each product provides additional functionality to the product that precedes it in the list.
As a result, you can download Berkeley DB and build an application that provides read-only
database access for a single-user, and later add support for more complex database access
patterns for multiple users.

The single Open Source distribution of Berkeley DB from Oracle includes the four products and
building the distribution automatically builds all four products. However, you must use the
same Berkeley DB product throughout an application or group of applications.

To redistribute Berkeley DB software, you must have a license for the Berkeley DB product
you use. For further details, refer to the licensing informaion at: http://www.oracle.com/
technetwork/database/berkeleydb/downloads/index.html

A comparison of the four Berkeley DB product features is provided in the following table.

 Berkeley DB
Data Store

Berkeley DB
Concurrent
Data Store

Berkeley DB
Transactional

Data Store

Berkeley DB
High Availability

What is this
product?

Provides indexed,
single-reader/

Adds simple
locking with

Adds complete
ACID transaction

Adds single-
master data

http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html
http://www.oracle.com/technetwork/database/berkeleydb/downloads/index.html

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 14

 Berkeley DB
Data Store

Berkeley DB
Concurrent
Data Store

Berkeley DB
Transactional

Data Store

Berkeley DB
High Availability

single-writer
embedded data
storage

multiple-reader/
single-writer
capabilities

support, as well
as recovery

replication across
multiple physical
machines

Ensures recovery
operation

No No Yes Yes

Provides Locking
feature

No Yes Yes Yes

Provides
concurrent read-
write access

No Yes Yes Yes

Provides
transactional
support

No No Yes Yes

Supports SQL
access

No No Yes No

Provides
replication
support

No No No Yes

Berkeley DB Data Store

The Berkeley DB Data Store product is an embeddable, high-performance data store. This
product supports multiple concurrent threads of control, including multiple processes and
multiple threads of control within a process. However, Berkeley DB Data Store does not
support locking, and hence does not guarantee correct behavior if more than one thread of
control is updating the database at a time. The Berkeley DB Data Store is intended for use in
read-only applications or applications which can guarantee no more than one thread of control
updates the database at a time.

Berkeley DB Concurrent Data Store

The Berkeley DB Concurrent Data Store product adds multiple-reader, single writer capabilities
to the Berkeley DB Data Store product. This product provides built-in concurrency and locking
feature. Berkeley DB Concurrent Data Store is intended for applications that need support for
concurrent updates to a database that is largely used for reading.

Berkeley DB Transactional Data Store

The Berkeley DB Transactional Data Store product adds support for transactions and database
recovery. Berkeley DB Transactional Data Store is intended for applications that require
industrial-strength database services, including excellent performance under high-concurrency
workloads of read and write operations, the ability to commit or roll back multiple changes to
the database at a single instant, and the guarantee that in the event of a catastrophic system
or hardware failure, all committed database changes are preserved.

Library Version 11.2.5.3 Introduction

9/9/2013 DB Reference Guide Page 15

Berkeley DB High Availability

The Berkeley DB High Availability product adds support for data replication. A single master
system handles all updates, and distributes these updates to multiple replicas. The number of
replicas depends on the application requirements. All replicas can handle read requests during
normal processing. If the master system fails for any reason, one of the replicas takes over as
the new master system, and distributes updates to the remaining replicas.

9/9/2013 DB Reference Guide Page 16

Chapter 2. Access Method Configuration

What are the available access methods?

Berkeley DB currently offers five access methods: Btree, Hash, Heap, Queue and Recno.

Btree

The Btree access method is an implementation of a sorted, balanced tree structure. Searches,
insertions, and deletions in the tree all take O(height) time, where height is the number
of levels in the Btree from the root to the leaf pages. The upper bound on the height is log
base_b N, where base_b is the smallest number of keys on a page, and N is the total number
of keys stored.

Inserting unordered data into a Btree can result in pages that are only half-full. DB makes
ordered (or inverse ordered) insertion the best case, resulting in nearly full-page space
utilization.

Hash

The Hash access method data structure is an implementation of Extended Linear Hashing,
as described in "Linear Hashing: A New Tool for File and Table Addressing", Witold Litwin,
Proceedings of the 6th International Conference on Very Large Databases (VLDB), 1980.

Heap

The Heap access method stores records in a heap file. Records are referenced solely by
the page and offset at which they are written. Because records are written in a heap file,
compaction is not necessary when deleting records, which allows for more efficient use
of space than if Btree is in use. The Heap access method is intended for platforms with
constrained disk space, especially if those systems are performing a great many record
creation and deletions.

Queue

The Queue access method stores fixed-length records with logical record numbers as keys. It
is designed for fast inserts at the tail and has a special cursor consume operation that deletes
and returns a record from the head of the queue. The Queue access method uses record level
locking.

Recno

The Recno access method stores both fixed and variable-length records with logical record
numbers as keys, optionally backed by a flat text (byte stream) file.

Selecting an access method

The Berkeley DB access method implementation unavoidably interacts with each application's
data set, locking requirements and data access patterns. For this reason, one access

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 17

method may result in dramatically better performance for an application than another one.
Applications whose data could be stored using more than one access method may want to
benchmark their performance using the different candidates.

One of the strengths of Berkeley DB is that it provides multiple access methods with nearly
identical interfaces to the different access methods. This means that it is simple to modify
an application to use a different access method. Applications can easily benchmark the
different Berkeley DB access methods against each other for their particular data set and
access pattern.

Most applications choose between using the Btree or Heap access methods, between Btree or
Hash, or between Queue and Recno, because each of these pairs offer similar functionality.

Btree or Heap?

Most applications use Btree because it performs well for most general-purpose database
workloads. But there are circumstances where Heap is the better choice. This section
describes the differences between the two access methods so that you can better understand
when Heap might be the superior choice for your application.

Before continuing, it is helpful to have a high level understanding of the operating differences
between Btree and Heap.

Disk Space Usage

The Heap access method was developed for use in systems with constrained disk space (such
as an embedded system). Because of the way it reuses page space, for some workloads it can
be much better than Btree on disk space usage because it will not grow the on-disk database
file as fast as Btree. Of course, this assumes that your application is characterized by a
roughly equal number of record creations and deletions.

Also, Heap can actively control the space used by the database with the use of the DB-
>set_heapsize() method. When the limit specified by that method is reached, no additional
pages will be allocated and existing pages will be aggressively searched for free space. Also
records in the heap can be split to fill space on two or more pages.

Record Access

Btree and Heap are fundamentally different because of the way that you access records in
them. In Btree, you access a record by using the record's key. This lookup occurs fairly quickly
because Btree places records in the database according to a pre-defined sorting order. Your
application is responsible for constructing the key, which means that it is relatively easy for
your application to know what key is in use by any given record.

Conversely, Heap accesses records based on their offset location within the database. You
retrieve a record in a Heap database using the record's Record ID (RID), which is created
when the record is added to the database. The RID is created for you; you cannot specify this
yourself. Because the RID is created for you, your application does not have control over the
key value. For this reason, retrieval operations for a Heap database are usually performed
using secondary databases. You can then use this secondary index to retrieve records stored in
your Heap database.

../api_reference/C/dbset_heapsize.html
../api_reference/C/dbset_heapsize.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 18

Note that an application's data access requirements grow complex, Btree databases also
frequently require secondary databases. So at a certain level of complexity you will be using
secondary databases regardless of the access method that you choose.

Secondary databases are described in Secondary indexes (page 52).

Record Creation/Deletion

When Btree creates a new record, it places the record on the database page that is
appropriate for the sorting order in use by the database. If Btree can not find a page to put
the new record on, it locates a page that is in the proper location for the new record, splits it
so that the existing records are divided between the two pages, and then adds the new record
to the appropriate page.

On deletion, Btree simply removes the deleted record from whatever page it is stored on. This
leaves some amount of unused space ("holes") on the page. Only new records that sort to this
page can fill that space. However, once a page is completely empty, it can be reused to hold
records with a different sort value.

In order to reclaim unused disk space, you must run the DB->compact() method, which
attempts to fill holes in existing pages by moving records from other pages. If it is successful
in moving enough records, it might be left with entire pages that have no data on them. In
this event, the unused pages might be removed from the database (depending on the flags
that you provide to DB->compact()), which causes the database file to be reduced in size.

Both tree searching and page compaction are relatively expensive operations. Heap avoids
these operations, and so is able to perform better under some circumstances.

Heap does not care about record order. When a record is created in a Heap database, it is
placed on the first page that has space to store the record. No sorting is involved, and so the
overhead from record sorting is removed.

On deletion, both Btree and Heap free space within a page when a record is deleted.
However, unlike Btree, Heap has no compaction operation, nor does it have to wait for a
record with the proper sort order to fill a hole on a page. Instead, Heap simply reuses empty
page space whenever any record is added that will fit into the space.

Cursor Operations

When considering Heap, be aware that this access method does not support the full range of
cursor operations that Btree does.

• On sequential cursor scans of the database, the retrieval order of the records is not
predictable for Heap because the records are not sorted. Btree, of course, sorts its records
so the retrieval order is predictable.

• When using a Heap database, you cannot create new records using a cursor. Also, this
means that Heap does not support the DBC->put() DB_AFTER and DB_BEFORE flags. You can,
however, update existing records using a cursor.

• For concurrent applications, iterating through the records in a Heap database is not
recommended due to performance considerations. This is because there is a good chance
that there are a lot of empty pages in the database if you have a concurrent application.

../api_reference/C/dbcompact.html
../api_reference/C/dbcompact.html
../api_reference/C/dbcput.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 19

For a Heap database, entire regions are locked when a lock is acquired for a database page.
If there is then contention for that region, and a new database page needs to be added,
then Berkeley DB simply creates a whole new region. The locked region is then padded with
empty pages in order to reach the new region.

The result is that if the last used page in a region is 10, and a new region is created at page
100, then there are empty pages from 11 to 99. If you are iterating with a cursor, then all
those empty pages must be examined by the cursor before it can reach the data at page
100.

Which Access Method Should You Use?

Ultimately, you can only determine which access method is superior for your application
through performance testing using both access methods. To be effective, this performance
testing must use a production-equivalent workload.

That said, there are a few times when you absolutely must use Btree:

• If you want to use bulk put and get operations.

• If having your database clustered on sort order is important to you.

• If you want to be able to create records using cursors.

• If you have multiple threads/processes simultaneously creating new records, and you want
to be able to efficiently iterate over those records using a cursor.

But beyond those limitations, there are some application characteristics that should cause you
to suspect that Heap will work better for your application than Btree. They are:

• Your application will run in an environment with constrained resources and you want to set
a hard limit on the size of the database file.

• You want to limit the disk space growth of your database file, and your application performs
a roughly equivalent number of record creations and deletions.

• Inserts into a Btree require sorting the new record onto its proper page. This operation can
require multiple page reads. A Heap database can simply reuse whatever empty page space
it can find in the cache. Insert-intensive applications will typically find that Heap is much
more efficient than Btree, especially as the size of the database increases.

Hash or Btree?

The Hash and Btree access methods should be used when logical record numbers are not the
primary key used for data access. (If logical record numbers are a secondary key used for data
access, the Btree access method is a possible choice, as it supports simultaneous access by a
key and a record number.)

Keys in Btrees are stored in sorted order and the relationship between them is defined by that
sort order. For this reason, the Btree access method should be used when there is any locality

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 20

of reference among keys. Locality of reference means that accessing one particular key in the
Btree implies that the application is more likely to access keys near to the key being accessed,
where "near" is defined by the sort order. For example, if keys are timestamps, and it is likely
that a request for an 8AM timestamp will be followed by a request for a 9AM timestamp, the
Btree access method is generally the right choice. Or, for example, if the keys are names,
and the application will want to review all entries with the same last name, the Btree access
method is again a good choice.

There is little difference in performance between the Hash and Btree access methods on small
data sets, where all, or most of, the data set fits into the cache. However, when a data set
is large enough that significant numbers of data pages no longer fit into the cache, then the
Btree locality of reference described previously becomes important for performance reasons.
For example, there is no locality of reference for the Hash access method, and so key "AAAAA"
is as likely to be stored on the same database page with key "ZZZZZ" as with key "AAAAB". In
the Btree access method, because items are sorted, key "AAAAA" is far more likely to be near
key "AAAAB" than key "ZZZZZ". So, if the application exhibits locality of reference in its data
requests, then the Btree page read into the cache to satisfy a request for key "AAAAA" is much
more likely to be useful to satisfy subsequent requests from the application than the Hash
page read into the cache to satisfy the same request. This means that for applications with
locality of reference, the cache is generally much more effective for the Btree access method
than the Hash access method, and the Btree access method will make many fewer I/O calls.

However, when a data set becomes even larger, the Hash access method can outperform the
Btree access method. The reason for this is that Btrees contain more metadata pages than
Hash databases. The data set can grow so large that metadata pages begin to dominate the
cache for the Btree access method. If this happens, the Btree can be forced to do an I/O for
each data request because the probability that any particular data page is already in the
cache becomes quite small. Because the Hash access method has fewer metadata pages, its
cache stays "hotter" longer in the presence of large data sets. In addition, once the data set
is so large that both the Btree and Hash access methods are almost certainly doing an I/O for
each random data request, the fact that Hash does not have to walk several internal pages as
part of a key search becomes a performance advantage for the Hash access method as well.

Application data access patterns strongly affect all of these behaviors, for example, accessing
the data by walking a cursor through the database will greatly mitigate the large data set
behavior describe above because each I/O into the cache will satisfy a fairly large number of
subsequent data requests.

In the absence of information on application data and data access patterns, for small data sets
either the Btree or Hash access methods will suffice. For data sets larger than the cache, we
normally recommend using the Btree access method. If you have truly large data, then the
Hash access method may be a better choice. The db_stat utility is a useful tool for monitoring
how well your cache is performing.

Queue or Recno?

The Queue or Recno access methods should be used when logical record numbers are the
primary key used for data access. The advantage of the Queue access method is that it
performs record level locking and for this reason supports significantly higher levels of
concurrency than the Recno access method. The advantage of the Recno access method is

../api_reference/C/db_stat.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 21

that it supports a number of additional features beyond those supported by the Queue access
method, such as variable-length records and support for backing flat-text files.

Logical record numbers can be mutable or fixed: mutable, where logical record numbers can
change as records are deleted or inserted, and fixed, where record numbers never change
regardless of the database operation. It is possible to store and retrieve records based on
logical record numbers in the Btree access method. However, those record numbers are always
mutable, and as records are deleted or inserted, the logical record number for other records
in the database will change. The Queue access method always runs in fixed mode, and logical
record numbers never change regardless of the database operation. The Recno access method
can be configured to run in either mutable or fixed mode.

In addition, the Recno access method provides support for databases whose permanent
storage is a flat text file and the database is used as a fast, temporary storage area while the
data is being read or modified.

Logical record numbers

The Berkeley DB Btree, Queue and Recno access methods can operate on logical record
numbers. Record numbers are 1-based, not 0-based, that is, the first record in a database is
record number 1.

In all cases for the Queue and Recno access methods, and when calling the Btree access
method using the DB->get() and DBC->get() methods with the DB_SET_RECNO flag specified,
the data field of the key DBT must be a pointer to a memory location of type db_recno_t,
as typedef'd in the standard Berkeley DB include file. The size field of the key DBT should be
the size of that type (for example, "sizeof(db_recno_t)" in the C programming language). The
db_recno_t type is a 32-bit unsigned type, which limits the number of logical records in a
Queue or Recno database, and the maximum logical record which may be directly retrieved
from a Btree database, to 4,294,967,295.

Record numbers in Recno databases can be configured to run in either mutable or fixed
mode: mutable, where logical record numbers change as records are deleted or inserted,
and fixed, where record numbers never change regardless of the database operation. Record
numbers in Queue databases are always fixed, and never change regardless of the database
operation. Record numbers in Btree databases are always mutable, and as records are deleted
or inserted, the logical record number for other records in the database can change. See
Logically renumbering records (page 40) for more information.

When appending new data items into Queue databases, record numbers wrap around. When
the tail of the queue reaches the maximum record number, the next record appended will
be given record number 1. If the head of the queue ever catches up to the tail of the queue,
Berkeley DB will return the system error EFBIG. Record numbers do not wrap around when
appending new data items into Recno databases.

Configuring Btree databases to support record numbers can severely limit the throughput of
applications with multiple concurrent threads writing the database, because locations used to
store record counts often become hot spots that many different threads all need to update. In
the case of a Btree supporting duplicate data items, the logical record number refers to a key
and all of its data items, as duplicate data items are not individually numbered.

../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbget.html#dbget_DB_SET_RECNO
../api_reference/C/dbt.html
../api_reference/C/dbt.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 22

The following is an example function that reads records from standard input and stores them
into a Recno database. The function then uses a cursor to step through the database and
display the stored records.

int
recno_build(DB *dbp)
{
 DBC *dbcp;
 DBT key, data;
 db_recno_t recno;
 u_int32_t len;
 int ret;
 char buf[1024];

 /* Insert records into the database. */
 memset(&key, 0, sizeof(DBT));
 memset(&data, 0, sizeof(DBT));
 for (recno = 1;; ++recno) {
 printf("record #%lu> ", (u_long)recno);
 fflush(stdout);
 if (fgets(buf, sizeof(buf), stdin) == NULL)
 break;
 if ((len = strlen(buf)) <= 1)
 continue;

 key.data = &recno;
 key.size = sizeof(recno);
 data.data = buf;
 data.size = len - 1;

 switch (ret = dbp->put(dbp, NULL, &key, &data, 0)) {
 case 0:
 break;
 default:
 dbp->err(dbp, ret, "DB->put");
 break;
 }
 }
 printf("\n");

 /* Acquire a cursor for the database. */
 if ((ret = dbp->cursor(dbp, NULL, &dbcp, 0)) != 0) {
 dbp->err(dbp, ret, "DB->cursor");
 return (1);
 }

 /* Re-initialize the key/data pair. */
 memset(&key, 0, sizeof(key));
 memset(&data, 0, sizeof(data));

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 23

 /* Walk through the database and print out the key/data pairs. */
 while ((ret = dbcp->get(dbcp, &key, &data, DB_NEXT)) == 0)
 printf("%lu : %.*s\n",
 *(u_long *)key.data, (int)data.size,
 (char *)data.data);
 if (ret != DB_NOTFOUND)
 dbp->err(dbp, ret, "DBcursor->get");

 /* Close the cursor. */
 if ((ret = dbcp->close(dbcp)) != 0) {
 dbp->err(dbp, ret, "DBcursor->close");
 return (1);
 }
 return (0);
}

General access method configuration

There are a series of configuration tasks which are common to all access methods. They are
described in the following sections.

Selecting a page size

The size of the pages used in the underlying database can be specified by calling the DB-
>set_pagesize() method. The minimum page size is 512 bytes and the maximum page size is
64K bytes, and must be a power of two. If no page size is specified by the application, a page
size is selected based on the underlying filesystem I/O block size. (A page size selected in this
way has a lower limit of 512 bytes and an upper limit of 16K bytes.)

There are several issues to consider when selecting a pagesize: overflow record sizes, locking,
I/O efficiency, and recoverability.

First, the page size implicitly sets the size of an overflow record. Overflow records are key
or data items that are too large to fit on a normal database page because of their size, and
are therefore stored in overflow pages. Overflow pages are pages that exist outside of the
normal database structure. For this reason, there is often a significant performance penalty
associated with retrieving or modifying overflow records. Selecting a page size that is too
small, and which forces the creation of large numbers of overflow pages, can seriously impact
the performance of an application.

Second, in the Btree, Hash and Recno access methods, the finest-grained lock that Berkeley
DB acquires is for a page. (The Queue access method generally acquires record-level locks
rather than page-level locks.) Selecting a page size that is too large, and which causes threads
or processes to wait because other threads of control are accessing or modifying records on
the same page, can impact the performance of your application.

Third, the page size specifies the granularity of I/O from the database to the operating
system. Berkeley DB will give a page-sized unit of bytes to the operating system to be
scheduled for reading/writing from/to the disk. For many operating systems, there is an

../api_reference/C/dbset_pagesize.html
../api_reference/C/dbset_pagesize.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 24

internal block size which is used as the granularity of I/O from the operating system to the
disk. Generally, it will be more efficient for Berkeley DB to write filesystem-sized blocks to
the operating system and for the operating system to write those same blocks to the disk.

Selecting a database page size smaller than the filesystem block size may cause the
operating system to coalesce or otherwise manipulate Berkeley DB pages and can impact the
performance of your application. When the page size is smaller than the filesystem block size
and a page written by Berkeley DB is not found in the operating system's cache, the operating
system may be forced to read a block from the disk, copy the page into the block it read, and
then write out the block to disk, rather than simply writing the page to disk. Additionally,
as the operating system is reading more data into its buffer cache than is strictly necessary
to satisfy each Berkeley DB request for a page, the operating system buffer cache may be
wasting memory.

Alternatively, selecting a page size larger than the filesystem block size may cause the
operating system to read more data than necessary. On some systems, reading filesystem
blocks sequentially may cause the operating system to begin performing read-ahead. If
requesting a single database page implies reading enough filesystem blocks to satisfy the
operating system's criteria for read-ahead, the operating system may do more I/O than is
required.

Fourth, when using the Berkeley DB Transactional Data Store product, the page size may
affect the errors from which your database can recover See Berkeley DB recoverability (page
186) for more information.

Note

The db_tuner utility suggests a page size for btree databases that optimizes cache
efficiency and storage space requirements. This utility works only when given a pre-
populated database. So, it is useful when tuning an existing application and not when
first implementing an application.

Selecting a cache size

The size of the cache used for the underlying database can be specified by calling the DB-
>set_cachesize() method. Choosing a cache size is, unfortunately, an art. Your cache must be
at least large enough for your working set plus some overlap for unexpected situations.

When using the Btree access method, you must have a cache big enough for the minimum
working set for a single access. This will include a root page, one or more internal pages
(depending on the depth of your tree), and a leaf page. If your cache is any smaller than that,
each new page will force out the least-recently-used page, and Berkeley DB will re-read the
root page of the tree anew on each database request.

If your keys are of moderate size (a few tens of bytes) and your pages are on the order of 4KB
to 8KB, most Btree applications will be only three levels. For example, using 20 byte keys with
20 bytes of data associated with each key, a 8KB page can hold roughly 400 keys (or 200 key/
data pairs), so a fully populated three-level Btree will hold 32 million key/data pairs, and a
tree with only a 50% page-fill factor will still hold 16 million key/data pairs. We rarely expect
trees to exceed five levels, although Berkeley DB will support trees up to 255 levels.

../api_reference/C/db_tuner.html
../api_reference/C/dbset_cachesize.html
../api_reference/C/dbset_cachesize.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 25

The rule-of-thumb is that cache is good, and more cache is better. Generally, applications
benefit from increasing the cache size up to a point, at which the performance will stop
improving as the cache size increases. When this point is reached, one of two things have
happened: either the cache is large enough that the application is almost never having to
retrieve information from disk, or, your application is doing truly random accesses, and
therefore increasing size of the cache doesn't significantly increase the odds of finding the
next requested information in the cache. The latter is fairly rare -- almost all applications
show some form of locality of reference.

That said, it is important not to increase your cache size beyond the capabilities of your
system, as that will result in reduced performance. Under many operating systems, tying down
enough virtual memory will cause your memory and potentially your program to be swapped.
This is especially likely on systems without unified OS buffer caches and virtual memory
spaces, as the buffer cache was allocated at boot time and so cannot be adjusted based on
application requests for large amounts of virtual memory.

For example, even if accesses are truly random within a Btree, your access pattern will favor
internal pages to leaf pages, so your cache should be large enough to hold all internal pages.
In the steady state, this requires at most one I/O per operation to retrieve the appropriate
leaf page.

You can use the db_stat utility to monitor the effectiveness of your cache. The following
output is excerpted from the output of that utility's -m option:

prompt: db_stat -m
131072 Cache size (128K).
4273 Requested pages found in the cache (97%).
134 Requested pages not found in the cache.
18 Pages created in the cache.
116 Pages read into the cache.
93 Pages written from the cache to the backing file.
5 Clean pages forced from the cache.
13 Dirty pages forced from the cache.
0 Dirty buffers written by trickle-sync thread.
130 Current clean buffer count.
4 Current dirty buffer count.

The statistics for this cache say that there have been 4,273 requests of the cache, and only
116 of those requests required an I/O from disk. This means that the cache is working well,
yielding a 97% cache hit rate. The db_stat utility will present these statistics both for the
cache as a whole and for each file within the cache separately.

Selecting a byte order

Database files created by Berkeley DB can be created in either little- or big-endian formats.
The byte order used for the underlying database is specified by calling the DB->set_lorder()
method. If no order is selected, the native format of the machine on which the database is
created will be used.

Berkeley DB databases are architecture independent, and any format database can be used
on a machine with a different native format. In this case, as each page that is read into or

../api_reference/C/db_stat.html
../api_reference/C/db_stat.html
../api_reference/C/dbset_lorder.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 26

written from the cache must be converted to or from the host format, and databases with
non-native formats will incur a performance penalty for the run-time conversion.

It is important to note that the Berkeley DB access methods do no data conversion for
application specified data. Key/data pairs written on a little-endian format architecture
will be returned to the application exactly as they were written when retrieved on a big-
endian format architecture.

Duplicate data items

The Btree and Hash access methods support the creation of multiple data items for a single
key item. By default, multiple data items are not permitted, and each database store
operation will overwrite any previous data item for that key. To configure Berkeley DB for
duplicate data items, call the DB->set_flags() method with the DB_DUP flag. Only one copy
of the key will be stored for each set of duplicate data items. If the Btree access method
comparison routine returns that two keys compare equally, it is undefined which of the two
keys will be stored and returned from future database operations.

By default, Berkeley DB stores duplicates in the order in which they were added, that is,
each new duplicate data item will be stored after any already existing data items. This
default behavior can be overridden by using the DBC->put() method and one of the DB_AFTER,
DB_BEFORE, DB_KEYFIRST or DB_KEYLAST flags. Alternatively, Berkeley DB may be configured
to sort duplicate data items.

When stepping through the database sequentially, duplicate data items will be returned
individually, as a key/data pair, where the key item only changes after the last duplicate data
item has been returned. For this reason, duplicate data items cannot be accessed using the
DB->get() method, as it always returns the first of the duplicate data items. Duplicate data
items should be retrieved using a Berkeley DB cursor interface such as the DBC->get() method.

There is a flag that permits applications to request the following data item only if it is a
duplicate data item of the current entry, see DB_NEXT_DUP for more information. There
is a flag that permits applications to request the following data item only if it is not a
duplicate data item of the current entry, see DB_NEXT_NODUP and DB_PREV_NODUP for more
information.

It is also possible to maintain duplicate records in sorted order. Sorting duplicates will
significantly increase performance when searching them and performing equality joins — both
of which are common operations when using secondary indices. To configure Berkeley DB
to sort duplicate data items, the application must call the DB->set_flags() method with the
DB_DUPSORT flag. Note that DB_DUPSORT automatically turns on the DB_DUP flag for you,
so you do not have to also set that flag; however, it is not an error to also set DB_DUP when
configuring for sorted duplicate records.

When configuring sorted duplicate records, you can also specify a custom comparison function
using the DB->set_dup_compare() method. If the DB_DUPSORT flag is given, but no comparison
routine is specified, then Berkeley DB defaults to the same lexicographical sorting used for
Btree keys, with shorter items collating before longer items.

If the duplicate data items are unsorted, applications may store identical duplicate data
items, or, for those that just like the way it sounds, duplicate duplicates.

../api_reference/C/dbset_flags.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUP
../api_reference/C/dbcput.html
../api_reference/C/dbcput.html#dbcput_DB_AFTER
../api_reference/C/dbcput.html#dbcput_DB_BEFORE
../api_reference/C/dbcput.html#dbcput_DB_KEYFIRST
../api_reference/C/dbcput.html#dbcput_DB_KEYLAST
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html#dbcget_DB_NEXT_DUP
../api_reference/C/dbcget.html#dbcget_DB_NEXT_NODUP
../api_reference/C/dbcget.html#dbcget_DB_PREV_NODUP
../api_reference/C/dbset_flags.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUPSORT
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUPSORT
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUP
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUP
../api_reference/C/dbset_dup_compare.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUPSORT

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 27

It is an error to attempt to store identical duplicate data items when duplicates are being
stored in a sorted order. Any such attempt results in the error message "Duplicate data items
are not supported with sorted data" with a DB_KEYEXIST return code.

Note that you can suppress the error message "Duplicate data items are not supported with
sorted data" by using the DB_NODUPDATA flag. Use of this flag does not change the database's
basic behavior; storing duplicate data items in a database configured for sorted duplicates is
still an error and so you will continue to receive the DB_KEYEXIST return code if you try to do
that.

For further information on how searching and insertion behaves in the presence of duplicates
(sorted or not), see the DB->get() DB->put(), DBC->get() and DBC->put() documentation.

Non-local memory allocation

Berkeley DB allocates memory for returning key/data pairs and statistical information which
becomes the responsibility of the application. There are also interfaces where an application
will allocate memory which becomes the responsibility of Berkeley DB.

On systems in which there may be multiple library versions of the standard allocation
routines (notably Windows NT), transferring memory between the library and the application
will fail because the Berkeley DB library allocates memory from a different heap than the
application uses to free it, or vice versa. To avoid this problem, the DB_ENV->set_alloc()
and DB->set_alloc() methods can be used to give Berkeley DB references to the application's
allocation routines.

Btree access method specific configuration

There are a series of configuration tasks which you can perform when using the Btree access
method. They are described in the following sections.

Btree comparison

The Btree data structure is a sorted, balanced tree structure storing associated key/data
pairs. By default, the sort order is lexicographical, with shorter keys collating before longer
keys. The user can specify the sort order for the Btree by using the DB->set_bt_compare()
method.

Sort routines are passed pointers to keys as arguments. The keys are represented as DBT
structures. The routine must return an integer less than, equal to, or greater than zero if the
first argument is considered to be respectively less than, equal to, or greater than the second
argument. The only fields that the routines may examine in the DBT structures are data and
size fields.

An example routine that might be used to sort integer keys in the database is as follows:

int
compare_int(DB *dbp, const DBT *a, const DBT *b)

{

../api_reference/C/dbput.html#put_DB_NODUPDATA
../api_reference/C/dbget.html
../api_reference/C/dbput.html
../api_reference/C/dbcget.html
../api_reference/C/dbcput.html
../api_reference/C/envset_alloc.html
../api_reference/C/dbset_alloc.html
../api_reference/C/dbset_bt_compare.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 28

 int ai, bi;
 /*
 * Returns:
 * < 0 if a < b
 * = 0 if a = b
 * > 0 if a > b
 */
 memcpy(&ai, a->data, sizeof(int));
 memcpy(&bi, b->data, sizeof(int));
 return (ai - bi);
}

Note that the data must first be copied into memory that is appropriately aligned, as Berkeley
DB does not guarantee any kind of alignment of the underlying data, including for comparison
routines. When writing comparison routines, remember that databases created on machines of
different architectures may have different integer byte orders, for which your code may need
to compensate.

An example routine that might be used to sort keys based on the first five bytes of the key
(ignoring any subsequent bytes) is as follows:

int
compare_dbt(DB *dbp, const DBT *a, const DBT *b)

{
 int len;
 u_char *p1, *p2;

 /*
 * Returns:
 * < 0 if a < b
 * = 0 if a = b
 * > 0 if a > b
 */
 for (p1 = a->data, p2 = b->data, len = 5; len--; ++p1, ++p2)
 if (*p1 != *p2)
 return ((long)*p1 - (long)*p2);
 return (0);
}

All comparison functions must cause the keys in the database to be well-ordered. The most
important implication of being well-ordered is that the key relations must be transitive, that
is, if key A is less than key B, and key B is less than key C, then the comparison routine must
also return that key A is less than key C.

It is reasonable for a comparison function to not examine an entire key in some applications,
which implies partial keys may be specified to the Berkeley DB interfaces. When partial keys
are specified to Berkeley DB, interfaces which retrieve data items based on a user-specified
key (for example, DB->get() and DBC->get() with the DB_SET flag), will modify the user-
specified key by returning the actual key stored in the database.

../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html#dbcget_DB_SET

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 29

Btree prefix comparison

The Berkeley DB Btree implementation maximizes the number of keys that can be stored on
an internal page by storing only as many bytes of each key as are necessary to distinguish it
from adjacent keys. The prefix comparison routine is what determines this minimum number
of bytes (that is, the length of the unique prefix), that must be stored. A prefix comparison
function for the Btree can be specified by calling DB->set_bt_prefix().

The prefix comparison routine must be compatible with the overall comparison function of
the Btree, since what distinguishes any two keys depends entirely on the function used to
compare them. This means that if a prefix comparison routine is specified by the application,
a compatible overall comparison routine must also have been specified.

Prefix comparison routines are passed pointers to keys as arguments. The keys are represented
as DBT structures. The only fields the routines may examine in the DBT structures are data
and size fields.

The prefix comparison function must return the number of bytes necessary to distinguish the
two keys. If the keys are identical (equal and equal in length), the length should be returned.
If the keys are equal up to the smaller of the two lengths, then the length of the smaller key
plus 1 should be returned.

An example prefix comparison routine follows:

size_t
compare_prefix(DB *dbp, const DBT *a, const DBT *b)

{
 size_t cnt, len;
 u_int8_t *p1, *p2;

 cnt = 1;
 len = a->size > b->size ? b->size : a->size;
 for (p1 =
 a->data, p2 = b->data; len--; ++p1, ++p2, ++cnt)
 if (*p1 != *p2)
 return (cnt);
 /*
 * They match up to the smaller of the two sizes.
 * Collate the longer after the shorter.
 */
 if (a->size < b->size)
 return (a->size + 1);
 if (b->size < a->size)
 return (b->size + 1);
 return (b->size);
}

The usefulness of this functionality is data-dependent, but in some data sets can produce
significantly reduced tree sizes and faster search times.

../api_reference/C/dbset_bt_prefix.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 30

Minimum keys per page

The number of keys stored on each page affects the size of a Btree and how it is maintained.
Therefore, it also affects the retrieval and search performance of the tree. For each Btree,
Berkeley DB computes a maximum key and data size. This size is a function of the page size
and the fact that at least two key/data pairs must fit on any Btree page. Whenever key or
data items exceed the calculated size, they are stored on overflow pages instead of in the
standard Btree leaf pages.

Applications may use the DB->set_bt_minkey() method to change the minimum number of keys
that must fit on a Btree page from two to another value. Altering this value in turn alters the
on-page maximum size, and can be used to force key and data items which would normally be
stored in the Btree leaf pages onto overflow pages.

Some data sets can benefit from this tuning. For example, consider an application using
large page sizes, with a data set almost entirely consisting of small key and data items, but
with a few large items. By setting the minimum number of keys that must fit on a page, the
application can force the outsized items to be stored on overflow pages. That in turn can
potentially keep the tree more compact, that is, with fewer internal levels to traverse during
searches.

The following calculation is similar to the one performed by the Btree implementation. (The
minimum_keys value is multiplied by 2 because each key/data pair requires 2 slots on a Btree
page.)

maximum_size = page_size / (minimum_keys * 2)

Using this calculation, if the page size is 8KB and the default minimum_keys value of 2 is
used, then any key or data items larger than 2KB will be forced to an overflow page. If an
application were to specify a minimum_key value of 100, then any key or data items larger
than roughly 40 bytes would be forced to overflow pages.

It is important to remember that accesses to overflow pages do not perform as well as
accesses to the standard Btree leaf pages, and so setting the value incorrectly can result in
overusing overflow pages and decreasing the application's overall performance.

Retrieving Btree records by logical record number

The Btree access method optionally supports retrieval by logical record numbers. To configure
a Btree to support record numbers, call the DB->set_flags() method with the DB_RECNUM flag.

Configuring a Btree for record numbers should not be done lightly. While often useful, it may
significantly slow down the speed at which items can be stored into the database, and can
severely impact application throughput. Generally it should be avoided in trees with a need
for high write concurrency.

To retrieve by record number, use the DB_SET_RECNO flag to the DB->get() and DBC->get()
methods. The following is an example of a routine that displays the data item for a Btree
database created with the DB_RECNUM option.

../api_reference/C/dbset_bt_minkey.html
../api_reference/C/dbset_flags.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_RECNUM
../api_reference/C/dbget.html#dbget_DB_SET_RECNO
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_RECNUM

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 31

int
rec_display(DB *dbp, db_recno_t recno)

{
 DBT key, data;
 int ret;

 memset(&key, 0, sizeof(key));
 key.data = &recno;
 key.size = sizeof(recno);
 memset(&data, 0, sizeof(data));

 if ((ret = dbp->get(dbp, NULL, &key, &data, DB_SET_RECNO)) != 0)
 return (ret);
 printf("data for %lu: %.*s\n",
 (u_long)recno, (int)data.size, (char *)data.data);
 return (0);
}

To determine a key's record number, use the DB_GET_RECNO flag to the DBC->get() method.
The following is an example of a routine that displays the record number associated with a
specific key.

int
recno_display(DB *dbp, char *keyvalue)

{
 DBC *dbcp;
 DBT key, data;
 db_recno_t recno;
 int ret, t_ret;

 /* Acquire a cursor for the database. */
 if ((ret = dbp->cursor(dbp, NULL, &dbcp, 0)) != 0) {
 dbp->err(dbp, ret, "DB->cursor");
 goto err;
 }

 /* Position the cursor. */
 memset(&key, 0, sizeof(key));
 key.data = keyvalue;
 key.size = strlen(keyvalue);
 memset(&data, 0, sizeof(data));
 if ((ret = dbcp->get(dbcp, &key, &data, DB_SET)) != 0) {
 dbp->err(dbp, ret, "DBC->get(DB_SET): %s", keyvalue);
 goto err;
 }

 /*

../api_reference/C/dbcget.html#dbcget_DB_GET_RECNO
../api_reference/C/dbcget.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 32

 * Request the record number, and store it into appropriately
 * sized and aligned local memory.
 */
 memset(&data, 0, sizeof(data));
 data.data = &recno;
 data.ulen = sizeof(recno);
 data.flags = DB_DBT_USERMEM;
 if ((ret = dbcp->get(dbcp, &key, &data, DB_GET_RECNO)) != 0) {
 dbp->err(dbp, ret, "DBC->get(DB_GET_RECNO)");
 goto err;
 }

 printf("key for requested key was %lu\n", (u_long)recno);

err: /* Close the cursor. */
 if ((t_ret = dbcp->close(dbcp)) != 0) {
 if (ret == 0)
 ret = t_ret;
 dbp->err(dbp, ret, "DBC->close");
 }
 return (ret);
}

Compression

The Btree access method supports the automatic compression of key/data pairs upon their
insertion into the database. The key/data pairs are decompressed before they are returned to
the application, making an application's interaction with a compressed database identical to
that for a non-compressed database. To configure Berkeley DB for compression, call the DB-
>set_bt_compress() method and specify custom compression and decompression functions.
If DB->set_bt_compress() is called with NULL compression and decompression functions,
Berkeley DB will use its default compression functions.

Note

Compression only works with the Btree access method, and then only so long as your
database is not configured for unsorted duplicates.

Note

The default compression function is not guaranteed to reduce the size of the on-
disk database in every case. It has been tested and shown to work well with English-
language text. Of course, in order to determine if the default compression algorithm
is beneficial for your application, it is important to test both the final size and the
performance using a representative set of data and access patterns.

The default compression function performs prefix compression on each key added to the
database. This means that, for a key n bytes in length, the first i bytes that match the first
i bytes of the previous key exactly are omitted and only the final n-i bytes are stored in

../api_reference/C/dbset_bt_compress.html
../api_reference/C/dbset_bt_compress.html
../api_reference/C/dbset_bt_compress.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 33

the database. If the bytes of key being stored match the bytes of the previous key exactly,
then the same prefix compression algorithm is applied to the data value being stored. To use
Berkeley DB's default compression behavior, both the default compression and decompression
functions must be used.

For example, to configure your database for default compression:

 DB *dbp = NULL;
 DB_ENV *envp = NULL;
 u_int32_t db_flags;
 const char *file_name = "mydb.db";
 int ret;

...

 /* Skipping environment open to shorten this example */
 /* Initialize the DB handle */
 ret = db_create(&dbp, envp, 0);
 if (ret != 0) {
 fprintf(stderr, "%s\n", db_strerror(ret));
 return (EXIT_FAILURE);
 }

 /* Turn on default data compression */
 dbp->set_bt_compress(dbp, NULL, NULL);

 /* Now open the database */
 db_flags = DB_CREATE; /* Allow database creation */

 ret = dbp->open(dbp, /* Pointer to the database */
 NULL, /* Txn pointer */
 file_name, /* File name */
 NULL, /* Logical db name */
 DB_BTREE, /* Database type (using btree) */
 db_flags, /* Open flags */
 0); /* File mode. Using defaults */
 if (ret != 0) {
 dbp->err(dbp, ret, "Database '%s' open failed",
 file_name);
 return (EXIT_FAILURE);
 }

Custom compression

An application wishing to perform its own compression may supply a compression and
decompression function which will be called instead of Berkeley DB's default functions. The
compression function is passed five DBT structures:

• The key and data immediately preceeding the key/data pair that is being stored.

../api_reference/C/dbt.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 34

• The key and data being stored in the tree.

• The buffer where the compressed data should be written.

The total size of the buffer used to store the compressed data is identified in the DBT's ulen
field. If the compressed data cannot fit in the buffer, the compression function should store
the amount of space needed in DBT's size field and then return DB_BUFFER_SMALL. Berkeley
DB will subsequently re-call the compression function with the required amount of space
allocated in the compression data buffer.

Multiple compressed key/data pairs will likely be written to the same buffer and the
compression function should take steps to ensure it does not overwrite data.

For example, the following code fragments illustrate the use of a custom compression routine.
This code is actually a much simplified example of the default compression provided by
Berkeley DB. It does simple prefix compression on the key part of the data.

 int compress(DB *dbp, const DBT *prevKey, const DBT *prevData,
 const DBT *key, const DBT *data, DBT *dest)
{
 u_int8_t *dest_data_ptr;
 const u_int8_t *key_data, *prevKey_data;
 size_t len, prefix, suffix;

 key_data = (const u_int8_t*)key->data;
 prevKey_data = (const u_int8_t*)prevKey->data;
 len = key->size > prevKey->size ? prevKey->size : key->size;
 for (; len-- && *key_data == *prevKey_data; ++key_data,
 ++prevKey_data)
 continue;

 prefix = (size_t)(key_data - (u_int8_t*)key->data);
 suffix = key->size - prefix;

 /* Check that we have enough space in dest */
 dest->size = (u_int32_t)(__db_compress_count_int(prefix) +
 __db_compress_count_int(suffix) +
 __db_compress_count_int(data->size) + suffix + data->size);
 if (dest->size > dest->ulen)
 return (DB_BUFFER_SMALL);

 /* prefix length */
 dest_data_ptr = (u_int8_t*)dest->data;
 dest_data_ptr += __db_compress_int(dest_data_ptr, prefix);

 /* suffix length */
 dest_data_ptr += __db_compress_int(dest_data_ptr, suffix);

 /* data length */

../api_reference/C/dbt.html
../api_reference/C/dbt.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 35

 dest_data_ptr += __db_compress_int(dest_data_ptr, data->size);

 /* suffix */
 memcpy(dest_data_ptr, key_data, suffix);
 dest_data_ptr += suffix;

 /* data */
 memcpy(dest_data_ptr, data->data, data->size);

 return (0);
}

The corresponding decompression function is likewise passed five DBT structures:

• The key and data DBTs immediately preceding the decompressed key and data.

• The compressed data from the database.

• One to store the decompressed key and another one for the decompressed data.

Because the compression of record X relies upon record X-1, the decompression function
can be called repeatedly to linearally decompress a set of records stored in the compressed
buffer.

The total size of the buffer available to store the decompressed data is identified in
the destination DBT's ulen field. If the decompressed data cannot fit in the buffer, the
decompression function should store the amount of space needed in the destination DBT's
size field and then return DB_BUFFER_SMALL. Berkeley DB will subsequently re-call the
decompression function with the required amount of space allocated in the decompression
data buffer.

For example, the decompression routine that corresponds to the example compression routine
provided above is:

int decompress(DB *dbp, const DBT *prevKey, const DBT *prevData,
 DBT *compressed, DBT *destKey, DBT *destData)
{
 u_int8_t *comp_data, *dest_data;
 u_int32_t prefix, suffix, size;

 /* Unmarshal prefix, suffix and data length */
 comp_data = (u_int8_t*)compressed->data;
 size = __db_decompress_count_int(comp_data);
 if (size > compressed->size)
 return (EINVAL);
 comp_data += __db_decompress_int32(comp_data, &prefix);

 size += __db_decompress_count_int(comp_data);
 if (size > compressed->size)
 return (EINVAL);

../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 36

 comp_data += __db_decompress_int32(comp_data, &suffix);

 size += __db_decompress_count_int(comp_data);
 if (size > compressed->size)
 return (EINVAL);
 comp_data += __db_decompress_int32(comp_data, &destData->size);

 /* Check destination lengths */
 destKey->size = prefix + suffix;
 if (destKey->size > destKey->ulen ||
 destData->size > destData->ulen)
 return (DB_BUFFER_SMALL);

 /* Write the prefix */
 if (prefix > prevKey->size)
 return (EINVAL);
 dest_data = (u_int8_t*)destKey->data;
 memcpy(dest_data, prevKey->data, prefix);
 dest_data += prefix;

 /* Write the suffix */
 size += suffix;
 if (size > compressed->size)
 return (EINVAL);
 memcpy(dest_data, comp_data, suffix);
 comp_data += suffix;

 /* Write the data */
 size += destData->size;
 if (size > compressed->size)
 return (EINVAL);
 memcpy(destData->data, comp_data, destData->size);
 comp_data += destData->size;

 /* Return bytes read */
 compressed->size =
 (u_int32_t)(comp_data - (u_int8_t*)compressed->data);
 return (0);
}

Programmer Notes

As you use compression with your databases, be aware of the following:

• Compression works by placing key/data pairs from a single database page into a single block
of compressed data. This is true whether you use DB's default compression, or you write
your own compression. Because all of key/data data is placed in a single block of memory,
you cannot decompress data unless you have decompressed everything that came before
it in the block. That is, you cannot decompress item n in the data block, unless you also
decompress items 0 through n-1.

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 37

• If you increase the minimum number of key/data pairs placed on a Btree leaf page (using
DB->set_bt_minkey()), you will decrease your seek times on a compressed database.
However, this will also decrease the effectiveness of the compression.

• Compressed databases are fastest if bulk load is used to add data to them. See Retrieving
and updating records in bulk (page 69) for information on using bulk load.

Hash access method specific configuration

There are a series of configuration tasks which you can perform when using the Hash access
method. They are described in the following sections.

Page fill factor

The density, or page fill factor, is an approximation of the number of keys allowed to
accumulate in any one bucket, determining when the hash table grows or shrinks. If you know
the average sizes of the keys and data in your data set, setting the fill factor can enhance
performance. A reasonable rule to use to compute fill factor is:

(pagesize - 32) / (average_key_size + average_data_size + 8)

The desired density within the hash table can be specified by calling the DB->set_h_ffactor()
method. If no density is specified, one will be selected dynamically as pages are filled.

Specifying a database hash

The database hash determines in which bucket a particular key will reside. The goal of
hashing keys is to distribute keys equally across the database pages, therefore it is important
that the hash function work well with the specified keys so that the resulting bucket usage
is relatively uniform. A hash function that does not work well can effectively turn into a
sequential list.

No hash performs equally well on all possible data sets. It is possible that applications
may find that the default hash function performs poorly with a particular set of keys. The
distribution resulting from the hash function can be checked using the db_stat utility. By
comparing the number of hash buckets and the number of keys, one can decide if the entries
are hashing in a well-distributed manner.

The hash function for the hash table can be specified by calling the DB->set_h_hash() method.
If no hash function is specified, a default function will be used. Any application-specified hash
function must take a reference to a DB object, a pointer to a byte string and its length, as
arguments and return an unsigned, 32-bit hash value.

Hash table size

When setting up the hash database, knowing the expected number of elements that will
be stored in the hash table is useful. This value can be used by the Hash access method
implementation to more accurately construct the necessary number of buckets that the
database will eventually require.

The anticipated number of elements in the hash table can be specified by calling the DB-
>set_h_nelem() method. If not specified, or set too low, hash tables will expand gracefully as

../api_reference/C/dbset_bt_minkey.html
../api_reference/C/dbset_h_ffactor.html
../api_reference/C/db_stat.html
../api_reference/C/dbset_h_hash.html
../api_reference/C/db.html
../api_reference/C/dbset_h_nelem.html
../api_reference/C/dbset_h_nelem.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 38

keys are entered, although a slight performance degradation may be noticed. In order for the
estimated number of elements to be a useful value to Berkeley DB, the DB->set_h_ffactor()
method must also be called to set the page fill factor.

Heap access method specific configuration

Configuring the Heap access method is fairly simple. Beyond the general configuration
required for any access method, you can configure how large the database will become, as
well as the amount by which the database grows.

If you provide no configuration relative to the heap size, then the database will grow without
bound. Whether this is desirable depends on how much disk space is available to your
application.

You can limit the size of the on-disk database file by using the DB->set_heapsize() method. If
the size specified on this method is reached, then further attempts to insert/update records
will fail with a DB_HEAP_FULL error message.

Heap databases are organized into regions, and each region is a constant size. The size of the
region in a heap database is limited by the page size, the first page of the region contains
a bitmap describing the available space on the remaining pages in the region. When the
database experiences write contention, a region is added to reduce contention. This means
heap databases can grow in size very quickly. In order to control the amount by which the
database increases, the size of the region is configurable via DB->set_heap_regionsize().

Queue and Recno access method specific configuration

There are a series of configuration tasks which you can perform when using the Queue and
Recno access methods. They are described in the following sections.

Managing record-based databases

When using fixed- or variable-length record-based databases, particularly with flat-text
backing files, there are several items that the user can control. The Recno access method
can be used to store either variable- or fixed-length data items. By default, the Recno access
method stores variable-length data items. The Queue access method can only store fixed-
length data items.

Record Delimiters

When using the Recno access method to store variable-length records, records read from any
backing source file are separated by a specific byte value which marks the end of one record
and the beginning of the next. This delimiting value is ignored except when reading records
from a backing source file, that is, records may be stored into the database that include
the delimiter byte. However, if such records are written out to the backing source file and
the backing source file is subsequently read into a database, the records will be split where
delimiting bytes were found.

For example, UNIX text files can usually be interpreted as a sequence of variable-length
records separated by ASCII newline characters. This byte value (ASCII 0x0a) is the default
delimiter. Applications may specify a different delimiting byte using the DB->set_re_delim()

../api_reference/C/dbset_h_ffactor.html
../api_reference/C/dbset_heapsize.html
../api_reference/C/dbset_heap_regionsize.html
../api_reference/C/dbset_re_delim.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 39

method. If no backing source file is being used, there is no reason to set the delimiting byte
value.

Record Length

When using the Recno or Queue access methods to store fixed-length records, the record
length must be specified. Since the Queue access method always uses fixed-length records,
the user must always set the record length prior to creating the database. Setting the record
length is what causes the Recno access method to store fixed-length, not variable-length,
records.

The length of the records is specified by calling the DB->set_re_len() method. The default
length of the records is 0 bytes. Any record read from a backing source file or otherwise
stored in the database that is shorter than the declared length will automatically be padded
as described for the DB->set_re_pad() method. Any record stored that is longer than the
declared length results in an error. For further information on backing source files, see Flat-
text backing files (page 40).

Record Padding Byte Value

When storing fixed-length records in a Queue or Recno database, a pad character may
be specified by calling the DB->set_re_pad() method. Any record read from the backing
source file or otherwise stored in the database that is shorter than the expected length will
automatically be padded with this byte value. If fixed-length records are specified but no pad
value is specified, a space character (0x20 in the ASCII character set) will be used. For further
information on backing source files, see Flat-text backing files (page 40).

Selecting a Queue extent size

In Queue databases, records are allocated sequentially and directly mapped to an offset
within the file storage for the database. As records are deleted from the Queue, pages
will become empty and will not be reused in normal queue operations. To facilitate the
reclamation of disk space a Queue may be partitioned into extents. Each extent is kept in a
separate physical file.

Extent files are automatically created as needed and marked for deletion when the head of
the queue moves off the extent. The extent will not be deleted until all processes close the
extent. In addition, Berkeley DB caches a small number of extents that have been recently
used; this may delay when an extent will be deleted. The number of extents left open
depends on queue activity.

The extent size specifies the number of pages that make up each extent. By default, if no
extent size is specified, the Queue resides in a single file and disk space is not reclaimed. In
choosing an extent size there is a tradeoff between the amount of disk space used and the
overhead of creating and deleting files. If the extent size is too small, the system will pay a
performance penalty, creating and deleting files frequently. In addition, if the active part of
the queue spans many files, all those files will need to be open at the same time, consuming
system and process file resources.

You can set the Queue extent size using the DB->set_q_extentsize() method. You can see the
current extent size using the DB->get_q_extentsize() method.

../api_reference/C/dbset_re_len.html
../api_reference/C/dbset_re_pad.html
../api_reference/C/dbset_re_pad.html
../api_reference/C/dbset_q_extentsize.html
../api_reference/C/dbget_q_extentsize.html

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 40

Flat-text backing files

It is possible to back any Recno database (either fixed or variable length) with a flat-text
source file. This provides fast read (and potentially write) access to databases that are
normally created and stored as flat-text files. The backing source file may be specified by
calling the DB->set_re_source() method.

The backing source file will be read to initialize the database. In the case of variable length
records, the records are assumed to be separated as described for the DB->set_re_delim()
method. For example, standard UNIX byte stream files can be interpreted as a sequence of
variable length records separated by ASCII newline characters. This is the default.

When cached data would normally be written back to the underlying database file (for
example, when the DB->close() or DB->sync() methods are called), the in-memory copy of the
database will be written back to the backing source file.

The backing source file must already exist (but may be zero-length) when DB->open() is
called. By default, the backing source file is read lazily, that is, records are not read from
the backing source file until they are requested by the application. If multiple processes
(not threads) are accessing a Recno database concurrently and either inserting or deleting
records, the backing source file must be read in its entirety before more than a single process
accesses the database, and only that process should specify the backing source file as part of
the DB->open() call. This can be accomplished by calling the DB->set_flags() method with the
DB_SNAPSHOT flag.

Reading and writing the backing source file cannot be transactionally protected because it
involves filesystem operations that are not part of the Berkeley DB transaction methodology.
For this reason, if a temporary database is used to hold the records (a NULL was specified
as the file argument to DB->open()), it is possible to lose the contents of the backing
source file if the system crashes at the right instant. If a permanent file is used to hold the
database (a filename was specified as the file argument to DB->open()), normal database
recovery on that file can be used to prevent information loss. It is still possible that the
contents of the backing source file itself will be corrupted or lost if the system crashes.

For all of the above reasons, the backing source file is generally used to specify databases
that are read-only for Berkeley DB applications, and that are either generated on the fly by
software tools, or modified using a different mechanism such as a text editor.

Logically renumbering records

Records stored in the Queue and Recno access methods are accessed by logical record number.
In all cases in Btree databases, and optionally in Recno databases (see the DB->set_flags()
method and the DB_RENUMBER flag for more information), record numbers are mutable. This
means that the record numbers may change as records are added to and deleted from the
database. The deletion of record number 4 causes any records numbered 5 and higher to
be renumbered downward by 1; the addition of a new record after record number 4 causes
any records numbered 5 and higher to be renumbered upward by 1. In all cases in Queue
databases, and by default in Recno databases, record numbers are not mutable, and the
addition or deletion of records to the database will not cause already-existing record numbers
to change. For this reason, new records cannot be inserted between already-existing records
in databases with immutable record numbers.

../api_reference/C/dbset_re_source.html
../api_reference/C/dbset_re_delim.html
../api_reference/C/dbclose.html
../api_reference/C/dbsync.html
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html
../api_reference/C/dbset_flags.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_SNAPSHOT
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html
../api_reference/C/dbset_flags.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER

Library Version 11.2.5.3 Access Method Configuration

9/9/2013 DB Reference Guide Page 41

Cursors pointing into a Btree database or a Recno database with mutable record numbers
maintain a reference to a specific record, rather than a record number, that is, the record
they reference does not change as other records are added or deleted. For example, if a
database contains three records with the record numbers 1, 2, and 3, and the data items "A",
"B", and "C", respectively, the deletion of record number 2 ("B") will cause the record "C" to
be renumbered downward to record number 2. A cursor positioned at record number 3 ("C")
will be adjusted and continue to point to "C" after the deletion. Similarly, a cursor previously
referring to the now deleted record number 2 will be positioned between the new record
numbers 1 and 2, and an insertion using that cursor will appear between those records. In this
manner records can be added and deleted to a database without disrupting the sequential
traversal of the database by a cursor.

Only cursors created using a single DB handle can adjust each other's position in this way,
however. If multiple DB handles have a renumbering Recno database open simultaneously (as
when multiple processes share a single database environment), a record referred to by one
cursor could change underfoot if a cursor created using another DB handle inserts or deletes
records into the database. For this reason, applications using Recno databases with mutable
record numbers will usually make all accesses to the database using a single DB handle and
cursors created from that handle, or will otherwise single-thread access to the database, for
example, by using the Berkeley DB Concurrent Data Store product.

In any Queue or Recno databases, creating new records will cause the creation of multiple
records if the record number being created is more than one greater than the largest record
currently in the database. For example, creating record number 28, when record 25 was
previously the last record in the database, will implicitly create records 26 and 27 as well
as 28. All first, last, next and previous cursor operations will automatically skip over these
implicitly created records. So, if record number 5 is the only record the application has
created, implicitly creating records 1 through 4, the DBC->get() method with the DB_FIRST
flag will return record number 5, not record number 1. Attempts to explicitly retrieve
implicitly created records by their record number will result in a special error return,
DB_KEYEMPTY (page 259).

In any Berkeley DB database, attempting to retrieve a deleted record, using a cursor
positioned on the record, results in a special error return, DB_KEYEMPTY (page 259).
In addition, when using Queue databases or Recno databases with immutable record
numbers, attempting to retrieve a deleted record by its record number will also result in the
DB_KEYEMPTY (page 259) return.

../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html#dbcget_DB_FIRST

9/9/2013 DB Reference Guide Page 42

Chapter 3. Access Method Operations
Once a database handle has been created using db_create(), there are several standard access
method operations. Each of these operations is performed using a method referred to by the
returned handle. Generally, the database will be opened using DB->open(). If the database is
from an old release of Berkeley DB, it may need to be upgraded to the current release before
it is opened using DB->upgrade().

Once a database has been opened, records may be retrieved (DB->get()), stored (DB->put()),
and deleted (DB->del()).

Additional operations supported by the database handle include statistics (DB->stat()),
truncation (DB->truncate()), version upgrade (DB->upgrade()), verification and salvage (DB-
>verify()), flushing to a backing file (DB->sync()), and association of secondary indices (DB-
>associate()). Database handles are eventually closed using DB->close().

For more information on the access method operations supported by the database handle, see
the Database and Related Methods section in the Berkeley DB C API Reference Guide.

Database open

The DB->open() method opens a database, and takes five arguments:
file

The name of the file to be opened.
database

An optional database name.
type

The type of database to open. This value will be one of the five access methods
Berkeley DB supports: DB_BTREE, DB_HASH, DB_HEAP, DB_QUEUE or DB_RECNO, or the
special value DB_UNKNOWN, which allows you to open an existing file without knowing
its type.

mode
The permissions to give to any created file.

There are a few flags that you can set to customize open:
DB_CREATE

Create the underlying database and any necessary physical files.
DB_NOMMAP

Do not map this database into process memory.
DB_RDONLY

Treat the data base as read-only.
DB_THREAD

The returned handle is free-threaded, that is, it can be used simultaneously by
multiple threads within the process.

DB_TRUNCATE
Physically truncate the underlying database file, discarding all databases it contained.
Underlying filesystem primitives are used to implement this flag. For this reason it is
only applicable to the physical file and cannot be used to discard individual databases
from within physical files.

../api_reference/C/dbcreate.html
../api_reference/C/dbopen.html
../api_reference/C/dbupgrade.html
../api_reference/C/dbget.html
../api_reference/C/dbput.html
../api_reference/C/dbdel.html
../api_reference/C/dbstat.html
../api_reference/C/dbtruncate.html
../api_reference/C/dbupgrade.html
../api_reference/C/dbverify.html
../api_reference/C/dbverify.html
../api_reference/C/dbsync.html
../api_reference/C/dbassociate.html
../api_reference/C/dbassociate.html
../api_reference/C/dbclose.html
../api_reference/C/db.html#dblist
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html#open_DB_CREATE
../api_reference/C/dbopen.html#open_DB_NOMMAP
../api_reference/C/dbopen.html#dbopen_DB_RDONLY
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/dbopen.html#open_DB_TRUNCATE

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 43

DB_UPGRADE
Upgrade the database format as necessary.

Opening multiple databases in a single file

Applications may create multiple databases within a single physical file. This is useful when
the databases are both numerous and reasonably small, in order to avoid creating a large
number of underlying files, or when it is desirable to include secondary index databases in the
same file as the primary index database. Putting multiple databases in a single physical file is
an administrative convenience and unlikely to affect database performance.

To open or create a file that will include more than a single database, specify a database
name when calling the DB->open() method.

Physical files do not need to be comprised of a single type of database, and databases in a
file may be of any mixture of types, except for Queue and Heap databases. Queue and Heap
databases must be created one per file and cannot share a file with any other database type.
There is no limit on the number of databases that may be created in a single file other than
the standard Berkeley DB file size and disk space limitations.

It is an error to attempt to open a second database in a file that was not initially created
using a database name, that is, the file must initially be specified as capable of containing
multiple databases for a second database to be created in it.

It is not an error to open a file that contains multiple databases without specifying a database
name, however the database type should be specified as DB_UNKNOWN and the database must
be opened read-only. The handle that is returned from such a call is a handle on a database
whose key values are the names of the databases stored in the database file and whose
data values are opaque objects. No keys or data values may be modified or stored using this
database handle.

Configuring databases sharing a file

There are four pieces of configuration information which must be specified consistently for
all databases in a file, rather than differing on a per-database basis. They are: byte order,
checksum and encryption behavior, and page size. When creating additional databases in a
file, any of these configuration values specified must be consistent with the existing databases
in the file or an error will be returned.

Caching databases sharing a file

When storing multiple databases in a single physical file rather than in separate files, if any
of the databases in a file is opened for update, all of the databases in the file must share a
memory pool. In other words, they must be opened in the same database environment. This is
so per-physical-file information common between the two databases is updated correctly.

Locking in databases based on sharing a file

If databases are in separate files (and access to each separate database is single-threaded),
there is no reason to perform any locking of any kind, and the two databases may be read and

../api_reference/C/dbset_feedback.html#set_feedback_DB_UPGRADE
../api_reference/C/dbopen.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 44

written simultaneously. Further, there would be no requirement to create a shared database
environment in which to open those two databases.

However, since multiple databases in a file exist in a single physical file, opening two
databases in the same file simultaneously requires locking be enabled, unless all of the
databases are read-only. As the locks for the two databases can only conflict during page
allocation, this additional locking is unlikely to affect performance. The exception is when
Berkeley DB Concurrent Data Store is configured; a single lock is used for all databases in the
file when Berkeley DB Concurrent Data Store is configured, and a write to one database will
block all accesses to all databases.

In summary, programmers writing applications that open multiple databases in a single file will
almost certainly need to create a shared database environment in the application as well. For
more information on database environments, see Database environment introduction (page
126)

Partitioning databases

You can improve concurrency on your database reads and writes by splitting access to a single
database into multiple databases. This helps to avoid contention for internal database pages,
as well as allowing you to spread your databases across multiple disks, which can help to
improve disk I/O.

Note

Database partitions are not supported by the C# and Java APIs at this time.

While you can manually do this by creating and using more than one database for your data,
DB is capable of partitioning your database for you. When you use DB's built-in database
partitioning feature, your access to your data is performed in exactly the same way as if you
were only using one database; all the work of knowing which database to use to access a
particular record is handled for you under the hood.

Only the BTree and Hash access methods are supported for partitioned databases.

You indicate that you want your database to be partitioned by calling DB->set_partition()
before opening your database the first time. You can indicate the directory in which each
partition is contained using the DB->set_partition_dirs() method.

Once you have partitioned a database, you cannot change your partitioning scheme.

There are two ways to indicate what key/data pairs should go on which partition. The first is
by specifying an array of DBTs that indicate the minimum key value for a given partition. The
second is by providing a callback that returns the number of the partition on which a specified
key is placed.

Specifying partition keys

For simple cases, you can partition your database by providing an array of DBTs, each element
of which provides the minimum key value to be placed on a partition. There must be one
fewer elements in this array than you have partitions. The first element of the array indicates

../api_reference/C/dbset_partition.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 45

the minimum key value for the second partition in your database. Key values that are less
than the first key value provided in this array are placed on the first partition (partition 0).

Note

You can use partition keys only if you are using the Btree access method.

For example, suppose you had a database of fruit, and you want three partitions for your
database. Then you need a DBT array of size two. The first element in this array indicates the
minimum keys that should be placed on partition 1. The second element in this array indicates
the minimum key value placed on partition 2. Keys that compare less than the first DBT in the
array are placed on partition 0.

All comparisons are performed according to the lexicographic comparison used by your
platform.

For example, suppose you want all fruits whose names begin with:

• 'a' - 'f' to go on partition 0

• 'g' - 'p' to go on partition 1

• 'q' - 'z' to go on partition 2.

Then you would accomplish this with the following code fragment:

Note

The DB->set_partition() partition callback parameter must be NULL if you are using an
array of DBTs to partition your database.

DB *dbp = NULL;
 DB_ENV *envp = NULL;
 DBT partKeys[2];
 u_int32_t db_flags;
 const char *file_name = "mydb.db";
 int ret;

...

 /* Skipping environment open to shorten this example */

 /* Initialize the DB handle */
 ret = db_create(&dbp, envp, 0);
 if (ret != 0) {
 fprintf(stderr, "%s\n", db_strerror(ret));
 return (EXIT_FAILURE);
 }

 /* Setup the partition keys */
 memset(&partKeys[0], 0, sizeof(DBT));

../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbset_partition.html
../api_reference/C/dbt.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 46

 partKeys[0].data = "g";
 partKeys[0].size = sizeof("g") - 1;

 memset(&partKeys[1], 0, sizeof(DBT));
 partKeys[1].data = "q";
 partKeys[1].size = sizeof("q") - 1;

 dbp->set_partition(dbp, 3, partKeys, NULL);

 /* Now open the database */
 db_flags = DB_CREATE; /* Allow database creation */

 ret = dbp->open(dbp, /* Pointer to the database */
 NULL, /* Txn pointer */
 file_name, /* File name */
 NULL, /* Logical db name */
 DB_BTREE, /* Database type (using btree) */
 db_flags, /* Open flags */
 0); /* File mode. Using defaults */
 if (ret != 0) {
 dbp->err(dbp, ret, "Database '%s' open failed",
 file_name);
 return (EXIT_FAILURE);
 }

Partitioning callback

In some cases, a simple lexicographical comparison of key data will not sufficiently support
a partitioning scheme. For those situations, you should write a partitioning function. This
function accepts a pointer to the DB and the DBT, and it returns the number of the partition
on which the key belongs.

Note that DB actually places the key on the partition calculated by:
returned_partition modulo number_of_partitions

Also, remember that if you use a partitioning function when you create your database, then
you must use the same partitioning function every time you open that database in the future.

The following code fragment illustrates a partition callback:
u_int32_t db_partition_fn(DB *db, DBT *key) {
 char *key_data;
 u_int32_t ret_number;
 /* Obtain your key data, unpacking it as necessary
 * Here, we do the very simple thing just for illustrative purposes.
 */

 key_data = (char *)key->data;

 /* Here you would perform whatever comparison you require to determine
 * what partition the key belongs on. If you return either 0 or the

../api_reference/C/db.html
../api_reference/C/dbt.html
../api_reference/C/db.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 47

 * number of partitions in the database, the key is placed in the first
 * database partition. Else, it is placed on:
 *
 * returned_number mod number_of_partitions
 */

 ret_number = 0;

 return ret_number;
}

You then cause your partition callback to be used by providing it to the DB->set_partition()
method, as illustrated by the following code fragment.

Note

The DB->set_partition() DBT array parameter must be NULL if you are using a partition
call back to partition your database.

DB *dbp = NULL;
 DB_ENV *envp = NULL;
 u_int32_t db_flags;
 const char *file_name = "mydb.db";
 int ret;

...

 /* Skipping environment open to shorten this example */

 /* Initialize the DB handle */
 ret = db_create(&dbp, envp, 0);
 if (ret != 0) {
 fprintf(stderr, "%s\n", db_strerror(ret));
 return (EXIT_FAILURE);
 }

 dbp->set_partition(dbp, 3, NULL, db_partition_fn);

 /* Now open the database */
 db_flags = DB_CREATE; /* Allow database creation */

 ret = dbp->open(dbp, /* Pointer to the database */
 NULL, /* Txn pointer */
 file_name, /* File name */
 NULL, /* Logical db name */
 DB_BTREE, /* Database type (using btree) */
 db_flags, /* Open flags */
 0); /* File mode. Using defaults */
 if (ret != 0) {

../api_reference/C/dbset_partition.html
../api_reference/C/dbset_partition.html
../api_reference/C/dbt.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 48

 dbp->err(dbp, ret, "Database '%s' open failed",
 file_name);
 return (EXIT_FAILURE);
 }

Placing partition files

When you partition a database, a database file is created on disk in the same way as if you
were not partitioning the database. That is, this file uses the name you provide to the DB-
>open() file parameter.

However, DB then also creates a series of database files on disk, one for each partition that
you want to use. These partition files share the same name as the database file name, but
are also number sequentially. So if you create a database named mydb.db, and you create 3
partitions for it, then you will see the following database files on disk:

 mydb.db
 __dbp.mydb.db.000
 __dbp.mydb.db.001
 __dbp.mydb.db.002

All of the database's contents go into the numbered database files. You can cause these files
to be placed in different directories (and, hence, different disk partitions or even disks) by
using the DB->set_partition_dirs() method.

DB->set_partition_dirs() takes a NULL-terminated array of strings, each one of which should
represent an existing filesystem directory.

If you are using an environment, the directories specified using DB->set_partition_dirs() must
also be included in the environment list specified by DB_ENV->add_data_dir().

If you are not using an environment, then the the directories specified to DB-
>set_partition_dirs() can be either complete paths to currently existing directories, or paths
relative to the application's current working directory.

Ideally, you will provide DB->set_partition_dirs() with an array that is the same size as the
number of partitions you are creating for your database. Partition files are then placed
according to the order that directories are contained in the array; partition 0 is placed in
directory_array[0], partition 1 in directory_array[1], and so forth. However, if you provide
an array of directories that is smaller than the number of database partitions, then the
directories are used on a round-robin fashion.

You must call DB->set_partition_dirs() before you create your database, and before you open
your database each time thereafter. The array provided to DB->set_partition_dirs() must not
change after the database has been created.

Retrieving records

The DB->get() method retrieves records from the database. In general, DB->get() takes a key
and returns the associated data from the database.

There are a few flags that you can set to customize retrieval:

../api_reference/C/dbopen.html
../api_reference/C/dbopen.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/envadd_data_dir.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbset_partition_dirs.html
../api_reference/C/dbget.html
../api_reference/C/dbget.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 49

DB_GET_BOTH
Search for a matching key and data item, that is, only return success if both the key
and the data items match those stored in the database.

DB_RMW
Read-modify-write: acquire write locks instead of read locks during retrieval. This can
enhance performance in threaded applications by reducing the chance of deadlock.

DB_SET_RECNO
If the underlying database is a Btree, and was configured so that it is possible to
search it by logical record number, retrieve a specific record.

If the database has been configured to support duplicate records, DB->get() will always return
the first data item in the duplicate set.

Storing records
The DB->put() method stores records into the database. In general, DB->put() takes a key and
stores the associated data into the database.

There are a few flags that you can set to customize storage:
DB_APPEND

Simply append the data to the end of the database, treating the database much like a
simple log. This flag is only valid for the Heap, Queue and Recno access methods. This
flag is required if you are creating a new record in a Heap database.

DB_NOOVERWRITE
Only store the data item if the key does not already appear in the database.

If the database has been configured to support duplicate records, the DB->put() method
will add the new data value at the end of the duplicate set. If the database supports sorted
duplicates, the new data value is inserted at the correct sorted location.

Note
If you are using the Heap access method and you are creating a new record in
the database, then the key that you provide to the DB->put() method should be
empty. The DB->put() method will return the record's ID (RID) in the key. The RID is
automatically created for you when Heap database records are created.

Deleting records
The DB->del() method deletes records from the database. In general, DB->del() takes a key
and deletes the data item associated with it from the database.

If the database has been configured to support duplicate records, the DB->del() method will
remove all of the duplicate records. To remove individual duplicate records, you must use a
Berkeley DB cursor interface.

Database statistics
The DB->stat() method returns a set of statistics about the underlying database, for example,
the number of key/data pairs in the database, how the database was originally configured,
and so on.

../api_reference/C/dbget.html#get_DB_GET_BOTH
../api_reference/C/dbcget.html#dbcget_DB_RMW
../api_reference/C/dbget.html#dbget_DB_SET_RECNO
../api_reference/C/dbget.html
../api_reference/C/dbput.html
../api_reference/C/dbput.html
../api_reference/C/dbput.html#dbput_DB_APPEND
../api_reference/C/dbput.html#put_DB_NOOVERWRITE
../api_reference/C/dbput.html
../api_reference/C/dbput.html
../api_reference/C/dbput.html
../api_reference/C/dbdel.html
../api_reference/C/dbdel.html
../api_reference/C/dbdel.html
../api_reference/C/dbstat.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 50

There is a flag you can set to avoid time-consuming operations:

DB_FAST_STAT
Return only information that can be acquired without traversing the entire database.

Database truncation

The DB->truncate() method empties a database of all records.

Database upgrade

When upgrading to a new release of Berkeley DB, it may be necessary to upgrade the on-disk
format of already-created database files. Berkeley DB database upgrades are done in place,
and so are potentially destructive. This means that if the system crashes during the upgrade
procedure, or if the upgrade procedure runs out of disk space, the databases may be left in
an inconsistent and unrecoverable state. To guard against failure, the procedures outlined
in the Upgrading Berkeley DB installations chapter of the Berkeley DB Installation and Build
Guide should be carefully followed. If you are not performing catastrophic archival as part of
your application upgrade process, you should at least copy your database to archival media,
verify that your archival media is error-free and readable, and that copies of your backups are
stored offsite!

The actual database upgrade is done using the DB->upgrade() method, or by dumping the
database using the old version of the Berkeley DB software and reloading it using the current
version.

After an upgrade, Berkeley DB applications must be recompiled to use the new Berkeley DB
library before they can access an upgraded database. There is no guarantee that applications
compiled against previous releases of Berkeley DB will work correctly with an upgraded
database format. Nor is there any guarantee that applications compiled against newer
releases of Berkeley DB will work correctly with the previous database format. We
do guarantee that any archived database may be upgraded using a current Berkeley DB
software release and the DB->upgrade() method, and there is no need to step-wise upgrade
the database using intermediate releases of Berkeley DB. Sites should consider archiving
appropriate copies of their application or application sources if they may need to access
archived databases without first upgrading them.

Database verification and salvage

The DB->verify() method verifies that a file, and any databases it may contain, are
uncorrupted. In addition, the method may optionally be called with a file stream argument to
which all key/data pairs found in the database are output. There are two modes for finding
key/data pairs to be output:

1. If the DB_SALVAGE flag is specified, the key/data pairs in the database are output. When
run in this mode, the database is assumed to be largely uncorrupted. For example, the
DB->verify() method will search for pages that are no longer linked into the database,
and will output key/data pairs from such pages. However, key/data items that have
been marked as deleted in the database will not be output, as the page structures are
generally trusted in this mode.

../api_reference/C/dbstat.html#stat_DB_FAST_STAT
../api_reference/C/dbtruncate.html
../upgrading/upgrade_process.html
../api_reference/C/dbupgrade.html
../api_reference/C/dbupgrade.html
../api_reference/C/dbverify.html
../api_reference/C/dbverify.html#verify_DB_SALVAGE
../api_reference/C/dbverify.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 51

2. If both the DB_SALVAGE and DB_AGGRESSIVE flags are specified, all possible key/data
pairs are output. When run in this mode, the database is assumed to be seriously
corrupted. For example, key/data pairs that have been deleted will re-appear in the
output. In addition, because pages may have been subsequently reused and modified
during normal database operations after the key/data pairs were deleted, it is not
uncommon for apparently corrupted key/data pairs to be output in this mode, even when
there is no corruption in the underlying database. The output will almost always have
to be edited by hand or other means before the data is ready for reload into another
database. We recommend that DB_SALVAGE be tried first, and DB_AGGRESSIVE only
tried if the output from that first attempt is obviously missing data items or the data is
sufficiently valuable that human review of the output is preferable to any kind of data
loss.

Flushing the database cache

The DB->sync() method flushes all modified records from the database cache to disk.

It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data, it does not eliminate the possibility.

While unlikely, it is possible for database corruption to happen if a system or application crash
occurs while writing data to the database. To ensure that database corruption never occurs,
applications must either:

• Use transactions and logging with automatic recovery.

• Use logging and application-specific recovery.

• Edit a copy of the database, and, once all applications using the database have successfully
called DB->close(), use system operations (for example, the POSIX rename system call) to
atomically replace the original database with the updated copy.

Database close

The DB->close() database handle closes the DB handle. By default, DB->close() also flushes all
modified records from the database cache to disk.

There is one flag that you can set to customize DB->close():

DB_NOSYNC
Do not flush cached information to disk.

It is important to understand that flushing cached information to disk only minimizes the
window of opportunity for corrupted data, it does not eliminate the possibility.

While unlikely, it is possible for database corruption to happen if a system or application crash
occurs while writing data to the database. To ensure that database corruption never occurs,
applications must either:

• Use transactions and logging with automatic recovery.

• Use logging and application-specific recovery.

../api_reference/C/dbverify.html#verify_DB_SALVAGE
../api_reference/C/dbverify.html#verify_DB_AGGRESSIVE
../api_reference/C/dbverify.html#verify_DB_SALVAGE
../api_reference/C/dbverify.html#verify_DB_AGGRESSIVE
../api_reference/C/dbsync.html
../api_reference/C/dbclose.html
../api_reference/C/dbclose.html
../api_reference/C/db.html
../api_reference/C/dbclose.html
../api_reference/C/dbclose.html
../api_reference/C/dbclose.html#dbclose_DB_NOSYNC

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 52

• Edit a copy of the database, and, once all applications using the database have successfully
called DB->close(), use system operations (for example, the POSIX rename system call) to
atomically replace the original database with the updated copy.

Secondary indexes

A secondary index, put simply, is a way to efficiently access records in a database (the
primary) by means of some piece of information other than the usual (primary) key. In
Berkeley DB, this index is simply another database whose keys are these pieces of information
(the secondary keys), and whose data are the primary keys. Secondary indexes can be created
manually by the application; there is no disadvantage, other than complexity, to doing
so. However, when the secondary key can be mechanically derived from the primary key
and datum that it points to, as is frequently the case, Berkeley DB can automatically and
transparently manage secondary indexes.

As an example of how secondary indexes might be used, consider a database containing a list
of students at a college, each of whom has a unique student ID number. A typical database
would use the student ID number as the key; however, one might also reasonably want to be
able to look up students by last name. To do this, one would construct a secondary index in
which the secondary key was this last name.

In SQL, this would be done by executing something like the following:

CREATE TABLE students(student_id CHAR(4) NOT NULL,
 lastname CHAR(15), firstname CHAR(15), PRIMARY KEY(student_id));
CREATE INDEX lname ON students(lastname);

In Berkeley DB, this would work as follows (a Java API example is also available):

struct student_record {
 char student_id[4];
 char last_name[15];
 char first_name[15];
};

....

void
second()
{
 DB *dbp, *sdbp;
 int ret;

 /* Open/create primary */
 if ((ret = db_create(&dbp, dbenv, 0)) != 0)
 handle_error(ret);
 if ((ret = dbp->open(dbp, NULL,
 "students.db", NULL, DB_BTREE, DB_CREATE, 0600)) != 0)
 handle_error(ret);

 /*

../api_reference/C/dbclose.html
second.javas

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 53

 * Open/create secondary. Note that it supports duplicate data
 * items, since last names might not be unique.
 */
 if ((ret = db_create(&sdbp, dbenv, 0)) != 0)
 handle_error(ret);
 if ((ret = sdbp->set_flags(sdbp, DB_DUP | DB_DUPSORT)) != 0)
 handle_error(ret);
 if ((ret = sdbp->open(sdbp, NULL,
 "lastname.db", NULL, DB_BTREE, DB_CREATE, 0600)) != 0)
 handle_error(ret);

 /* Associate the secondary with the primary. */
 if ((ret = dbp->associate(dbp, NULL, sdbp, getname, 0)) != 0)
 handle_error(ret);
}

/*
 * getname -- extracts a secondary key (the last name) from a primary
 * key/data pair
 */
int
getname(DB *secondary, const DBT *pkey, const DBT *pdata, DBT *skey)

{
 /*
 * Since the secondary key is a simple structure member of the
 * record, we don't have to do anything fancy to return it. If
 * we have composite keys that need to be constructed from the
 * record, rather than simply pointing into it, then the user's
 * function might need to allocate space and copy data. In
 * this case, the DB_DBT_APPMALLOC flag should be set in the
 * secondary key DBT.
 */
 memset(skey, 0, sizeof(DBT));
 skey->data = ((struct student_record *)pdata->data)->last_name;
 skey->size = sizeof(((struct student_record *)pdata->data)->last_name);
 return (0);
}

From the application's perspective, putting things into the database works exactly as it does
without a secondary index; one can simply insert records into the primary database. In SQL
one would do the following:

INSERT INTO student
 VALUES ("WC42", "Churchill ", "Winston ");

and in Berkeley DB, one does:

struct student_record s;
DBT data, key;

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 54

memset(&key, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));
memset(&s, 0, sizeof(struct student_record));
key.data = "WC42";
key.size = 4;
memcpy(&s.student_id, "WC42", sizeof(s.student_id));
memcpy(&s.last_name, "Churchill ", sizeof(s.last_name));
memcpy(&s.first_name, "Winston ", sizeof(s.first_name));
data.data = &s;
data.size = sizeof(s);
if ((ret = dbp->put(dbp, txn, &key, &data, 0)) != 0)
 handle_error(ret);

Internally, a record with secondary key "Churchill" is inserted into the secondary database (in
addition to the insertion of "WC42" into the primary, of course).

Deletes are similar. The SQL clause:

DELETE FROM student WHERE (student_id = "WC42");

looks like:

DBT key;

memset(&key, 0, sizeof(DBT));
key.data = "WC42";
key.size = 4;
if ((ret = dbp->del(dbp, txn, &key, 0)) != 0)
 handle_error(ret);

Deletes can also be performed on the secondary index directly; a delete done this way will
delete the "real" record in the primary as well. If the secondary supports duplicates and there
are duplicate occurrences of the secondary key, then all records with that secondary key are
removed from both the secondary index and the primary database. In SQL:

DELETE FROM lname WHERE (lastname = "Churchill ");

In Berkeley DB:

DBT skey;

memset(&skey, 0, sizeof(DBT));
skey.data = "Churchill ";
skey.size = 15;
if ((ret = sdbp->del(sdbp, txn, &skey, 0)) != 0)
 handle_error(ret);

Gets on a secondary automatically return the primary datum. If DB->pget() or DBC->pget()
is used in lieu of DB->get() or DBC->get(), the primary key is returned as well. Thus, the
equivalent of:

SELECT * from lname WHERE (lastname = "Churchill ");

../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbget.html
../api_reference/C/dbcget.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 55

would be:

DBT data, pkey, skey;

memset(&skey, 0, sizeof(DBT));
memset(&pkey, 0, sizeof(DBT));
memset(&data, 0, sizeof(DBT));
skey.data = "Churchill ";
skey.size = 15;
if ((ret = sdbp->pget(sdbp, txn, &skey, &pkey, &data, 0)) != 0)
 handle_error(ret);
/*
 * Now pkey contains "WC42" and data contains Winston's record.
 */

To create a secondary index to a Berkeley DB database, open the database that is to become
a secondary index normally, then pass it as the "secondary" argument to the DB->associate()
method for some primary database.

After a DB->associate() call is made, the secondary indexes become alternate interfaces to
the primary database. All updates to the primary will be automatically reflected in each
secondary index that has been associated with it. All get operations using the DB->get()
or DBC->get() methods on the secondary index return the primary datum associated with
the specified (or otherwise current, in the case of cursor operations) secondary key. The
DB->pget() and DBC->pget() methods also become usable; these behave just like DB->get()
and DBC->get(), but return the primary key in addition to the primary datum, for those
applications that need it as well.

Cursor get operations on a secondary index perform as expected; although the data returned
will by default be those of the primary database, a position in the secondary index is
maintained normally, and records will appear in the order determined by the secondary key
and the comparison function or other structure of the secondary database.

Delete operations on a secondary index delete the item from the primary database and all
relevant secondaries, including the current one.

Put operations of any kind are forbidden on secondary indexes, as there is no way to specify
a primary key for a newly put item. Instead, the application should use the DB->put() or DBC-
>put() methods on the primary database.

Any number of secondary indexes may be associated with a given primary database, up to
limitations on available memory and the number of open file descriptors.

Note that although Berkeley DB guarantees that updates made using any DB handle with an
associated secondary will be reflected in the that secondary, associating each primary handle
with all the appropriate secondaries is the responsibility of the application and is not enforced
by Berkeley DB. It is generally unsafe, but not forbidden by Berkeley DB, to modify a database
that has secondary indexes without having those indexes open and associated. Similarly, it
is generally unsafe, but not forbidden, to modify a secondary index directly. Applications
that violate these rules face the possibility of outdated or incorrect results if the secondary
indexes are later used.

../api_reference/C/dbassociate.html
../api_reference/C/dbassociate.html
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbput.html
../api_reference/C/dbcput.html
../api_reference/C/dbcput.html
../api_reference/C/db.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 56

If a secondary index becomes outdated for any reason, it should be discarded using the DB-
>remove() method and a new one created using the DB->associate() method. If a secondary
index is no longer needed, all of its handles should be closed using the DB->close() method,
and then the database should be removed using a new database handle and the DB->remove()
method.

Closing a primary database handle automatically dis-associates all secondary database handles
associated with it.

Error Handling With Secondary Indexes

An error return during a secondary update in CDS or DS (which requires an abort in TDS) may
leave a secondary index inconsistent in CDS or DS. There are a few non-error returns:

• 0

• DB_BUFFER_SMALL

• DB_NOTFOUND

• DB_KEYEMPTY

• DB_KEYEXIST

In the case of any other error return during a secondary update in CDS or DS, delete the
secondary indices, recreate them and set the DB_CREATE flag to the DB->associate
method. Some examples of error returns that need to be handled this way are:

• ENOMEM - indicating there is insufficient memory to return the requested item

• EINVAL - indicating that an invalid flag value or parameter is specified

Note that DB_RUNRECOVERY and DB_PAGE_NOTFOUND are fatal errors which should never occur
during normal use of CDS or DS. If those errors are returned by Berkeley DB when running
without transactions, check the database integrity with the DB->verify method before
rebuilding the secondary indices.

Foreign key indexes

Foreign keys are used to ensure a level of consistency between two different databases in
terms of the keys that the databases use. In a foreign key relationship, one database is the
constrained database. This database is actually a secondary database which is associated
with a primary database. The other database in this relationship is the foreign key database.
Once this relationship has been established between a constrained database and a foreign key
database, then:

1. Key/data items cannot be added to the constrained database unless that same key
already exists in the foreign key database.

2. A key/data pair cannot be deleted from the foreign key database unless some action is
also taken to keep the constrained database consistent with the foreign key database.

../api_reference/C/dbremove.html
../api_reference/C/dbremove.html
../api_reference/C/dbassociate.html
../api_reference/C/dbclose.html
../api_reference/C/dbremove.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 57

Because the constrained database is a secondary database, by ensuring it's consistency with a
foreign key database you are actually ensuring that a primary database (the one to which the
secondary database is associated) is consistent with the foreign key database.

Deletions of keys in the foreign key database affect the constrained database in one of three
ways, as specified by the application:

• Abort

The deletion of a record from the foreign database will not proceed if that key exists in the
constrained primary database. Transactions must be used to prevent the aborted delete
from corrupting either of the databases.

• Cascade

The deletion of a record from the foreign database will also cause any records in the
constrained primary database that use that key to also be automatically deleted.

• Nullify

The deletion of a record from the foreign database will cause a user specified callback
function to be called, in order to alter or nullify any records using that key in the
constrained primary database.

Note that it is possible to delete a key from the constrained database, but not from the
foreign key database. For this reason, if you want the keys used in both databases to be 100%
accurate, then you will have to write code to ensure that when a key is removed from the
constrained database, it is also removed from the foreign key database.

As an example of how foreign key indexes might be used, consider a database of customer
information and a database of order information. A typical customer database would use a
customer ID as the key and those keys would also appear in the order database. To ensure an
order is not booked for a non-existent customer, the customer database can be associated
with the order database as a foreign index.

In order to do this, you create a secondary index of the order database, which uses customer
IDs as the key for its key/data pairs. This secondary index is, then, the constrained database.
But because the secondary index is constrained, so too is the order database because the
contents of the secondary index are programmatically tied to the contents of the order
database.

The customer database, then, is the foreign key database. It is associated to the order
database's secondary index using the DB->associate_foreign() method. In this way, an order
cannot be added to the order database unless the customer ID already exists in the customer
database.

Note that this relationship can also be configured to delete any outstanding orders for a
customer when that customer is deleted from the customer database.

In SQL, this would be done by executing something like the following:

CREATE TABLE customers(cust_id CHAR(4) NOT NULL,

../api_reference/C/dbassociate_foreign.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 58

 lastname CHAR(15), firstname CHAR(15), PRIMARY KEY(cust_id));
CREATE TABLE orders(order_id CHAR(4) NOT NULL, order_num int NOT NULL,
 cust_id CHAR(4), PRIMARY KEY (order_id),
 FOREIGN KEY (cust_id) REFERENCES customers(cust_id)
 ON DELETE CASCADE);

In Berkeley DB, this would work as follows:

struct customer {
 char cust_id[4];
 char last_name[15];
 char first_name[15];
};
struct order {
 char order_id[4];
 int order_number;
 char cust_id[4];
};

....

void
foreign()
{
 DB *dbp, *sdbp, *fdbp;
 int ret;

 /* Open/create order database */
 if ((ret = db_create(&dbp, dbenv, 0)) != 0)
 handle_error(ret);
 if ((ret = dbp->open(dbp, NULL,
 "orders.db", NULL, DB_BTREE, DB_CREATE, 0600)) != 0)
 handle_error(ret);

 /*
 * Open/create secondary index on customer id. Note that it
 * supports duplicates because a customer may have multiple
 * orders.
 */
 if ((ret = db_create(&sdbp, dbenv, 0)) != 0)
 handle_error(ret);
 if ((ret = sdbp->set_flags(sdbp, DB_DUP | DB_DUPSORT)) != 0)
 handle_error(ret);
 if ((ret = sdbp->open(sdbp, NULL, "orders_cust_ids.db",
 NULL, DB_BTREE, DB_CREATE, 0600)) != 0)
 handle_error(ret);

 /* Associate the secondary with the primary. */
 if ((ret = dbp->associate(dbp, NULL, sdbp, getcustid, 0)) != 0)
 handle_error(ret);

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 59

 /* Open/create customer database */
 if ((ret = db_create(&fdbp, dbenv, 0)) != 0)
 handle_error(ret);
 if ((ret = fdbp->open(fdbp, NULL,
 "customers.db", NULL, DB_BTREE, DB_CREATE, 0600)) != 0)
 handle_error(ret);

 /* Associate the foreign with the secondary. */
 if ((ret = fdbp->associate_foreign(
 fdbp, sdbp, NULL, DB_FOREIGN_CASCADE)) != 0)
 handle_error(ret);

}

/*
* getcustid -- extracts a secondary key (the customer id) from a primary
* key/data pair
*/
int
getcustid(secondary, pkey, pdata, skey)
 DB *secondary;
 const DBT *pkey, *pdata;
 DBT *skey;
{
 /*
 * Since the secondary key is a simple structure member of the
 * record, we don't have to do anything fancy to return it. If
 * we have composite keys that need to be constructed from the
 * record, rather than simply pointing into it, then the user's
 * function might need to allocate space and copy data. In
 * this case, the DB_DBT_APPMALLOC flag should be set in the
 * secondary key DBT.
 */
 memset(skey, 0, sizeof(DBT));
 skey->data = ((struct order *)pdata->data)->cust_id;
 skey->size = 4;
 return (0);
}

Cursor operations

A database cursor refers to a single key/data pair in the database. It supports traversal of the
database and is the only way to access individual duplicate data items. Cursors are used for
operating on collections of records, for iterating over a database, and for saving handles to
individual records, so that they can be modified after they have been read.

The DB->cursor() method opens a cursor into a database. Upon return the cursor is
uninitialized, cursor positioning occurs as part of the first cursor operation.

../api_reference/C/dbcursor.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 60

Once a database cursor has been opened, records may be retrieved (DBC->get()), stored (DBC-
>put()), and deleted (DBC->del()).

Additional operations supported by the cursor handle include duplication (DBC->dup()),
equality join (DB->join()), and a count of duplicate data items (DBC->count()). Cursors are
eventually closed using DBC->close().

For more information on the operations supported by the cursor handle, see the Database
Cursors and Related Methods section in the Berkeley DB C API Reference Guide.

Retrieving records with a cursor

The DBC->get() method retrieves records from the database using a cursor. The DBC->get()
method takes a flag which controls how the cursor is positioned within the database and
returns the key/data item associated with that positioning. Similar to DB->get(), DBC-
>get() may also take a supplied key and retrieve the data associated with that key from the
database. There are several flags that you can set to customize retrieval.

Cursor position flags

DB_FIRST, DB_LAST
Return the first (last) record in the database.

DB_NEXT, DB_PREV
Return the next (previous) record in the database.

DB_NEXT_DUP
Return the next record in the database, if it is a duplicate data item for the
current key. For Heap databases, this flag always results in the cursor returning the
DB_NOTFOUND error.

DB_NEXT_NODUP, DB_PREV_NODUP
Return the next (previous) record in the database that is not a duplicate data item for
the current key.

DB_CURRENT
Return the record from the database to which the cursor currently refers.

Retrieving specific key/data pairs

DB_SET
Return the record from the database that matches the supplied key. In the case of
duplicates the first duplicate is returned and the cursor is positioned at the beginning
of the duplicate list. The user can then traverse the duplicate entries for the key.

DB_SET_RANGE
Return the smallest record in the database greater than or equal to the supplied key.
This functionality permits partial key matches and range searches in the Btree access
method.

DB_GET_BOTH
Return the record from the database that matches both the supplied key and data
items. This is particularly useful when there are large numbers of duplicate records
for a key, as it allows the cursor to easily be positioned at the correct place for
traversal of some part of a large set of duplicate records.

../api_reference/C/dbcget.html
../api_reference/C/dbcput.html
../api_reference/C/dbcput.html
../api_reference/C/dbcdel.html
../api_reference/C/dbcdup.html
../api_reference/C/dbjoin.html
../api_reference/C/dbccount.html
../api_reference/C/dbcclose.html
../api_reference/C/dbc.html#dbclist
../api_reference/C/dbc.html#dbclist
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html#dbcget_DB_FIRST
../api_reference/C/dbcget.html#dbcget_DB_LAST
../api_reference/C/dbcget.html#dbcget_DB_NEXT
../api_reference/C/dbcget.html#dbcget_DB_PREV
../api_reference/C/dbcget.html#dbcget_DB_NEXT_DUP
../api_reference/C/dbcget.html#dbcget_DB_NEXT_NODUP
../api_reference/C/dbcget.html#dbcget_DB_PREV_NODUP
../api_reference/C/dbcget.html#dbcget_DB_CURRENT
../api_reference/C/dbcget.html#dbcget_DB_SET
../api_reference/C/dbcget.html#dbcget_DB_SET_RANGE
../api_reference/C/dbcget.html#dbcget_DB_GET_BOTH

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 61

DB_GET_BOTH_RANGE
If used on a database configured for sorted duplicates, this returns the smallest record
in the database greater than or equal to the supplied key and data items. If used on a
database that is not configured for sorted duplicates, this flag behaves identically to
DB_GET_BOTH.

Retrieving based on record numbers

DB_SET_RECNO
If the underlying database is a Btree, and was configured so that it is possible to
search it by logical record number, retrieve a specific record based on a record
number argument.

DB_GET_RECNO
If the underlying database is a Btree, and was configured so that it is possible to
search it by logical record number, return the record number for the record to which
the cursor refers.

Special-purpose flags

DB_CONSUME
Read-and-delete: the first record (the head) of the queue is returned and deleted.
The underlying database must be a Queue.

DB_RMW
Read-modify-write: acquire write locks instead of read locks during retrieval. This can
enhance performance in threaded applications by reducing the chance of deadlock.

In all cases, the cursor is repositioned by a DBC->get() operation to point to the newly-
returned key/data pair in the database.

The following is a code example showing a cursor walking through a database and displaying
the records it contains to the standard output:

int
display(char *database)

{
 DB *dbp;
 DBC *dbcp;
 DBT key, data;
 int close_db, close_dbc, ret;

 close_db = close_dbc = 0;

 /* Open the database. */
 if ((ret = db_create(&dbp, NULL, 0)) != 0) {
 fprintf(stderr,
 "%s: db_create: %s\n", progname, db_strerror(ret));
 return (1);
 }
 close_db = 1;

../api_reference/C/dbcget.html#dbcget_DB_GET_BOTH_RANGE
../api_reference/C/dbcget.html#dbcget_DB_SET_RECNO
../api_reference/C/dbcget.html#dbcget_DB_GET_RECNO
../api_reference/C/dbget.html#dbget_DB_CONSUME
../api_reference/C/dbcget.html#dbcget_DB_RMW
../api_reference/C/dbcget.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 62

 /* Turn on additional error output. */
 dbp->set_errfile(dbp, stderr);
 dbp->set_errpfx(dbp, progname);

 /* Open the database. */
 if ((ret = dbp->open(dbp, NULL, database, NULL,
 DB_UNKNOWN, DB_RDONLY, 0)) != 0) {
 dbp->err(dbp, ret, "%s: DB->open", database);
 goto err;
 }

 /* Acquire a cursor for the database. */
 if ((ret = dbp->cursor(dbp, NULL, &dbcp, 0)) != 0) {
 dbp->err(dbp, ret, "DB->cursor");
 goto err;
 }
 close_dbc = 1;

 /* Initialize the key/data return pair. */
 memset(&key, 0, sizeof(key));
 memset(&data, 0, sizeof(data));

 /* Walk through the database and print out the key/data pairs. */
 while ((ret = dbcp->get(dbcp, &key, &data, DB_NEXT)) == 0)
 printf("%.*s : %.*s\n",
 (int)key.size, (char *)key.data,
 (int)data.size, (char *)data.data);
 if (ret != DB_NOTFOUND) {
 dbp->err(dbp, ret, "DBcursor->get");
 goto err;
 }

err: if (close_dbc && (ret = dbcp->close(dbcp)) != 0)
 dbp->err(dbp, ret, "DBcursor->close");
 if (close_db && (ret = dbp->close(dbp, 0)) != 0)
 fprintf(stderr,
 "%s: DB->close: %s\n", progname, db_strerror(ret));
 return (0);
}

Storing records with a cursor

The DBC->put() method stores records into the database using a cursor. In general, DBC->put()
takes a key and inserts the associated data into the database, at a location controlled by a
specified flag.

There are several flags that you can set to customize storage:

DB_AFTER
Create a new record, immediately after the record to which the cursor refers.

../api_reference/C/dbcput.html
../api_reference/C/dbcput.html
../api_reference/C/dbcput.html#dbcput_DB_AFTER

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 63

DB_BEFORE
Create a new record, immediately before the record to which the cursor refers.

DB_CURRENT
Replace the data part of the record to which the cursor refers.

DB_KEYFIRST
Create a new record as the first of the duplicate records for the supplied key.

DB_KEYLAST
Create a new record, as the last of the duplicate records for the supplied key.

In all cases, the cursor is repositioned by a DBC->put() operation to point to the newly
inserted key/data pair in the database.

The following is a code example showing a cursor storing two data items in a database that
supports duplicate data items:

int
store(DB *dbp)

{
 DBC *dbcp;
 DBT key, data;
 int ret;

 /*
 * The DB handle for a Btree database supporting duplicate data
 * items is the argument; acquire a cursor for the database.
 */
 if ((ret = dbp->cursor(dbp, NULL, &dbcp, 0)) != 0) {
 dbp->err(dbp, ret, "DB->cursor");
 goto err;
 }

 /* Initialize the key. */
 memset(&key, 0, sizeof(key));
 key.data = "new key";
 key.size = strlen(key.data) + 1;

 /* Initialize the data to be the first of two duplicate records. */
 memset(&data, 0, sizeof(data));
 data.data = "new key's data: entry #1";
 data.size = strlen(data.data) + 1;

 /* Store the first of the two duplicate records. */
 if ((ret = dbcp->put(dbcp, &key, &data, DB_KEYFIRST)) != 0)
 dbp->err(dbp, ret, "DB->cursor");

 /* Initialize the data to be the second of two duplicate records. */
 data.data = "new key's data: entry #2";

../api_reference/C/dbcput.html#dbcput_DB_BEFORE
../api_reference/C/dbcget.html#dbcget_DB_CURRENT
../api_reference/C/dbcput.html#dbcput_DB_KEYFIRST
../api_reference/C/dbcput.html#dbcput_DB_KEYLAST
../api_reference/C/dbcput.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 64

 data.size = strlen(data.data) + 1;

 /*
 * Store the second of the two duplicate records. No duplicate
 * record sort function has been specified, so we explicitly
 * store the record as the last of the duplicate set.
 */
 if ((ret = dbcp->put(dbcp, &key, &data, DB_KEYLAST)) != 0)
 dbp->err(dbp, ret, "DB->cursor");

err: if ((ret = dbcp->close(dbcp)) != 0)
 dbp->err(dbp, ret, "DBcursor->close");

 return (0);
}

Note

If you are using the Heap access method and you are creating a new record in
the database, then the key that you provide to the DBC->put() method should be
empty. The DBC->put() method will return the record's ID (RID) in the key. The RID is
automatically created for you when Heap database records are created.

Deleting records with a cursor

The DBC->del() method deletes records from the database using a cursor. The DBC->del()
method deletes the record to which the cursor currently refers. In all cases, the cursor
position is unchanged after a delete.

Duplicating a cursor

Once a cursor has been initialized (for example, by a call to DBC->get()), it can be thought
of as identifying a particular location in a database. The DBC->dup() method permits an
application to create a new cursor that has the same locking and transactional information
as the cursor from which it is copied, and which optionally refers to the same position in the
database.

In order to maintain a cursor position when an application is using locking, locks are
maintained on behalf of the cursor until the cursor is closed. In cases when an application
is using locking without transactions, cursor duplication is often required to avoid self-
deadlocks. For further details, refer to Berkeley DB Transactional Data Store locking
conventions (page 287).

Equality Join

Berkeley DB supports "equality" (also known as "natural"), joins on secondary indices. An
equality join is a method of retrieving data from a primary database using criteria stored in
a set of secondary indices. It requires the data be organized as a primary database which
contains the primary key and primary data field, and a set of secondary indices. Each of the
secondary indices is indexed by a different secondary key, and, for each key in a secondary

../api_reference/C/dbcput.html
../api_reference/C/dbcput.html
../api_reference/C/dbcdel.html
../api_reference/C/dbcdel.html
../api_reference/C/dbcget.html
../api_reference/C/dbcdup.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 65

index, there is a set of duplicate data items that match the primary keys in the primary
database.

For example, let's assume the need for an application that will return the names of stores in
which one can buy fruit of a given color. We would first construct a primary database that lists
types of fruit as the key item, and the store where you can buy them as the data item:

Primary key: Primary data:

apple Convenience Store

blueberry Farmer's Market

peach Shopway

pear Farmer's Market

raspberry Shopway

strawberry Farmer's Market

We would then create a secondary index with the key color, and, as the data items, the
names of fruits of different colors.

Secondary key: Secondary data:

blue blueberry

red apple

red raspberry

red strawberry

yellow peach

yellow pear

This secondary index would allow an application to look up a color, and then use the data
items to look up the stores where the colored fruit could be purchased. For example, by first
looking up blue, the data item blueberry could be used as the lookup key in the primary
database, returning Farmer's Market.

Your data must be organized in the following manner in order to use the DB->join() method:

1. The actual data should be stored in the database represented by the DB object used to
invoke this method. Generally, this DB object is called the primary.

2. Secondary indices should be stored in separate databases, whose keys are the values of
the secondary indices and whose data items are the primary keys corresponding to the
records having the designated secondary key value. It is acceptable (and expected) that
there may be duplicate entries in the secondary indices.
These duplicate entries should be sorted for performance reasons, although it is not
required. For more information see the DB_DUPSORT flag to the DB->set_flags() method.

What the DB->join() method does is review a list of secondary keys, and, when it finds a data
item that appears as a data item for all of the secondary keys, it uses that data item as a
lookup into the primary database, and returns the associated data item.

../api_reference/C/dbjoin.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_DUPSORT
../api_reference/C/dbset_flags.html
../api_reference/C/dbjoin.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 66

If there were another secondary index that had as its key the cost of the fruit, a similar
lookup could be done on stores where inexpensive fruit could be purchased:

Secondary key: Secondary data:

expensive blueberry

expensive peach

expensive pear

expensive strawberry

inexpensive apple

inexpensive pear

inexpensive raspberry

The DB->join() method provides equality join functionality. While not strictly cursor
functionality, in that it is not a method off a cursor handle, it is more closely related to the
cursor operations than to the standard DB operations.

It is also possible to do lookups based on multiple criteria in a single operation. For example,
it is possible to look up fruits that are both red and expensive in a single operation. If the
same fruit appeared as a data item in both the color and expense indices, then that fruit
name would be used as the key for retrieval from the primary index, and would then return
the store where expensive, red fruit could be purchased.

Example

Consider the following three databases:

personnel

• key = SSN

• data = record containing name, address, phone number, job title

lastname

• key = lastname

• data = SSN

jobs

• key = job title

• data = SSN

Consider the following query:

Return the personnel records of all people named smith with the job
title manager.

This query finds are all the records in the primary database (personnel) for whom the criteria
lastname=smith and job title=manager is true.

../api_reference/C/dbjoin.html
../api_reference/C/db.html

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 67

Assume that all databases have been properly opened and have the handles: pers_db,
name_db, job_db. We also assume that we have an active transaction to which the handle txn
refers.
DBC *name_curs, *job_curs, *join_curs;
DBC *carray[3];
DBT key, data;
int ret, tret;

name_curs = NULL;
job_curs = NULL;
memset(&key, 0, sizeof(key));
memset(&data, 0, sizeof(data));

if ((ret =
 name_db->cursor(name_db, txn, &name_curs, 0)) != 0)
 goto err;
key.data = "smith";
key.size = sizeof("smith");
if ((ret =
 name_curs->get(name_curs, &key, &data, DB_SET)) != 0)
 goto err;

if ((ret = job_db->cursor(job_db, txn, &job_curs, 0)) != 0)
 goto err;
key.data = "manager";
key.size = sizeof("manager");
if ((ret =
 job_curs->get(job_curs, &key, &data, DB_SET)) != 0)
 goto err;

carray[0] = name_curs;
carray[1] = job_curs;
carray[2] = NULL;

if ((ret =
 pers_db->join(pers_db, carray, &join_curs, 0)) != 0)
 goto err;
while ((ret =
 join_curs->get(join_curs, &key, &data, 0)) == 0) {
 /* Process record returned in key/data. */
}

/*
 * If we exited the loop because we ran out of records,
 * then it has completed successfully.
 */
if (ret == DB_NOTFOUND)
 ret = 0;

Library Version 11.2.5.3 Access Method Operations

9/9/2013 DB Reference Guide Page 68

err:
if (join_curs != NULL &&
 (tret = join_curs->close(join_curs)) != 0 && ret == 0)
 ret = tret;
if (name_curs != NULL &&
 (tret = name_curs->close(name_curs)) != 0 && ret == 0)
 ret = tret;
if (job_curs != NULL &&
 (tret = job_curs->close(job_curs)) != 0 && ret == 0)
 ret = tret;

return (ret);

The name cursor is positioned at the beginning of the duplicate list for smith and the job
cursor is placed at the beginning of the duplicate list for manager. The join cursor is returned
from the join method. This code then loops over the join cursor getting the personnel records
of each one until there are no more.

Data item count

Once a cursor has been initialized to refer to a particular key in the database, it can be
used to determine the number of data items that are stored for any particular key. The DBC-
>count() method returns this number of data items. The returned value is always one, unless
the database supports duplicate data items, in which case it may be any number of items.

Cursor close

The DBC->close() method closes the DBC cursor, after which the cursor may no longer be used.
Although cursors are implicitly closed when the database they point to are closed, it is good
programming practice to explicitly close cursors. In addition, in transactional systems, cursors
may not exist outside of a transaction and so must be explicitly closed.

../api_reference/C/dbccount.html
../api_reference/C/dbccount.html
../api_reference/C/dbcclose.html
../api_reference/C/dbc.html

9/9/2013 DB Reference Guide Page 69

Chapter 4. Access Method Wrapup

Data alignment

The Berkeley DB access methods provide no guarantees about byte alignment for returned
key/data pairs, or callback functions which take DBT references as arguments, and
applications are responsible for arranging any necessary alignment. The DB_DBT_MALLOC,
DB_DBT_REALLOC, and DB_DBT_USERMEM flags may be used to store returned items in
memory of arbitrary alignment.

Retrieving and updating records in bulk

When retrieving or modifying large numbers of records, the number of method calls can often
dominate performance. Berkeley DB offers bulk get, put and delete interfaces which can
significantly increase performance for some applications.

Bulk retrieval

To retrieve records in bulk, an application buffer must be specified to the DB->get() or DBC-
>get() methods. This is done in the C API by setting the data and ulen fields of the data DBT
to reference an application buffer, and the flags field of that structure to DB_DBT_USERMEM.
In the Berkeley DB C++ and Java APIs, the actions are similar, although there are API-specific
methods to set the DBT values. Then, the DB_MULTIPLE or DB_MULTIPLE_KEY flags are
specified to the DB->get() or DBC->get() methods, which cause multiple records to be returned
in the specified buffer.

The difference between DB_MULTIPLE and DB_MULTIPLE_KEY is as follows: DB_MULTIPLE
returns multiple data items for a single key. For example, the DB_MULTIPLE flag would
be used to retrieve all of the duplicate data items for a single key in a single call. The
DB_MULTIPLE_KEY flag is used to retrieve multiple key/data pairs, where each returned key
may or may not have duplicate data items.

Once the DB->get() or DBC->get() method has returned, the application will walk through
the buffer handling the returned records. This is implemented for the C and C++ APIs
using four macros: DB_MULTIPLE_INIT, DB_MULTIPLE_NEXT, DB_MULTIPLE_KEY_NEXT, and
DB_MULTIPLE_RECNO_NEXT. For the Java API, this is implemented as three iterator classes:
MultipleDataEntry, MultipleKeyDataEntry, and MultipleRecnoDataEntry.

The DB_MULTIPLE_INIT macro is always called first. It initializes a local application variable
and the data DBT for stepping through the set of returned records. Then, the application
calls one of the remaining three macros: DB_MULTIPLE_NEXT, DB_MULTIPLE_KEY_NEXT, and
DB_MULTIPLE_RECNO_NEXT.

If the DB_MULTIPLE flag was specified to the DB->get() or DBC->get() method, the application
will always call the DB_MULTIPLE_NEXT macro. If the DB_MULTIPLE_KEY flag was specified to
the DB->get() or DBC->get() method, and the underlying database is a Btree or Hash database,
the application will always call the DB_MULTIPLE_KEY_NEXT macro. If the DB_MULTIPLE_KEY
flag was specified to the DB->get() or DBC->get() method, and the underlying database is a
Queue or Recno database, the application will always call the DB_MULTIPLE_RECNO_NEXT

../api_reference/C/dbt.html
../api_reference/C/dbt.html#dbt_DB_DBT_MALLOC
../api_reference/C/dbt.html#dbt_DB_DBT_REALLOC
../api_reference/C/dbt.html#dbt_DB_DBT_USERMEM
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html#dbt_DB_DBT_USERMEM
../api_reference/C/dbt.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/DB_MULTIPLE_INIT.html
../api_reference/C/DB_MULTIPLE_NEXT.html
../api_reference/C/DB_MULTIPLE_KEY_NEXT.html
../api_reference/C/DB_MULTIPLE_RECNO_NEXT.html
../java/com/sleepycat/db/MultipleDataEntry.html
../java/com/sleepycat/db/MultipleKeyDataEntry.html
../java/com/sleepycat/db/MultipleRecnoDataEntry.html
../api_reference/C/DB_MULTIPLE_INIT.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_NEXT.html
../api_reference/C/DB_MULTIPLE_KEY_NEXT.html
../api_reference/C/DB_MULTIPLE_RECNO_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/DB_MULTIPLE_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/DB_MULTIPLE_KEY_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/DB_MULTIPLE_RECNO_NEXT.html

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 70

macro. The DB_MULTIPLE_NEXT, DB_MULTIPLE_KEY_NEXT, and DB_MULTIPLE_RECNO_NEXT
macros are called repeatedly, until the end of the returned records is reached. The end of the
returned records is detected by the application's local pointer variable being set to NULL.

Note that if you want to use a cursor for bulk retrieval of records in a Btree database, you
should open the cursor using the DB_CURSOR_BULK flag. This optimizes the cursor for bulk
retrieval.

The following is an example of a routine that displays the contents of a Btree database using
the bulk return interfaces.

int
rec_display(DB *dbp)
{
 DBC *dbcp;
 DBT key, data;
 size_t retklen, retdlen;
 void *retkey, *retdata;
 int ret, t_ret;
 void *p;

 memset(&key, 0, sizeof(key));
 memset(&data, 0, sizeof(data));

 /* Review the database in 5MB chunks. */
#define BUFFER_LENGTH (5 * 1024 * 1024)
 if ((data.data = malloc(BUFFER_LENGTH)) == NULL)
 return (errno);
 data.ulen = BUFFER_LENGTH;
 data.flags = DB_DBT_USERMEM;

 /* Acquire a cursor for the database. */
 if ((ret = dbp->cursor(dbp, NULL, &dbcp, DB_CURSOR_BULK))
 != 0) {
 dbp->err(dbp, ret, "DB->cursor");
 free(data.data);
 return (ret);
 }

 for (;;) {
 /*
 * Acquire the next set of key/data pairs. This code
 * does not handle single key/data pairs that won't fit
 * in a BUFFER_LENGTH size buffer, instead returning
 * DB_BUFFER_SMALL to our caller.
 */
 if ((ret = dbcp->get(dbcp,
 &key, &data, DB_MULTIPLE_KEY | DB_NEXT)) != 0) {
 if (ret != DB_NOTFOUND)
 dbp->err(dbp, ret, "DBcursor->get");

../api_reference/C/DB_MULTIPLE_NEXT.html
../api_reference/C/DB_MULTIPLE_KEY_NEXT.html
../api_reference/C/DB_MULTIPLE_RECNO_NEXT.html

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 71

 break;
 }

 for (DB_MULTIPLE_INIT(p, &data);;) {
 DB_MULTIPLE_KEY_NEXT(p,
 &data, retkey, retklen, retdata, retdlen);
 if (p == NULL)
 break;
 printf("key: %.*s, data: %.*s\n",
 (int)retklen, (char *)retkey, (int)retdlen,
 (char *)retdata);
 }
 }

 if ((t_ret = dbcp->close(dbcp)) != 0) {
 dbp->err(dbp, ret, "DBcursor->close");
 if (ret == 0)
 ret = t_ret;
 }

 free(data.data);

 return (ret);
}

Bulk updates

To put records in bulk with the btree or hash access methods, construct bulk buffers in
the key and data DBT using DB_MULTIPLE_WRITE_INIT and DB_MULTIPLE_WRITE_NEXT. To
put records in bulk with the recno or queue access methods, construct bulk buffers in the
data DBT as before, but construct the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT
and DB_MULTIPLE_RECNO_WRITE_NEXT with a data size of zero;. In both cases, set the
DB_MULTIPLE flag to DB->put().

Alternatively, for btree and hash access methods, construct a single bulk buffer in
the key DBT using DB_MULTIPLE_WRITE_INIT and DB_MULTIPLE_KEY_WRITE_NEXT.
For recno and queue access methods, construct a bulk buffer in the key DBT using
DB_MULTIPLE_RECNO_WRITE_INIT and DB_MULTIPLE_RECNO_WRITE_NEXT. In both cases, set
the DB_MULTIPLE_KEY flag to DB->put().

A successful bulk operation is logically equivalent to a loop through each key/data pair,
performing a DB->put() for each one.

Bulk deletes

To delete all records with a specified set of keys with the btree or hash access
methods, construct a bulk buffer in the key DBT using DB_MULTIPLE_WRITE_INIT
and DB_MULTIPLE_WRITE_NEXT. To delete a set of records with the recno or queue
access methods, construct the key DBT using DB_MULTIPLE_RECNO_WRITE_INIT and
DB_MULTIPLE_RECNO_WRITE_NEXT with a data size of zero. In both cases, set the

../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_WRITE_NEXT.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbput.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_KEY_WRITE_NEXT.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbput.html
../api_reference/C/dbput.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_WRITE_NEXT.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_NEXT.html

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 72

DB_MULTIPLE flag to DB->del(). This is equivalent to calling DB->del() for each key in the bulk
buffer. In particular, if the database supports duplicates, all records with the matching key are
deleted.

Alternatively, to delete a specific set of key/data pairs, which may be items within a set
of duplicates, there are also two cases depending on whether the access method uses
record numbers for keys. For btree and hash access methods, construct a single bulk
buffer in the key DBT using DB_MULTIPLE_WRITE_INIT and DB_MULTIPLE_KEY_WRITE_NEXT.
For recno and queue access methods, construct a bulk buffer in the key DBT using
DB_MULTIPLE_RECNO_WRITE_INIT and DB_MULTIPLE_RECNO_WRITE_NEXT. In both cases, set
the DB_MULTIPLE_KEY flag to DB->del().

A successful bulk operation is logically equivalent to a loop through each key/data pair,
performing a DB->del() for each one.

Partial record storage and retrieval

It is possible to both store and retrieve parts of data items in all Berkeley DB access methods.
This is done by setting the DB_DBT_PARTIAL flag DBT structure passed to the Berkeley DB
method.

The DB_DBT_PARTIAL flag is based on the values of two fields of the DBT structure: dlen
and doff. The value of dlen is the number of bytes of the record in which the application is
interested. The value of doff is the offset from the beginning of the data item where those
bytes start.

For example, if the data item were ABCDEFGHIJKL, a doff value of 3 would indicate that the
bytes of interest started at D, and a dlen value of 4 would indicate that the bytes of interest
were DEFG.

When retrieving a data item from a database, the dlen bytes starting doff bytes from the
beginning of the record are returned, as if they comprised the entire record. If any or all of
the specified bytes do not exist in the record, the retrieval is still successful and any existing
bytes are returned.

When storing a data item into the database, the dlen bytes starting doff bytes from the
beginning of the specified key's data record are replaced by the data specified by the data
and size fields. If dlen is smaller than size, the record will grow, and if dlen is larger than
size, the record will shrink. If the specified bytes do not exist, the record will be extended
using nul bytes as necessary, and the store call will still succeed.

The following are various examples of the put case for the DB_DBT_PARTIAL flag. In all
examples, the initial data item is 20 bytes in length:

ABCDEFGHIJ0123456789

1. size = 20
doff = 0
dlen = 20
data = abcdefghijabcdefghij

../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE
../api_reference/C/dbdel.html
../api_reference/C/dbdel.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_KEY_WRITE_NEXT.html
../api_reference/C/dbt.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_INIT.html
../api_reference/C/DB_MULTIPLE_RECNO_WRITE_NEXT.html
../api_reference/C/dbcget.html#dbcget_DB_MULTIPLE_KEY
../api_reference/C/dbdel.html
../api_reference/C/dbdel.html
../api_reference/C/dbt.html#dbt_DB_DBT_PARTIAL
../api_reference/C/dbt.html
../api_reference/C/dbt.html#dbt_DB_DBT_PARTIAL
../api_reference/C/dbt.html
../api_reference/C/dbt.html#dbt_DB_DBT_PARTIAL

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 73

Result: The 20 bytes at offset 0 are replaced by the 20 bytes of
data; that is, the entire record is replaced.

ABCDEFGHIJ0123456789 -> abcdefghijabcdefghij

2. size = 10
doff = 20
dlen = 0
data = abcdefghij

Result: The 0 bytes at offset 20 are replaced by the 10 bytes of
data; that is, the record is extended by 10 bytes.

ABCDEFGHIJ0123456789 -> ABCDEFGHIJ0123456789abcdefghij

3. size = 10
doff = 10
dlen = 5
data = abcdefghij

Result: The 5 bytes at offset 10 are replaced by the 10 bytes of
data.

ABCDEFGHIJ0123456789 -> ABCDEFGHIJabcdefghij56789

4. size = 10
doff = 10
dlen = 0
data = abcdefghij

Result: The 0 bytes at offset 10 are replaced by the 10 bytes of
data; that is, 10 bytes are inserted into the record.

ABCDEFGHIJ0123456789 -> ABCDEFGHIJabcdefghij0123456789

5. size = 10
doff = 2
dlen = 15
data = abcdefghij

Result: The 15 bytes at offset 2 are replaced by the 10 bytes of
data.

ABCDEFGHIJ0123456789 -> ABabcdefghij789

6. size = 10
doff = 0
dlen = 0
data = abcdefghij

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 74

Result: The 0 bytes at offset 0 are replaced by the 10 bytes of
data; that is, the 10 bytes are inserted at the beginning of the
record.

ABCDEFGHIJ0123456789 -> abcdefghijABCDEFGHIJ0123456789

7. size = 0
doff = 0
dlen = 10
data = ""

Result: The 10 bytes at offset 0 are replaced by the 0 bytes of
data; that is, the first 10 bytes of the record are discarded.

ABCDEFGHIJ0123456789 -> 0123456789

8. size = 10
doff = 25
dlen = 0
data = abcdefghij

Result: The 0 bytes at offset 25 are replaced by the 10 bytes of
data; that is, 10 bytes are inserted into the record past the end
of the current data (\0 represents a nul byte).

ABCDEFGHIJ0123456789 -> ABCDEFGHIJ0123456789\0\0\0\0\0abcdefghij

Storing C/C++ structures/objects

Berkeley DB can store any kind of data, that is, it is entirely 8-bit clean. How you use this
depends, to some extent, on the application language you are using. In the C/C++ languages,
there are a couple of different ways to store structures and objects.

First, you can do some form of run-length encoding and copy your structure into another piece
of memory before storing it:

struct {
 char *data1;
 u_int32_t data2;
 ...
} info;
size_t len;
u_int8_t *p, data_buffer[1024];

p = &data_buffer[0];
len = strlen(info.data1);
memcpy(p, &len, sizeof(len));
p += sizeof(len);
memcpy(p, info.data1, len);

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 75

p += len;
memcpy(p, &info.data2, sizeof(info.data2));
p += sizeof(info.data2);
...

and so on, until all the fields of the structure have been loaded into the byte array. If
you want more examples, see the Berkeley DB logging routines (for example, btree/
btree_auto.c:__bam_split_log()). This technique is generally known as "marshalling". If you use
this technique, you must then un-marshall the data when you read it back:

struct {
 char *data1;
 u_int32_t data2;
 ...
} info;
size_t len;
u_int8_t *p, data_buffer[1024];
...
p = &data_buffer[0];
memcpy(&len, p, sizeof(len));
p += sizeof(len);
info.data1 = malloc(len);
memcpy(info.data1, p, len);
p += len;
memcpy(&info.data2, p, sizeof(info.data2));
p += sizeof(info.data2);
...

and so on.

The second way to solve this problem only works if you have just one variable length field in
the structure. In that case, you can declare the structure as follows:

struct {
 int a, b, c;
 u_int8_t buf[1];
} info;

Then, let's say you have a string you want to store in this structure. When you allocate the
structure, you allocate it as:

malloc(sizeof(struct info) + strlen(string));

Since the allocated memory is contiguous, you can the initialize the structure as:

info.a = 1;
info.b = 2;
info.c = 3;
memcpy(&info.buf[0], string, strlen(string) + 1);

and give it to Berkeley DB to store, with a length of:

sizeof(struct info) + strlen(string);

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 76

In this case, the structure can be copied out of the database and used without any additional
work.

Retrieved key/data permanence for C/C++

When using the non-cursor Berkeley DB calls to retrieve key/data items under the C/C++
APIs (for example, DB->get()), the memory to which the pointer stored into the DBT refers
is only valid until the next call to Berkeley DB using the DB handle. (This includes any use of
the returned DB handle, including by another thread of control within the process. For this
reason, when multiple threads are using the returned DB handle concurrently, one of the
DB_DBT_MALLOC, DB_DBT_REALLOC or DB_DBT_USERMEM flags must be specified with any
non-cursor DBT used for key or data retrieval.)

When using the cursor Berkeley DB calls to retrieve key/data items under the C/C++ APIs (for
example, DBC->get()), the memory to which the pointer stored into the DBT refers is only
valid until the next call to Berkeley DB using the DBC returned by DB->cursor().

Error support

Berkeley DB offers programmatic support for displaying error return values.

The db_strerror() function returns a pointer to the error message corresponding to any
Berkeley DB error return, similar to the ANSI C strerror function, but is able to handle both
system error returns and Berkeley DB specific return values.

For example:

int ret;
...
if ((ret = dbp->put(dbp, NULL, &key, &data, 0)) != 0) {
 fprintf(stderr, "put failed: %s\n", db_strerror(ret));
 return (1);
}

There are also two additional error methods, DB->err() and DB->errx(). These methods work
like the ANSI C X3.159-1989 (ANSI C) printf function, taking a printf-style format string and
argument list, and writing a message constructed from the format string and arguments.

The DB->err() method appends the standard error string to the constructed message; the
DB->errx() method does not. These methods provide simpler ways of displaying Berkeley
DB error messages. For example, if your application tracks session IDs in a variable called
session_id, it can include that information in its error messages:

Error messages can additionally be configured to always include a prefix (for example, the
program name) using the DB->set_errpfx() method.

#define DATABASE "access.db"

int ret;

(void)dbp->set_errpfx(dbp, program_name);

../api_reference/C/dbget.html
../api_reference/C/dbt.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbt.html#dbt_DB_DBT_MALLOC
../api_reference/C/dbt.html#dbt_DB_DBT_REALLOC
../api_reference/C/dbt.html#dbt_DB_DBT_USERMEM
../api_reference/C/dbt.html
../api_reference/C/dbcget.html
../api_reference/C/dbt.html
../api_reference/C/dbc.html
../api_reference/C/dbcursor.html
../api_reference/C/envstrerror.html
../api_reference/C/dberr.html
../api_reference/C/dberr.html
../api_reference/C/dbset_errpfx.html

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 77

if ((ret = dbp->open(dbp,
 NULL, DATABASE, NULL, DB_BTREE, DB_CREATE, 0664)) != 0) {
 dbp->err(dbp, ret, "%s", DATABASE);
 dbp->errx(dbp,
 "contact your system administrator: session ID was %d",
 session_id);
 return (1);
}

For example, if the program were called my_app and the open call returned an EACCESS
system error, the error messages shown would appear as follows:
my_app: access.db: Permission denied.
my_app: contact your system administrator: session ID was 14

Cursor stability

In the absence of locking, no guarantees are made about the stability of cursors in different
threads of control. However, the Btree, Queue and Recno access methods guarantee that
cursor operations, interspersed with any other operation in the same thread of control will
always return keys in order and will return each non-deleted key/data pair exactly once.
Because the Hash access method uses a dynamic hashing algorithm, it cannot guarantee
any form of stability in the presence of inserts and deletes unless transactional locking is
performed.

If locking was specified when the Berkeley DB environment was opened, but transactions are
not in effect, the access methods provide repeatable reads with respect to the cursor. That is,
a DB_CURRENT call on the cursor is guaranteed to return the same record as was returned on
the last call to the cursor.

In the presence of transactions, the Btree, Hash and Recno access methods provide degree
3 isolation (serializable transactions). The Queue access method provides degree 3 isolation
with the exception that it permits phantom records to appear between calls. That is, deleted
records are not locked, therefore another transaction may replace a deleted record between
two calls to retrieve it. The record would not appear in the first call but would be seen by the
second call. For readers not enclosed in transactions, all access method calls provide degree 2
isolation, that is, reads are not repeatable. A transaction may be declared to run with degree
2 isolation by specifying the DB_READ_COMMITTED flag. Finally, Berkeley DB provides degree
1 isolation when the DB_READ_UNCOMMITTED flag is specified; that is, reads may see data
modified in transactions which have not yet committed.

For all access methods, a cursor scan of the database performed within the context of
a transaction is guaranteed to return each key/data pair once and only once, except in
the following case. If, while performing a cursor scan using the Hash access method, the
transaction performing the scan inserts a new pair into the database, it is possible that
duplicate key/data pairs will be returned.

Database limits

The largest database file that Berkeley DB can handle depends on the page size selected by
the application. Berkeley DB stores database file page numbers as unsigned 32-bit numbers

../api_reference/C/dbcget.html#dbcget_DB_CURRENT
../api_reference/C/dbcget.html#dbcget_DB_READ_COMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 78

and database file page sizes as unsigned 16-bit numbers. Using the maximum database
page size of 65536, this results in a maximum database file size of 248 (256 terabytes). The
minimum database page size is 512 bytes, which results in a minimum maximum database size
of 241 (2 terabytes).

The largest database file Berkeley DB can support is potentially further limited if the host
system does not have filesystem support for files larger than 232, including the ability to seek
to absolute offsets within those files.

The largest key or data item that Berkeley DB can support is 232, or more likely limited
by available memory. Specifically, while key and data byte strings may be of essentially
unlimited length, any one of them must fit into available memory so that it can be returned
to the application. As some of the Berkeley DB interfaces return both key and data items
to the application, those interfaces will require that any key/data pair fit simultaneously
into memory. Further, as the access methods may need to compare key and data items with
other key and data items, it may be a requirement that any two key or two data items fit
into available memory. Finally, when writing applications supporting transactions, it may be
necessary to have an additional copy of any data item in memory for logging purposes.

The maximum Btree depth is 255.

Disk space requirements

It is possible to estimate the total database size based on the size of the data. The following
calculations are an estimate of how many bytes you will need to hold a set of data and then
how many pages it will take to actually store it on disk.

Space freed by deleting key/data pairs from a Btree or Hash database is never returned to
the filesystem, although it is reused where possible. This means that the Btree and Hash
databases are grow-only. If enough keys are deleted from a database that shrinking the
underlying file is desirable, you should use the DB->compact() method to reclaim disk space.
Alternatively, you can create a new database and copy the records from the old one into it.

These are rough estimates at best. For example, they do not take into account overflow
records, filesystem metadata information, large sets of duplicate data items (where the key
is only stored once), or real-life situations where the sizes of key and data items are wildly
variable, and the page-fill factor changes over time.

Btree

The formulas for the Btree access method are as follows:

useful-bytes-per-page = (page-size - page-overhead) * page-fill-factor

bytes-of-data = n-records *
 (bytes-per-entry + page-overhead-for-two-entries)

n-pages-of-data = bytes-of-data / useful-bytes-per-page

../api_reference/C/dbcompact.html

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 79

total-bytes-on-disk = n-pages-of-data * page-size

The useful-bytes-per-page is a measure of the bytes on each page that will actually hold the
application data. It is computed as the total number of bytes on the page that are available
to hold application data, corrected by the percentage of the page that is likely to contain
data. The reason for this correction is that the percentage of a page that contains application
data can vary from close to 50% after a page split to almost 100% if the entries in the database
were inserted in sorted order. Obviously, the page-fill-factor can drastically alter the amount
of disk space required to hold any particular data set. The page-fill factor of any existing
database can be displayed using the db_stat utility.

The page-overhead for Btree databases is 26 bytes. As an example, using an 8K page size, with
an 85% page-fill factor, there are 6941 bytes of useful space on each page:

6941 = (8192 - 26) * .85

The total bytes-of-data is an easy calculation: It is the number of key or data items plus the
overhead required to store each item on a page. The overhead to store a key or data item on
a Btree page is 5 bytes. So, it would take 1560000000 bytes, or roughly 1.34GB of total data to
store 60,000,000 key/data pairs, assuming each key or data item was 8 bytes long:

1560000000 = 60000000 * ((8 + 5) * 2)

The total pages of data, n-pages-of-data, is the bytes-of-data divided by the useful-bytes-
per-page. In the example, there are 224751 pages of data.

224751 = 1560000000 / 6941

The total bytes of disk space for the database is n-pages-of-data multiplied by the page-size.
In the example, the result is 1841160192 bytes, or roughly 1.71GB.

1841160192 = 224751 * 8192

Hash

The formulas for the Hash access method are as follows:

useful-bytes-per-page = (page-size - page-overhead)

bytes-of-data = n-records *
 (bytes-per-entry + page-overhead-for-two-entries)

n-pages-of-data = bytes-of-data / useful-bytes-per-page

total-bytes-on-disk = n-pages-of-data * page-size

The useful-bytes-per-page is a measure of the bytes on each page that will actually hold the
application data. It is computed as the total number of bytes on the page that are available
to hold application data. If the application has explicitly set a page-fill factor, pages will not

../api_reference/C/db_stat.html

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 80

necessarily be kept full. For databases with a preset fill factor, see the calculation below.
The page-overhead for Hash databases is 26 bytes and the page-overhead-for-two-entries is 6
bytes.

As an example, using an 8K page size, there are 8166 bytes of useful space on each page:

8166 = (8192 - 26)

The total bytes-of-data is an easy calculation: it is the number of key/data pairs plus the
overhead required to store each pair on a page. In this case that's 6 bytes per pair. So,
assuming 60,000,000 key/data pairs, each of which is 8 bytes long, there are 1320000000
bytes, or roughly 1.23GB of total data:

1320000000 = 60000000 * (16 + 6)

The total pages of data, n-pages-of-data, is the bytes-of-data divided by the useful-bytes-
per-page. In this example, there are 161646 pages of data.

161646 = 1320000000 / 8166

The total bytes of disk space for the database is n-pages-of-data multiplied by the page-size.
In the example, the result is 1324204032 bytes, or roughly 1.23GB.

1324204032 = 161646 * 8192

Now, let's assume that the application specified a fill factor explicitly. The fill factor indicates
the target number of items to place on a single page (a fill factor might reduce the utilization
of each page, but it can be useful in avoiding splits and preventing buckets from becoming too
large). Using our estimates above, each item is 22 bytes (16 + 6), and there are 8166 useful
bytes on a page (8192 - 26). That means that, on average, you can fit 371 pairs per page.

371 = 8166 / 22

However, let's assume that the application designer knows that although most items are 8
bytes, they can sometimes be as large as 10, and it's very important to avoid overflowing
buckets and splitting. Then, the application might specify a fill factor of 314.

314 = 8166 / 26

With a fill factor of 314, then the formula for computing database size is

n-pages-of-data = npairs / pairs-per-page

or 191082.

191082 = 60000000 / 314

At 191082 pages, the total database size would be 1565343744, or 1.46GB.

1565343744 = 191082 * 8192

There are a few additional caveats with respect to Hash databases. This discussion assumes
that the hash function does a good job of evenly distributing keys among hash buckets. If
the function does not do this, you may find your table growing significantly larger than you
expected. Secondly, in order to provide support for Hash databases coexisting with other

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 81

databases in a single file, pages within a Hash database are allocated in power-of-two chunks.
That means that a Hash database with 65 buckets will take up as much space as a Hash
database with 128 buckets; each time the Hash database grows beyond its current power-of-
two number of buckets, it allocates space for the next power-of-two buckets. This space may
be sparsely allocated in the file system, but the files will appear to be their full size. Finally,
because of this need for contiguous allocation, overflow pages and duplicate pages can be
allocated only at specific points in the file, and this too can lead to sparse hash tables.

Specifying a Berkeley DB schema using SQL DDL

When starting a new Berkeley DB project, much of the code that you must write is dedicated
to defining the BDB environment: what databases it contains, the types of the databases, and
so forth. Also, since records in BDB are just byte arrays, you must write code that assembles
and interprets these byte arrays.

Much of this code can be written automatically (in C) by the db_sql_codegen utility. To use
it, you first specify the schema of your Berkeley DB environment in SQL Data Definition
Language (DDL). Then you invoke the db_sql_codegen command, giving the DDL as input.
db_sql_codegen reads the DDL, and writes C code that implements a storage-layer API
suggested by the DDL.

The generated API includes a general-purpose initialization function, which sets up the
environment and the databases (creating them if they don't already exist). It also includes C
structure declarations for each record type, and numerous specialized functions for storing
and retrieving those records.

db_sql_codegen can also produce a simple test program that exercises the generated API.
This program is useful as an example of how to use the API. It contains calls to all of the
interface functions, along with commentary explaining what the code is doing.

Once the storage layer API is produced, your application may use it as is, or you may
customize it as much as you like by editing the generated source code. Be warned, however:
db_sql_codegen is a one-way process; there is no way to automatically incorporate
customizations into newly generated code, if you decide to run db_sql_codegen again.

To learn more about db_sql_codegen, please consult the db_sql_codegen utility manual page
in the Berkeley DB C API Reference Guide.

Access method tuning

There are a few different issues to consider when tuning the performance of Berkeley DB
access method applications.

access method
An application's choice of a database access method can significantly affect
performance. Applications using fixed-length records and integer keys are likely to get
better performance from the Queue access method. Applications using variable-length
records are likely to get better performance from the Btree access method, as it tends
to be faster for most applications than either the Hash or Recno access methods.
Because the access method APIs are largely identical between the Berkeley DB access

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 82

methods, it is easy for applications to benchmark the different access methods against
each other. See Selecting an access method (page 16) for more information.

cache size
The Berkeley DB database cache defaults to a fairly small size, and most applications
concerned with performance will want to set it explicitly. Using a too-small cache
will result in horrible performance. The first step in tuning the cache size is to use
the db_stat utility (or the statistics returned by the DB->stat() function) to measure
the effectiveness of the cache. The goal is to maximize the cache's hit rate. Typically,
increasing the size of the cache until the hit rate reaches 100% or levels off will yield
the best performance. However, if your working set is sufficiently large, you will be
limited by the system's available physical memory. Depending on the virtual memory
and file system buffering policies of your system, and the requirements of other
applications, the maximum cache size will be some amount smaller than the size of
physical memory. If you find that the db_stat utility shows that increasing the cache
size improves your hit rate, but performance is not improving (or is getting worse),
then it's likely you've hit other system limitations. At this point, you should review the
system's swapping/paging activity and limit the size of the cache to the maximum size
possible without triggering paging activity. Finally, always remember to make your
measurements under conditions as close as possible to the conditions your deployed
application will run under, and to test your final choices under worst-case conditions.

shared memory
By default, Berkeley DB creates its database environment shared regions in filesystem
backed memory. Some systems do not distinguish between regular filesystem pages
and memory-mapped pages backed by the filesystem, when selecting dirty pages
to be flushed back to disk. For this reason, dirtying pages in the Berkeley DB cache
may cause intense filesystem activity, typically when the filesystem sync thread or
process is run. In some cases, this can dramatically affect application throughput. The
workaround to this problem is to create the shared regions in system shared memory
(DB_SYSTEM_MEM) or application private memory (DB_PRIVATE), or, in cases where
this behavior is configurable, to turn off the operating system's flushing of memory-
mapped pages.

large key/data items
Storing large key/data items in a database can alter the performance characteristics
of Btree, Hash and Recno databases. The first parameter to consider is the database
page size. When a key/data item is too large to be placed on a database page, it
is stored on "overflow" pages that are maintained outside of the normal database
structure (typically, items that are larger than one-quarter of the page size are
deemed to be too large). Accessing these overflow pages requires at least one
additional page reference over a normal access, so it is usually better to increase
the page size than to create a database with a large number of overflow pages. Use
the db_stat utility (or the statistics returned by the DB->stat() method) to review the
number of overflow pages in the database.

The second issue is using large key/data items instead of duplicate data items. While
this can offer performance gains to some applications (because it is possible to
retrieve several data items in a single get call), once the key/data items are large
enough to be pushed off-page, they will slow the application down. Using duplicate
data items is usually the better choice in the long run.

../api_reference/C/dbstat.html
../api_reference/C/db_stat.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/db_stat.html
../api_reference/C/dbstat.html

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 83

A common question when tuning Berkeley DB applications is scalability. For example, people
will ask why, when adding additional threads or processes to an application, the overall
database throughput decreases, even when all of the operations are read-only queries.

First, while read-only operations are logically concurrent, they still have to acquire mutexes
on internal Berkeley DB data structures. For example, when searching a linked list and
looking for a database page, the linked list has to be locked against other threads of control
attempting to add or remove pages from the linked list. The more threads of control you add,
the more contention there will be for those shared data structure resources.

Second, once contention starts happening, applications will also start to see threads of control
convoy behind locks (especially on architectures supporting only test-and-set spin mutexes,
rather than blocking mutexes). On test-and-set architectures, threads of control waiting
for locks must attempt to acquire the mutex, sleep, check the mutex again, and so on.
Each failed check of the mutex and subsequent sleep wastes CPU and decreases the overall
throughput of the system.

Third, every time a thread acquires a shared mutex, it has to shoot down other references to
that memory in every other CPU on the system. Many modern snoopy cache architectures have
slow shoot down characteristics.

Fourth, schedulers don't care what application-specific mutexes a thread of control might
hold when de-scheduling a thread. If a thread of control is descheduled while holding a shared
data structure mutex, other threads of control will be blocked until the scheduler decides to
run the blocking thread of control again. The more threads of control that are running, the
smaller their quanta of CPU time, and the more likely they will be descheduled while holding
a Berkeley DB mutex.

The results of adding new threads of control to an application, on the application's
throughput, is application and hardware specific and almost entirely dependent on the
application's data access pattern and hardware. In general, using operating systems that
support blocking mutexes will often make a tremendous difference, and limiting threads of
control to to some small multiple of the number of CPUs is usually the right choice to make.

Access method FAQ

1. Is a Berkeley DB database the same as a "table"?

Yes; "tables" are databases, "rows" are key/data pairs, and "columns" are application-
encapsulated fields within a data item (to which Berkeley DB does not directly provide
access).

2. I'm getting an error return in my application, but I can't figure out what the library is
complaining about.

See DB_ENV->set_errcall(), DB_ENV->set_errfile() and DB->set_errfile() for ways to get
additional information about error returns from Berkeley DB.

3. Are Berkeley DB databases portable between architectures with different integer
sizes and different byte orders ?

../api_reference/C/envset_errcall.html
../api_reference/C/envset_errfile.html
../api_reference/C/dbset_errfile.html

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 84

Yes. Specifically, databases can be moved between 32- and 64-bit machines, as well as
between little- and big-endian machines. See Selecting a byte order (page 25) for more
information.

4. I'm seeing database corruption when creating multiple databases in a single physical
file.

This problem is usually the result of DB handles not sharing an underlying database
environment. See Opening multiple databases in a single file (page 43) for more
information.

5. I'm using integers as keys for a Btree database, and even though the key/data pairs
are entered in sorted order, the page-fill factor is low.

This is usually the result of using integer keys on little-endian architectures such as the
x86. Berkeley DB sorts keys as byte strings, and little-endian integers don't sort well
when viewed as byte strings. For example, take the numbers 254 through 257. Their byte
patterns on a little-endian system are:
254 fe 0 0 0
255 ff 0 0 0
256 0 1 0 0
257 1 1 0 0

If you treat them as strings, then they sort badly:
256
257
254
255

On a big-endian system, their byte patterns are:
254 0 0 0 fe
255 0 0 0 ff
256 0 0 1 0
257 0 0 1 1

and so, if you treat them as strings they sort nicely. Which means, if you use steadily
increasing integers as keys on a big-endian system Berkeley DB behaves well and you get
compact trees, but on a little-endian system Berkeley DB produces much less compact
trees. To avoid this problem, you may want to convert the keys to flat text or big-endian
representations, or provide your own Btree comparison (page 27)

6. Is there any way to avoid double buffering in the Berkeley DB system?

While you cannot avoid double buffering entirely, there are a few things you can do to
address this issue:

First, the Berkeley DB cache size can be explicitly set. Rather than allocate additional
space in the Berkeley DB cache to cover unexpectedly heavy load or large table
sizes, double buffering may suggest you size the cache to function well under normal

../api_reference/C/db.html

Library Version 11.2.5.3 Access Method Wrapup

9/9/2013 DB Reference Guide Page 85

conditions, and then depend on the file buffer cache to cover abnormal conditions.
Obviously, this is a trade-off, as Berkeley DB may not then perform as well as usual under
abnormal conditions.

Second, depending on the underlying operating system you're using, you may be able to
alter the amount of physical memory devoted to the system's file buffer cache. Altering
this type of resource configuration may require appropriate privileges, or even operating
system reboots and/or rebuilds, on some systems.

Third, changing the size of the Berkeley DB environment regions can change the amount
of space the operating system makes available for the file buffer cache, and it's often
worth considering exactly how the operating system is dividing up its available memory.
Further, moving the Berkeley DB database environment regions from filesystem backed
memory into system memory (or heap memory), can often make additional system
memory available for the file buffer cache, especially on systems without a unified buffer
cache and VM system.

Finally, for operating systems that allow buffering to be turned off, specifying the
DB_DIRECT_DB and DB_LOG_DIRECT flags will attempt to do so.

7. I'm seeing database corruption when I run out of disk space.

Berkeley DB can continue to run when when out-of-disk-space errors occur, but it requires
the application to be transaction protected. Applications which do not enclose update
operations in transactions cannot recover from out-of-disk-space errors, and the result of
running out of disk space may be database corruption.

8. How can I associate application information with a DB or DB_ENV handle?

In the C API, the DB and DB_ENV structures each contain an "app_private" field intended
to be used to reference application-specific information. See the db_create() and
db_env_create() documentation for more information.

In the C++ or Java APIs, the easiest way to associate application-specific data with a
handle is to subclass the Db or DbEnv, for example subclassing Db to get MyDb. Objects of
type MyDb will still have the Berkeley DB API methods available on them, and you can put
any extra data or methods you want into the MyDb class. If you are using "callback" APIs
that take Db or DbEnv arguments (for example, DB->set_bt_compare()) these will always
be called with the Db or DbEnv objects you create. So if you always use MyDb objects, you
will be able to take the first argument to the callback function and cast it to a MyDb (in C
++, cast it to (MyDb*)). That will allow you to access your data members or methods.

../api_reference/C/envset_flags.html#set_flags_DB_DIRECT_DB
../api_reference/C/envlog_set_config.html#log_set_config_DB_LOG_DIRECT
../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/dbcreate.html
../api_reference/C/envcreate.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html
../api_reference/CXX/db.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html
../api_reference/C/dbset_bt_compare.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html

9/9/2013 DB Reference Guide Page 86

Chapter 5. Java API
Java configuration

Building the Berkeley DB java classes, the examples and the native support library is
integrated into the normal build process. See Configuring Berkeley DB and Building the Java
API in the Berkeley DB Installation and Build Guide for more information.

We expect that you already installed the Java JDK or equivalent on your system. For the
sake of discussion, we assume that it is in a directory called db-VERSION; for example, you
downloaded a Berkeley DB archive, and you did not change the top-level directory name.
The files related to Java are in three subdirectories of db-VERSION: java (the java source
files), libdb_java (the C++ files that provide the "glue" between java and Berkeley DB) and
examples_java (containing all examples code). The directory tree looks like this:
db-VERSION
|-- java
| `-- src
| `-- com
| `-- sleepycat
| |-- bind
| |-- db
| | `-- ...
| `-- util
|-- examples_java
| `-- src
| `-- db
| `-- ...
`-- libdb_java
 `-- ...

This naming conforms to the de facto standard for naming java packages. When the java
code is built, it is placed into two jar files: db.jar, containing the db package, and
dbexamples.jar, containing the examples.

For your application to use Berkeley DB successfully, you must set your CLASSPATH
environment variable to include the full pathname of the db jar files as well as the classes
in your java distribution. On UNIX, CLASSPATH is a colon-separated list of directories and jar
files; on Windows, it is separated by semicolons. On UNIX, the jar files are put in your build
directory, and when you do the make install step, they are copied to the lib directory of your
installation tree. On Windows, the jar files are placed in the Release or Debug subdirectory
with your other objects.

The Berkeley DB Java classes are mostly implemented in native methods. Before you can use
them, you need to make sure that the DLL or shared library containing the native methods can
be found by your Java runtime. On Windows, you should set your PATH variable to include:
db-VERSION\build_windows\Release

On UNIX, you should set the LD_LIBRARY_PATH environment variable or local equivalent to
include the Berkeley DB library installation directory. Of course, the standard install directory
may have been changed for your site; see your system administrator for details.

../installation/build_unix_conf.html
../installation/build_win_java.html
../installation/build_win_java.html

Library Version 11.2.5.3 Java API

9/9/2013 DB Reference Guide Page 87

On other platforms, the path can be set on the command line as follows (assuming the shared
library is in /usr/local/BerkeleyDB/lib:)

% java -Djava.library.path=/usr/local/BerkeleyDB/lib ...

Regardless, if you get the following exception when you run, you probably do not have the
library search path configured correctly:

java.lang.UnsatisfiedLinkError

Different Java interpreters provide different error messages if the CLASSPATH value is
incorrect, a typical error is the following:

java.lang.NoClassDefFoundError

To ensure that everything is running correctly, you may want to try a simple test from the
example programs in

db-VERSION/examples_java/src/db

For example, the following sample program will prompt for text input lines, which are then
stored in a Btree database named access.db in your current directory:

% java db.AccessExample

Try giving it a few lines of input text and then end-of-file. Before it exits, you should see a
list of the lines you entered display with data items. This is a simple check to make sure the
fundamental configuration is working correctly.

Compatibility

The Berkeley DB Java API has been tested with the Sun Microsystem's JDK 1.5 (Java 5) on
Linux, Windows and OS X. It should work with any JDK 1.5- compatible environment.

Java programming notes

Although the Java API parallels the Berkeley DB C++/C interface in many ways, it differs
where the Java language requires. For example, the handle method names are camel-cased
and conform to Java naming patterns. (The C++/C method names are currently provided, but
are deprecated.)

1. The Java runtime does not automatically close Berkeley DB objects on finalization. There
are several reasons for this. One is that finalization is generally run only when garbage
collection occurs, and there is no guarantee that this occurs at all, even on exit. Allowing
specific Berkeley DB actions to occur in ways that cannot be replicated seems wrong.
Second, finalization of objects may happen in an arbitrary order, so we would have to
do extra bookkeeping to make sure that everything was closed in the proper order. The
best word of advice is to always do a close() for any matching open() call. Specifically, the
Berkeley DB package requires that you explicitly call close on each individual Database
and Cursor object that you opened. Your database activity may not be synchronized to
disk unless you do so.

../java/com/sleepycat/db/Database.html
../java/com/sleepycat/db/Cursor.html

Library Version 11.2.5.3 Java API

9/9/2013 DB Reference Guide Page 88

2. Some methods in the Java API have no return type, and throw a DatabaseException when
an severe error arises. There are some notable methods that do have a return value, and
can also throw an exception. The "get" methods in Database and Cursor both return 0
when a get succeeds, DB_NOTFOUND (page 259) when the key is not found, and throw
an error when there is a severe error. This approach allows the programmer to check for
typical data-driven errors by watching return values without special casing exceptions.

An object of type MemoryException is thrown when a Dbt is too small to hold the
corresponding key or data item.

An object of type DeadlockException is thrown when a deadlock would occur.

An object of type RunRecoveryException, a subclass of DatabaseException, is thrown
when there is an error that requires a recovery of the database using db_recover utility.

An object of type IllegalArgumentException a standard Java Language exception, is
thrown when there is an error in method arguments.

An object of type OutOfMemoryError is thrown when the system cannot provide enough
memory to complete the operation (the ENOMEM system error on UNIX).

3. If there are embedded nulls in the curslist argument for
Database.join(com.sleepycat.db.Cursor[], com.sleepycat.db.JoinConfig), they will be
treated as the end of the list of cursors, even if you may have allocated a longer array.
Fill in all the cursors in your array unless you intend to cut it short.

4. If you are using custom class loaders in your application, make sure that the Berkeley DB
classes are loaded by the system class loader, not a custom class loader. This is due to a
JVM bug that can cause an access violation during finalization (see the bug 4238486 in Sun
Microsystem's Java Bug Database).

Java FAQ

1. On what platforms is the Berkeley DB Java API supported?

All platforms supported by Berkeley DB that have a JVM compatible with J2SE 1.4 or
above.

2. How does the Berkeley DB Java API relate to the J2EE standard?

The Berkeley DB Java API does not currently implement any part of the J2EE standard.
That said, it does implement the implicit standard for Java Java Collections. The concept
of a transaction exists in several Java packages (J2EE, XA, JINI to name a few). Support
for these APIs will be added based on demand in future versions of Berkeley DB.

3. How should I incorporate db.jar and the db native library into a Tomcat or other J2EE
application servers?

Tomcat and other J2EE application servers have the ability to rebuild and reload code
automatically. When using Tomcat this is the case when "reloadable" is set to "true". If
your WAR file includes the db.jar it too will be reloaded each time your code is reloaded.

../java/com/sleepycat/db/DatabaseException.html
../java/com/sleepycat/db/Database.html
../java/com/sleepycat/db/Cursor.html
../java/com/sleepycat/db/MemoryException.html
../java/com/sleepycat/db/DeadlockException.html
../java/com/sleepycat/db/RunRecoveryException.html
../java/com/sleepycat/db/DatabaseException.html
../api_reference/C/db_recover.html
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/IllegalArgumentException.html
http://download.oracle.com/javase/1.5.0/docs/api/java/lang/OutOfMemoryError.html
../java/com/sleepycat/db/Database.html#join(com.sleepycat.db.Cursor[], com.sleepycat.db.JoinConfig)
http://download.oracle.com/javase/1.5.0/docs/guide/collections/

Library Version 11.2.5.3 Java API

9/9/2013 DB Reference Guide Page 89

This causes exceptions as the native library can't be loaded more than once and there
is no way to unload native code. The solution is to place the db.jar in $TOMCAT_HOME/
common/lib and let Tomcat load that library once at start time rather than putting it into
the WAR that gets reloaded over and over.

4. Can I use the Berkeley DB Java API from within a EJB, a Servlet or a JSP page?

Yes. The Berkeley DB Java API can be used from within all the popular J2EE application
servers in many different ways.

5. During one of the first calls to the Berkeley DB Java API, a DbException is thrown with
a "Bad file number" or "Bad file descriptor" message.

There are known large-file support bugs under JNI in various releases of the JDK. Please
upgrade to the latest release of the JDK, and, if that does not solve the problem, disable
big file support using the --disable-largefile configuration option.

6. How can I use native methods from a debug build of the Java library?

Set Java's library path so that the debug version of Berkeley DB's Java library appears, but
the release version does not. Berkeley DB tries to load the release library first, and if that
fails tries the debug library.

7. Why is ClassNotFoundException thrown when adding a record to the database, when a
SerialBinding is used?

This problem occurs if you copy the db.jar file into the Java extensions (ext) directory.
This will cause the database code to run under the System class loader, and it won't be
able to find your application classes.

You'll have to actually remove db.jar from the Java extension directory. If you have more
than one installation of Java, be sure to remove it from all of them. This is necessary
even if db.jar is specified in the classpath.

An example of the exception is:

collections.ship.basic.SupplierKey
at java.net.URLClassLoader$1.run(Unknown Source)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
at java.lang.ClassLoader.loadClass(Unknown Source)
at java.lang.ClassLoader.loadClassInternal(Unknown Source)
at java.lang.Class.forName0(Native Method)
at java.lang.Class.forName(Unknown Source)
at com.sleepycat.bind.serial.StoredClassCatalog.
getClassInfo(StoredClassCatalog.java:211)
...

8. I'm upgrading my Java application to Berkeley DB 4.3. Can I use the
com.sleepycat.db.internal package rather than porting my code to the new API?

Library Version 11.2.5.3 Java API

9/9/2013 DB Reference Guide Page 90

While it is possible to use the low-level API from applications, there are some caveats
that should be considered when upgrading. The first is that the internal API depends on
some classes in the public API such as DatabaseEntry.

In addition, the internal API is closer to the C API and doesn't have some of the default
settings that were part of the earlier Java API. For example, applications will need to set
the DB_THREAD flag explicitly if handles are to be used from multiple threads, or subtle
errors may occur.

9/9/2013 DB Reference Guide Page 91

Chapter 6. C# API
You can use Berkeley DB in your application through the C# API. To understand the
application concepts relating to Berkeley DB, see the first few chapters of this manual. For
a general discussion on how to build Berkeley DB applications, see the Berkeley DB Getting
Started Guides of C or C++. You can also review the example code of C and C++ from the
examples_c and examples_cxx directories. For a description of all the classes, functions, and
enumerations of Berkeley DB C# API, see the Berkeley DB C# API Reference Guide.

A separate Visual Studio solution is provided to build the Berkeley DB C# classes, the
examples, and the native support library. See Building the C# API in the Berkeley DB
Installation and Build Guide for more information.

The C# API requires .NET framework version 2.0 or above, and expects that it has already
been installed on your system. For the sake of discussion, we assume that the Berkeley DB
source is in a directory called db-VERSION; for example, you downloaded a Berkeley DB
archive, and you did not change the top-level directory name. The files related to C# are
in four subdirectories of db-VERSION: csharp (the C# source files), libdb_csharp (the C++
files that provide the "glue" between C# and Berkeley DB,) examples_csharp (containing all
example code) and test\scr037 (containing NUnit tests for the API).

Building the C# API produces a managed assembly libdb_dotnetVERSION.dll, containing
the API, and two native libraries: libdb_csharpVERSION.dll and libdbVERSION.dll. (For
all three files, VERSION is [MAJOR][MINOR], i.e. for version 4.8 the managed assembly is
libdb_dotnet48.dll.) Following the existing convention, native libraries are placed in
either db-VERSION\build_windows\Win32or db-VERSION\build_windows\x64, depending
upon the platform being targeted. In all cases, the managed assembly will be placed in
db-VERSION\build_windows\AnyCPU.

Because the C# API uses P/Invoke, for your application to use Berkeley DB successfully,
the .NET framework needs to be able to locate the native libaries. This means the native
libraries need to either be copied to your application's directory, the Windows or System
directory, or the location of the libraries needs to be added to the PATH environment variable.
See the MSDN documentation of the DllImport attribute and Dynamic-Link Library Search
Order for further information.

If you get the following exception when you run, the .NET platform probably is unable to
locate the native libraries:

System.TypeInitializationException

To ensure that everything is running correctly, you may want to try a simple test from the
example programs in the db-VERSION\examples_csharp directory.

For example, the ex_access sample program will prompt for text input lines, which are
then stored in a Btree database named access.db. It is designed to be run from either the
db-VERSION\build_windows\Debug or db-VERSION\build_windows\Release directory.
Try giving it a few lines of input text and then a blank line. Before it exits, you should see a
list of the lines you entered display with data items. This is a simple check to make sure the
fundamental configuration is working correctly.

http://download.oracle.com/docs/cd/E17076_02/html/csharp/Index.html
../installation/build_win_csharp.html#build_win_csharp.title

Library Version 11.2.5.3 C# API

9/9/2013 DB Reference Guide Page 92

Compatibility

The Berkeley DB C# API has been tested with the Microsoft .NET Framework versions 2.0, 3.0,
3.5, and 4.0.

9/9/2013 DB Reference Guide Page 93

Chapter 7. Standard Template Library API

Dbstl introduction

Dbstl is a C++ STL style API that provides for Berkeley DB usage. It allows for the storage and
retrieval of data/objects of any type using Berkeley DB databases, but with an interface that
mimics that of C++ STL containers. Dbstl provides access to all of the functionality of Berkeley
DB available via this STL-style API.

With proper configuration, dbstl is able to store/retrieve any complex data types. There is
no need to perform repetitive marshalling and unmarshalling of data. Dbstl also properly
manages the life-cycle of all Berkeley DB structures and objects. All example methods
referred to in this chapter can be found in the StlAdvancedFeaturesExample class in the
$DbSrc/examples_stl/StlAdvancedFeatures.cpp file, and you can build the example in $DbSrc/
build_unix directory like this: make exstl_advancedfeatures, where DbSrc is the source
directory for Berkeley DB.

Standards compatible

Dbstl is composed of many container and iterator class templates. These containers and
iterators correspond exactly to each container and iterator available in the C++ STL API,
including identical sets of methods. This allows existing algorithms, functions and container-
adapters for C++ STL to use dbstl containers through its standard iterators. This means that
existing STL code can manipulate Berkeley DB databases. As a result, existing C++ STL code
can very easily use dbstl to gain persistence and transaction guarantees.

Performance overhead

Because dbstl uses C++ template technologies, its performance overhead is minimal.

The dbstl API performs almost equally to the C API, as measured by two different
implementations of the TPC-B benchmark: ex_tpcb and exstl_tpcb.

Portability

The degree to which dbstl is portable to a new platform is determined by whether Berkeley DB
is available on the platform, as well as whether an appropriate C++ compiler is available on
the platform.

For information on porting Berkeley DB to new platforms, see the Berkeley DB Porting Guide.

Almost all the advanced C++ template features are used in dbstl, including:

• member function templates

• member function template overloads

• partial specialization

• default template parameters.

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 94

For this reason, you need a standards-compatible C++ compiler to build dbstl. As of this
writing, the following compilers are known to build dbstl successfully:

• MSVC8

• gcc3.4.4 and above

• Intel C++ 9 and above

For *nix platforms, if you can successfully configure your Berkeley DB build script with --
enable-stl, then you should be able to successfully build dbstl library and application code
using it.

Besides its own test suite, dbstl has also been tested against, and passes, the following test
suites:

• MS STL test suite

• SGI STL test suite

Dbstl typical use cases
Among others, the following are some typical use cases where dbstl would be prefered over C
++ STL:

• Working with a large amount of data, more than can reside in memory. Using C++ STL would
force a number of page swaps, which will degrade performance. When using dbstl, data is
stored in a database and Berkeley DB ensures the needed data is in memory, so that the
overall performance of the machine is not slowed down.

• Familiar Interface. dbstl provides a familiar interface to Berkeley DB, hiding the marshalling
and unmashalling details and automatically managing Berkeley DB structures and objects.

• Transaction semantics. dbstl provides the ACID properties (or a subset of the ACID
properties) in addition to supporting all of the STL functionality.

• Concurrent access. Few (if any) existing C++ STL implementations support reading/writing
to the same container concurrently, dbstl does.

• Object persistence. dbstl allows your application to store objects in a database, and
use the objects across different runs of your application. dbstl is capable of storing
complicated objects which are not located in a contiguous chunk of memory, with some user
configurations.

Dbstl examples

Because dbstl is so much like C++ STL, its usage exactly mirrors that of C++ STL, with the
exception of a few optional Berkeley DB specific configurations. In fact, the only difference
between a program using dbstl and one using C++ STL is the class names. That is, vector
becomes db_vector, and map becomes db_map.

The typical procedure for using dbstl is:

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 95

1. Optionally create and open your own Berkeley DB environment and database handles
using the DB C++ API. If you perform these opens using the C++ API, make sure to perform
necessary environment and database configurations at that time.

2. Optionally pass environment and database handles to dbstl container constructors when
you create dbstl container objects. Note that you can create a dbstl container without
passing it an environment and database object. When you do this, an internal anonymous
database is created for you. In this situation, dbstl provides no data persistence
guarantees.

3. Perform dbstl-specific configurations. For example, you can configure cursor open flags,
as well as database access for autocommit. You can also configure callback functions.

4. Interact with the data contained in your Berkeley DB databases using dbstl containers and
iterators. This usage of dbstl is identical to C++ STL container and iterator usage.

5. At this time, you can also use dbstl calls that are specific to Berkeley DB. For example,
you can use Berkeley DB specific calls that manage transaction begin/commit/abort,
handle registration, and so forth. While these calls are part of dbstl, they have no
equivalence in the C++ STL APIs.

6. When your application is done using Berkeley DB, you do not need to explicitly close any
Berkeley DB handles (environments, database, cursors, and so forth). Dbstl automatically
closes all such handles for you.

For examples of dbstl usage, see the example programs in the $db/examples_stl directory.

The following program listing provides two code fragments. You can find more example code
in the dbstl/examples/ and dbstl/test directories.

//////////////// Code Snippet 1 ////////////////
db_vector<int, ElementHolder<int> > vctr(100);
for (int i = 0; i < 100; i++)
 vctr[i] = i;

for (int i = 0; i < 100; i++) {
 cout<<"\nvctr["<<i<<"] : "<<vctr[i];
 vctr[i] = vctr[i] * vctr[i];
 cout<<"\nvctr["<<i<<"] squre : "<<vctr[i];
}

//////////////// Code Snippet 2 ////////////////
typedef db_map<char *, const char *, ElementHolder<const char *> >
 strmap_t2;
strmap_t2 strmap;
char str[2], str2[2];
str[1] = str2[1] = '\0';
for (char c = 0; c < 26; c++) {
 str[0] = c + 'a';
 str2[0] = 'z' - c;

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 96

 strmap[str] = str2;
}
for (strmap_t2::iterator itr = strmap.begin(); itr != strmap.end(); ++itr)
 cout<<endl<<itr->first<<" : "<<itr->second;

using namespace dbstl;
dbstl::db_map<char, int> v;
v['i'] = 1;
cout<<v['i'];

dbstl::db_map<char *, char *> name_addr_map;
// The strings rather than the memory pointers are stored into DB.
name_addr_map["Alex"] = "Sydney Australia";
name_addr_map["David"] = "Shenzhen China";
cout<<"Alex's address:"<<name_addr_map["Alex"];

dbstl::db_vector<Person> vi;
// Some callback configurations follow here.

// The strings and objects rather than pointers are stored into DB.

Person obj("David Zhao", "Oracle", new Office("Boston", "USA"));
vi.push_back(obj); // More person storage.
for (int I = 0; I < vi.size(); I++)
 cout<<vi[I];

The first snippet initializes a db_vector container of 100 elements, with an in-memory
anonymous database internally created by dbstl. The only difference between this and C++
STL is dbstl requires one more type parameter: ElementHolder<int>. The ElementHolder
class template should be used for every type of dbstl container that will store C++ primitive
data types, such as int, float, char *, wchar_t *, and so forth. But these class templates
should not be used for class types for reasons that we explain in the following chapters.

In the second code snippet, the assignment:

strmap[str] = str2;

is used to store a string pair ((str, str2)) instead of pointers to the underlying database.

The rest of the code used in these snippets is identical to the code you would use for C++ STL
containers. However, by using dbstl, you are storing data into a Berkeley DB database. If you
create your own database with backing files on disk, your data or objects can persist and be
restored when the program runs again.

Berkeley DB configuration

While dbstl behaves like the C++ STL APIs in most situations, there are some Berkeley DB
configuration activities that you can and should perform using dbstl. These activities are
described in the following sections.

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 97

Registering database and environment handles

Remember the following things as you use Berkeley DB Database and Environment handles
with dbstl:

• If you share environment or database handles among multiple threads, remember to specify
the DB_THREAD flag in the open call to the handle.

• If you create or open environment and/or database handles without using the dbstl helper
functions, dbstl::open_db() or dbstl::open_env(), remember that your environment
and database handles should be:

1. Allocated in the heap via "new" operator.

2. Created using the DB_CXX_NO_EXCEPTIONS flag.

3. In each thread sharing the handles, the handles are registered using either
dbstl::register_db() or dbstl::register_dbenv().

• If you opened the database or environment handle using the open_db() or open_env()
functions, the thread opening the handles should not call register_db() or
register_env() again. This is because they have already been registered by the
open_db() or open_env() functions. However, other threads sharing these handles still
must register them locally.

Truncate requirements

Some Berkeley DB operations require there to be no open cursors on the database handle
at the time the operation occurs. Dbstl is aware of these requirements, and will attempt to
close the cursors opened in the current thread when it performs these operations. However,
the scope of dbstl's activities in this regard are limited to the current thread; it makes no
attempt to close cursors opened in other threads. So you are required to ensure there are no
open cursors on database handles shared across threads when operations are performed that
require all cursors on that handle to be closed.

There are only a a few operations which require all open cursors to be closed. This include
all container clear() and swap() functions, and all versions of db_vection<>::assign()
functions. These functions require all cursors to be closed for the database because by default
they remove all key/data pairs from the database by truncating it.

When a function removes all key/data pairs from a database, there are two ways it can
perform this activity:

• The default method is to truncate the database, which is an operation that requires all
cursors to be closed. As mentioned above, it is your responsibility to close cursors opened in
other threads before performing this operation. Otherwise, the operation will fail.

• Alternatively, you can specify that the database not be truncated. Instead, you can cause
dbstl to delete all key/data pairs individually, one after another. In this situation, open
cursors in the database will not cause the delete operations to fail. However, due to lock

../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/CXX/envcreate.html#env_DB_CXX_NO_EXCEPTIONS

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 98

contention, the delete operations might not complete until all cursors are closed, which is
when all their read locks are released.

Auto commit support

Dbstl supports auto commit for some of its container's operations. When a dbstl container is
created using a Db or DbEnv object, if that object was opened using the DB_AUTO_COMMIT
flag, then every operation subsequently performed on that object will be automatically
enclosed in a unique transaction (unless the operation is already in an external transaction).
This is identical to how the Berkeley DB C, C++ and Java APIs behave.

Note that only a subset of a container's operations support auto commit. This is because those
operations that accept or return an iterator have to exist in an external transactional context
and so cannot support auto commit.

The dbstl API documentation identifies when a method supports auto commit transactions.

Database and environment identity checks

When a container member function involves another container (for example,
db_vector::swap(self& v2)), the two containers involved in the operation must not use the
same database. Further, if the function is in an external or internal transaction context, then
both containers must belong to the same transactional database environment; Otherwise, the
two containers can belong to the same database environment, or two different ones.

For example, if db_vector::swap(self& v2) is an auto commit method or it is in an external
transaction context, then v2 must be in the same transactional database environment as this
container, because a transaction is started internally that must be used by both v2 and this
container. If this container and the v2 container have different database environments, and
either of them are using transactions, an exception is thrown. This condition is checked in
every such member function.

However, if the function is not in a transactional context, then the databases used by these
containers can be in different environments because in this situation dbstl makes no attempt
to wrap container operations in a common transaction context.

Products, constructors and configurations

You can use dbstl with all Berkeley DB products (DS, CDS, TDS, and HA). Because dbstl is a
Berkeley DB interface, all necessary configurations for these products are performed using
Berkeley DB's standard create/open/set APIs.

As a result, the dbstl container constructors differ from those of C++ STL because in dbstl
no configuration is supported using the container constructors. On the other hand, dbstl
container constructors accept already opened and configured environment and database
handles. They also provide functions to retrieve some handle configuration, such as key
comparison and hash functions, as required by the C++ STL specifications.

The constructors verify that the handles passed to them are well configured. This means they
ensure that no banned settings are used, as well as ensuring that all required setting are
performed. If the handles are not well configured, an InvalidArgumentException is thrown.

../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 99

If a container constructor is not passed a database or environment handle, an internal
anonymous database is created for you by dbstl. This anonymous database does not provide
data persistence.

Using advanced Berkeley DB features with dbstl

This section describes advanced Berkeley DB features that are available through dbstl.

Using bulk retrieval iterators

Bulk retrieval is an optimization option for const iterators and nonconst but read-only
iterators. Bulk retrieval can minimize the number of database accesses performed by your
application. It does this by reading multiple entries at a time, which reduces read overhead.
Note that non-sequential reads will benefit less from, or even be hurt by, this behavior,
because it might result in unneeded data being read from the database. Also, non-serializable
reads may read obsolete data, because part of the data read from the bulk read buffer may
have been updated since the retrieval.

When using the default transaction isolation, iterators will perform serializable reads. In this
situation, the bulk-retrieved data cannot be updated until the iterator's cursor is closed.

Iterators using a different isolation levels, such as DB_READ_COMMITTED or
DB_READ_UNCOMMITTED will not perform serializable reads. The same is true for any iterators
that do not use transactions.

A bulk retrieval iterator can only move in a singled direction, from beginning to end. This
means that iterators only support operator++, and reverse iterators only support operator--.

Iterator objects that use bulk retrieval might contain hundreds of kilobytes of data, which
makes copying the iterator object an expensive operation. If possible, use ++iterator rather
than iterator++. This can save a useless copy construction of the iterator, as well as an
unnecessary dup/close of the cursor.

You can configure bulk retrieval for each container using both in the const and non-const
version of the begin() method. The non-const version of begin() will return a read-only
cursor. Note that read-only means something different in C++ than it does when referring to
an iterator. The latter only means that it cannot be used to update the database.

To configure the bulk retrieval buffer for an iterator when calling the begin() method, use
the BulkRetrievelItrOpt::bulk_retrieval(u_int32_t bulk_buffer_size) function.

If you move a db_vector_iterator randomly rather than sequentially, then dbstl will not
perform bulk retrieval because there is little performance gain from bulk retrieval in such an
access pattern.

You can call iterator::set_bulk_buffer() to modify the iterator's bulk buffer size. Note
that once bulk read is enabled, only the bulk buffer size can be modified. This means that
bulk read cannot be disabled. Also, if bulk read was not enabled when you created the
iterator, you can't enable it after creation.

Example code using this feature can be found in the
StlAdvancedFeaturesExample::bulk_retrieval_read() method.

../api_reference/C/dbcget.html#dbcget_DB_READ_COMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 100

Using the DB_RMW flag

The DB_RMW flag is an optimization for non-const (read-write) iterators. This flag causes
the underlying cursor to acquire a write lock when reading so as to avoid deadlocks. Passing
ReadModifyWriteOption::read_modify_write() to a container's begin() method creates
an iterator whose cursor has this behavior.

Using secondary index database and secondary containers

Because duplicate keys are forbidden in primary databases, only db_map, db_set and
db_vector are allowed to use primary databases. For this reason, they are called primary
containers. A secondary database that supports duplicate keys can be used with db_multimap
containers. These are called secondary containers. Finally, a secondary database that forbids
duplicate keys can back a db_map container.

The data_type of this db_multimap secondary container is the data_type for the primary
container. For example, a db_map<int, Person> object where the Person class has an age
property of type size_t, a db_multimap<size_t, Person> using a secondary database
allows access to a person by age.

A container created from a secondary database can only be used to iterate, search or
delete. It can not be used to update or insert. While dbstl does expose the update and insert
operations, Berkeley DB does not, and an exception will be thrown if attempts are made to
insert objects into or update objects of a secondary container.

Example code demonstrating this feature is available in the
StlAdvancedFeaturesExample::secondary_containers() method.

Using transactions in dbstl

When using transactions with dbstl, you must call the dbstl transaction functions instead of
the corresponding methods from the Berkeley DB C or C++ transaction API. That is, you must
use dbstl::begin_txn(), dbstl::commit_txn() and dbstl::abort_txn() in order to
begin/commit/abort transactions.

A container can be configured to use auto commit by setting the DB_AUTO_COMMIT flag
when the environment or database handle is opened. In this case, any container method that
supports auto commit will automatically form an independent transaction if the method is
not in an external transactional context; Otherwise, the operation will become part of that
transaction.

You can configure the flags used internally by dbstl when it is creating and committing
these independent transactions required by auto commit. To do so, use the
db_container::set_txn_begin_flags() and/or db_container::set_commit_flags()
methods.

When a transaction is committed or aborted, dbstl will automatically close any cursors opened
for use by the transaction. For this reason, any iterators opened within the transaction
context should not be used after the transaction commits or aborts.

../api_reference/C/dbcget.html#dbcget_DB_RMW
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 101

You can use nested transactions explicitly and externally, by calling dbstl::begin_txn() in
a context already operating under the protection of a transaction. But you can not designate
which transaction is the parent transaction. The parent transaction is automatically the most
recently created and unresolved transaction in current thread.

It is also acceptable to use explicit transactions in a container configured for auto commit.
The operation performed by the method will become part of the provided external
transaction.

Finally, transactions and iterators cannot be shared among multiple threads. That is, they are
not free-threaded, or thread-safe.

Using dbstl in multithreaded applications

Multithreaded use of dbstl must obey the following guidelines:

1. For a few non-standard platforms, you must first configure dbstl for that platform, but
usually the configure script will detect the applicable thread local storage (TLS) modifier
to use, and then use it. If no appropriate TLS is found, the pthread TLS API is used.

2. Perform all initializations in a single thread. dbstl::dbstl_startup() should be called
mutually exclusive in a single thread before using dbstl. If dbstl is used in only a single
thread, this function does not need to be called.

If necessary, callback functions for a complex type T must be registered to the singleton
of DbstlElemTraits<T> before any container related to T (for example, db_vector<T>), is
used, and certain isolation may be required among multiple threads. The best way to do
this is to register all callback function pointers into the singleton in a single thread before
making use of the containers.

All container cursor open flags and auto commit transaction begin/commit flags must be
set in a single thread before storing objects into or reading objects from the container.

3. Environment and database handles can optionally be shared across threads. If handles
are shared, they must be registered in each thread that is using the handle (either
directly, or indirectly using the containers that own the handles). You do this using
the dbstl::register_db() and dbstl::register_db_env() functions. Note that
these functions are not necessary if the current thread called dbstl::open_db() or
dbstl::open_env() for the handle that is being shared. This is because the open
functions automatically register the handle for you.

Note that the get/set functions that provide access to container data members are
not mutex-protected because these data members are supposed to be set only once at
container object initialization. Applications wishing to modify them after initialization
must supply their own protection.

4. While container objects can be shared between multiple threads, iterators and
transactions can not be shared.

5. Set the directdb_get parameter of the container begin() method to true in order to
guarantee that referenced key/data pairs are always obtained from the database and not

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 102

from an iterator's cached value. (This is the default behavior.) You should do this because
otherwise a rare situation may occur. Given db_vector_iterator i1 and i2 used in the same
iteration, setting *i1 = new_value will not update i2, and *i2 will return the original value.

6. If using a CDS database, only const iterators or read-only non-const iterators should be
used for read only iterations. Otherwise, when multiple threads try to open read-write
iterators at the same time, performance is greatly degraded because CDS only supports
one write cursor open at any moment. The use of read-only iterators is good practice in
general because dbstl contains internal optimizations for read-only iterators.

To create a read-only iterator, do one of the following:

• Use a const reference to the container object, then call the container's begin()
method using the const reference, and then store the return value from the begin()
method in a db_vector::const_iterator.

• If you are using a non-const container object, then simply pass true to the readonly
parameter of the non-const begin() method.

7. When using DS, CDS or TDS, enable the locking subsystem by passing the DB_INIT_LOCK
flag to DbEnv::open().

8. Perform portable thread synchronization within a process by calling the following
functions. These are all global functions in the "dbstl" name space:

db_mutex_t alloc_mutex();
int lock_mutex(db_mutex_t);
int unlock_mutex(db_mutex_t);
void free_mutex(db_mutex_t);

These functions use an internal dbstl environment's mutex functionality to synchronize. As
a result, the synchronization is portable across all platforms supported by Berkeley DB.

The WorkerThread class provides example code demonstrating the use of dbstl in multi-
threaded applications. You can find this class implemented in the dbstl test suite.

Working with primitive types

To store simple primitive types such as int, long, double, and so forth, an additional type
parameter for the container class templates is needed. For example, to store an int in a
db_vector, use this container class:

db_vector<int, ElementHolder<int> >;

To map integers to doubles, use this:

db_map<int, double, ElementHolder<double> >;

To store a char* string with long keys, use this:

db_map<long, char*, ElementHolder<char*> >;

Use this for const char* strings:

../api_reference/C/envopen.html#envopen_DB_INIT_LOCK

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 103

db_map<long, const char*, ElementHolder<const char*> >;

To map one const string to another, use this type:

db_map<const char*, const char*, ElementHolder<const char*> >;

The StlAdvancedFeaturesExample::primitive() method demonstrates more of these
examples.

Storing strings

For char* and wchar_t* strings, _DB_STL_StoreElement() must be called following
partial or total modifications before iterator movement, container::operator[] or
iterator::operator*/-> calls. Without the _DB_STL_StoreElement() call, the modified
change will be lost. If storing an new value like this:

*iterator = new_char_star_string;

the call to _DB_STL_StoreElement() is not needed.

Note that passing a NULL pointer to a container of char* type or passing a std::string with
no contents at all will insert an empty string of zero length into the database.

The string returned from a container will not live beyond the next iterator movement call,
container::operator[] or iterator::operator*/-> call.

A db_map::value_type::second_type or db_map::datatype_wrap should be used to hold
a reference to a container::operator[] return value. Then the reference should be
used for repeated references to that value. The *iterator is of type ElementHolder<char
*>, which can be automatically converted to a char * pointer using its type conversion
operator. Wherever an auto conversion is done by the compiler, the conversion operator of
ElementHolder<T> is called. This avoids almost all explicit conversions, except for two use
cases:

1. The *iterator is used as a "..." parameter like this:

printf("this is the special case %s", *iterator);

This compiles but causes errors. Instead, an explicit cast should be used:

printf("this is the special case %s", (char *)*iterator);

2. For some old compilers, such as gcc3.4.6, the *iterator cannot be used with the ternary ?
operator, like this:

expr ? *iterator : var

Even when var is the same type as the iterator's value_type, the compiler fails to
perform an auto conversion.

When using std::string or std::wstring as the data type for dbstl containers — that is,
db_vector<string>, and db_map<string, wstring> — the string's content rather than the
string object itself is stored in order to maintain persistence.

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 104

You can find example code demonstrating string storage in the
StlAdvancedFeaturesExample::char_star_string_storage() and
StlAdvancedFeaturesExample::storing_std_strings() methods.

Store and Retrieve data or objects of complex types

Storing varying length objects

A structure like this:

class SMSMsg
{
public:
 size_t mysize;
 time_t when;
 size_t szmsg;
 int to;
 char msg[1];
};

with a varying length string in msg cannot simply be stored in a db_vector<SMSMsg> without
some configuration on your part. This is because, by default, dbstl uses the sizeof() operator
to get the size of an object and then memcpy() to copy the object. This process is not suitable
for this use-case as it will fail to capture the variable length string contained in msg.

There are currently two ways to store these kind of objects:

1. Register callback functions with dbstl that are used to measure an object's size, and then
marshal/unmarshal the object.

2. Use a DbstlDbt wrapper object.

Storing by marshaling objects

One way to store an object that contains variable-sized fields is to marshall all of the object's
data into a single contiguous area in memory, and then store the contents of that buffer. This
means that upon retrieval, the contents of the buffer must be unmarshalled. To do these
things, you must register three callback functions:

• typedef void (*ElemRstoreFunct)(T& dest, const void *srcdata);

This callback is used to unmarshal an object, updating dest using data found in srcdata.
The data in srcdata contains the chunk of memory into which the object was originally
marshalled. The default unmarshalling function simply performs a cast (for example, dest
= *((T*)srcdata)), which assumes the srcdata simply points to the memory layout of the
object.

• typedef size_t (*ElemSizeFunct)(const T& elem);

This callback returns the size in bytes needed to store the elem object. By default this
function simply uses sizeof(elem) to determine the size of elem.

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 105

• typedef void (*ElemCopyFunct)(void *dest, const T&elem);

This callback is used to arrange all data contained by elem into the chunk of memory to
which dest refers. The size of dest is set by the ElemSizeFunct function, discussed above.
The default marshalling function simply uses memcpy() to copy elem to dest.

The DbstlElemTraits<SMSMsg>::instance()->set_size_function(),
set_copy_function() and set_restore_function() methods are used to register these
callback functions. If a callback is not registered, its default function is used.

By providing non-default implementations of the callbacks described here, you can store
objects of varying length and/or objects which do not reside in a continuous memory chunk
— for example, objects containing a pointer which refers another object, or a string, and so
forth. As a result, containers/iterators can manage variable length objects in the same as they
would manage objects that reside in continuous chunks of memory and are of identical size.

Using a DbstlDbt wrapper object

To use a DbstlDbt wrapper object to store objects of variable length, a
db_vector<DbstlDbt> container is used to store complex objects in a db_vector. DbstlDbt
derives from DB C++ API's Dbtclass, but can manage its referenced memory properly and
release it upon destruction. The memory referenced by DbstlDbt objects is required to be
allocated using the malloc()/realloc() functions from the standard C library.

Note that the use of DbstlDbt wrapper class is not ideal. It exists only to allow raw bytes of
no specific type to be stored in a container.

To store an SMSMsg object into a db_vector<DbstlDbt> container using a DbstlDbt object:

1. Wrap the SMSMSg object into a DbstlDbt object, then marshal the SMSMsg object
properly into the memory chunk referenced by DbstlDbt::data.

2. Store the DbstlDbt object into a db_vector<DbstlDbt> container. The bytes in the
memory chunk referenced by the DbstlDbt object's data member are stored in the
db_vector<DbstlDbt> container.

3. Reading from the container returns a DbstlDbt object whose data field points to the
SMSMsg object located in a continuous chunk of memory. The application needs to
perform its own unmarshalling.

4. The memory referenced by DbstlDbt::data is freed automatically, and so the
application should not attempt to free the memory.

ElementHolder should not be used to store objects of a class because it doesn't support
access to object members using (*iter).member or iter->member expressions. In this case,
the default ElementRef<ddt> is used automatically.

ElementRef inherits from ddt, which allows *iter to return the object stored in the container.
(Technically it is an ElementRef<ddt> object, whose "base class" part is the object you

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 106

stored). There are a few data members and member functions in ElementRef, which all start
with _DB_STL_. To avoid potential name clashes, applications should not use names prefixing
_DB_STL_ in classes whose instances may be stored into dbstl containers.

Example code demonstrating this feature can be found in the
StlAdvancedFeaturesExample::arbitrary_object_storage method.

Storing arbitrary sequences

A sequence is a group of related objects, such as an array, a string, and so forth. You can
store sequences of any structure using dbstl, so long as you implement and register the proper
callback functions. By using these callbacks, each object in the sequence can be a complex
object with data members that are all not stored in a continuous memory chunk.

Note that when using these callbacks, when you retrieve a stored sequence from the
database, the entire sequence will reside in a single continuous block of memory with the
same layout as that constructed by your sequence copy function.

For example, given a type RGB:

struct RGB{char r, g, b, bright;};

and an array of RGB objects, the following steps describe how to store an array into one key/
data pair of a db_map container.

1. Use a db_map<int, RGB *, ElementHolder<RGB *> > container.

2. Define two functions. The first returns the number of objects in a sequence, the second
that copies objects from a sequence to a defined destination in memory:

typedef size_t (*SequenceLenFunct)(const RGB*);

and

 typedef void (*SequenceCopyFunct)(RGB*dest, const RGB*src);

3. Call DbstlElemTraits<RGB>::set_sequence_len_function()/set_sequence_copy_function()
to register them as callbacks.

The SequenceLenFunct function

typedef size_t (*SequenceLenFunct)(const RGB*);

A SequenceLenFunct function returns the number of objects in a sequence. It is called
when inserting into or reading from the database, so there must be enough information in
the sequence itself to enable the SequenceLenFunct function to tell how many objects the
sequence contains. The char* and wchar_t* strings use a '\0' special character to do this.
For example, RGB(0, 0, 0, 0) could be used to denote the end of the sequence. Note that
for your implementation of this callback, you are not required to use a trailing object with
a special value like '\0' or RGB(0, 0, 0, 0) to denote the end of the sequence. You are

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 107

free to use what mechanism you want in your SequenceLenFunct function implementation to
figure out the length of the sequence.

The SequenceCopyFunct function

 typedef void (*SequenceCopyFunct)(RGB*dest, const RGB*src);

SequenceCopyFunct copies objects from the sequence src into memory chunk dest. If the
objects in the sequence do not reside in a continuous memory chunk, this function must
marshal each object in the sequence into the dest memory chunk.

The sequence objects will reside in the continuous memory chunk referred to by dest,
which has been sized by SequenceLenFunct and ElemSizeFunct if available (which is when
objects in the sequence are of varying lengths). ElemSizeFunct function is not needed in this
example because RGB is a simple fixed length type, the sizeof() operator is sufficient to
return the size of the sequence.

Notes

• The get and set functions of this class are not protected by any mutexes. When using
multiple threads to access the function pointers, the callback functions must be registered
to the singleton of this class before any retrieval of the callback function pointers. Isolation
may also be required among multiple threads. The best way is to register all callback
function pointers in a single thread before making use of the any containers.

• If objects in a sequence are not of identical sizes, or are not located in a
consecutive chunk of memory, you also need to implement and register the
DbstlElemTraits<>::ElemSizeFunct callback function to measure the size of each
object. When this function is registered, it is also used when allocating memory space.

There is example code demonstrating the use this feature in the
StlAdvancedFeaturesExample::arbitray_sequence_storage() method.

• A consequence of this dbstl feature is that you can not store a pointer value directly
because dbstl will think it is a sequence head pointer. Instead, you need to convert the
pointer into a long and then store it into a long container. And please note that pointer
values are probably meaningless if the stored value is to be used across different application
run times.

Dbstl persistence

The following sections provide information on how to achieve persistence using dbstl.

Direct database get

Each container has a begin() method which produces an iterator. These begin methods take
a boolean parameter, directdb_get, which controls the caching behavior of the iterator. The
default value of this parameter is true.

If directdb_get is true, then the persistent object is fetched anew from the database each
time the iterator is dereferenced as a pointer by use of the star-operator (*iterator) or by

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 108

use of the arrow-operator (iterator->member). If directdb_get is false, then the first
dereferencing of the iterator fetches the object from the database, but later dereferences
can return cached data.

With directdb_get set to true, if you call:

(*iterator).datamember1=new-value1;
(*iterator).datamember2=new-value2;

then the assignment to datamember1 will be lost, because the second dereferencing of
the iterator would cause the cached copy of the object to be overwritten by the object's
persistent data from the database.

You also can use the arrow operator like this:

iterator->datamember1=new-value1;
iterator->datamember2=new-value2;

This works exactly the same way as iterator::operator*. For this reason, the same caching
rules apply to arrow operators as they do for star operators.

One way to avoid this problem is to create a reference to the object, and use it to access the
object:

container::value_type &ref = *iterator;
ref.datamember1=new-value1;
ref.datamember2=new-value2;
...// more member function calls and datamember assignments
ref._DB_STL_StoreElement();

The above code will not lose the newly assigned value of ref.datamember1 in the way that
the previous example did.

In order to avoid these complications, you can assign to the object referenced by an iterator
with another object of the same type like this:

container::value_type obj2;
obj2.datamember1 = new-value1;
obj2.datamember2 = new-value2;
*itr = obj2;

This code snippet causes the new values in obj2 to be stored into the underlying database.

If you have two iterators going through the same container like this:

for (iterator1 = v.begin(), iterator2 = v.begin();
 iterator1 != v.end();
 ++iterator1, ++iterator2) {
 *iterator1 = new_value;
 print(*iterator2);
}

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 109

then the printed value will depend on the value of directdb_get with which the iterator
had been created. If directdb_get is false, then the original, persistent value is printed;
otherwise the newly assigned value is returned from the cache when iterator2 is
dereferenced. This happens because each iterator has its own cached copy of the persistent
object, and the dereferencing of iterator2 refreshes iterator2's copy from the database,
retrieving the value stored by the assignment to *iterator1.

Alternatively, you can set directdb_get to false and call iterator2->refresh()
immediately before the dereferencing of iterator2, so that iterator2's cached value is
refreshed.

If directdb_get is false, a few of the tests in dbstl's test kit will fail. This is because the
above contrived case appears in several of C++ STL tests. Consequently, the default value of
the directdb_get parameter in the container::begin() methods is true. If your use cases
avoid such bizarre usage of iterators, you can set it to false, which makes the iterator read
operation faster.

Change persistence

If you modify the object to which an iterator refers by using one of the following:

(*iterator).member_function_call()

or

(*iterator).data_member = new_value

then you should call iterator->_DB_STL_StoreElement() to store the change. Otherwise
the change is lost after the iterator moves on to other elements.

If you are storing a sequence, and you modified some part of it, you should also call
iterator->_DB_STL_StoreElement() before moving the iterator.

And in both cases, if directdb_get is true (this is the default value), you should call
_DB_STL_StoreElement() after the change and before the next iterator movement OR the
next dereferencing of the iterator by the star or arrow operators (iterator::operator* or
iterator::operator->). Otherwise, you will lose the change.

If you update the element by assigning to a dereferenced iterator like this:

*iterator = new_element;

then you never have to call _DB_STL_StoreElement() because the change is stored in the
database automatically.

Object life time and persistence

Dbstl is an interface to Berkeley DB, so it is used to store data persistently. This is really a
different purpose from that of regular C++ STL. This difference in their goals has implications
on expected object lifetime: In standard STL, when you store an object A of type ID into C+
+ stl vector V using V.push_back(A), if a proper copy constructor is provided in A's class type,

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 110

then the copy of A (call it B) and everything in B, such as another object C pointed to by B's
data member B.c_ptr, will be stored in V and will live as long as B is still in V and V is alive. B
will be destroyed when V is destroyed or B is erased from V.

This is not true for dbstl, which will copy A's data and store it in the underlying database.
The copy is by default a shallow copy, but users can register their object marshalling and
unmarshalling functions using the DbstlElemTraits class template. So if A is passed to a
db_vector container, dv, by using dv.push_back(A), then dbstl copies A's data using the
registered functions, and stores data into the underlying database. Consequently, A will be
valid, even if the container is destroyed, because it is stored into the database.

If the copy is simply a shallow copy, and A is later destroyed, then the pointer stored in
the database will become invalid. The next time we use the retrieved object, we will be
using an invalid pointer, which probably will result in errors. To avoid this, store the referred
object C rather than the pointer member A.c_ptr itself, by registering the right marshalling/
unmarshalling function with DbstlElemTraits.

For example, consider the following example class declaration:

class ID
{
public:
 string Name;
 int Score;
};

Here, the class ID has a data member Name, which refers to a memory address of the actual
characters in the string. If we simply shallow copy an object, id, of class ID to store it, then
the stored data, idd, is invalid when id is destroyed. This is because idd and id refer to a
common memory address which is the base address of the memory space storing all characters
in the string, and this memory space is released when id is destroyed. So idd will be referring
to an invalid address. The next time we retrieve idd and use it, there will probably be
memory corruption.

The way to store id is to write a marshal/unmarshal function pair like this:

void copy_id(void *dest, const ID&elem)
{
 memcpy(dest, &elem.Score, sizeof(elem.Score));
 char *p = ((char *)dest) + sizeof(elem.Score);
 strcpy(p, elem.Name.c_str());
}

void restore_id(ID& dest, const void *srcdata)
{
 memcpy(&dest.Score, srcdata, sizeof(dest.Score));
 const char *p = ((char *)srcdata) + sizeof(dest.Score);
 dest.Name = p;
}

size_t size_id(const ID& elem)

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 111

{
 return sizeof(elem.Score) + elem.Name.size() +
 1;// store the '\0' char.
}

Then register the above functions before storing any instance of ID:

DbstlElemTraits<ID>::instance()->set_copy_function(copy_id);
DbstlElemTraits<ID>::instance()->set_size_function(size_id);
DbstlElemTraits<ID>::instance()->set_restore_function(restore_id);

This way, the actual data of instances of ID are stored, and so the data will persist even if the
container itself is destroyed.

Dbstl container specific notes

db_vector specific notes

• Set the DB_RENUMBER flag in the database handle if you want db_vector<> to work like
std::vector or std::deque. Do not set DB_RENUMBER if you want db_vector<> to work
like std::list. Note that without DB_RENUMBER set, db_vector<> can work faster.

For example, to construct a fast std::queue/std::stack object, you only need a
db_vector<> object whose database handle does not have DB_RENUMBER set. Of course, if
the database handle has DB_RENUMBER set, it still works for this kind of scenario, just not
as fast.

db_vector does not check whether DB_RENUMBER is set. If you do not set it, db_vector<>
will not work like std::vector<>/std::deque<> with regard to operator[], because the indices
are not maintained in that case.

You can find example code showing how to use this feature in the
StlAdvancedFeaturesExample::queue_stack() method.

• Just as is the case with std::vector, inserting/deleting in the middle of a db_vector
is slower than doing the same action at the end of the sequence. This is because the
underlying DB_RECNO DB (with the DB_RENUMBER flag set) is relatively slow when inserting/
deleting in the middle or the head — it has to update the index numbers of all the records
following the one that was inserted/deleted. If you do not need to keep the index ordered
on insert/delete, you can use db_map instead.

db_vector also contains methods inherited from std::list and std::deque, including
std::list<>'s unique methods remove(), remove_if(), unique(), merge(),
sort(), reverse(), and splice(). These use the identical semantics/behaviors of
the std::list<> methods, although pushing/deleting at the head is slower than the
std::deque and std::list equivalent when there are quite a lot of elements in the
database.

• You can use std::queue, std::priority_queue and std::stack container adapters with
db_vector; they work with db_vector even without DB_RENUMBER set.

../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER
../api_reference/C/dbset_flags.html#dbset_flags_DB_RENUMBER

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 112

Associative container specific notes

db_map contains the union of method set from std::map and hash_map, but there are some
methods that can only be called on containers backed by DB_BTREE or DB_HASH databases.
You can call db_map<>::is_hash() to figure out the type of the backing database. If you call
unsupported methods then an InvalidFunctionCall exception is thrown.

These are the DB_BTREE specific methods: upper_bound(), lower_bound(), key_comp(),
and value_comp(). The DB_HASH specific methods are key_eq(), hash_funct().

Using dbstl efficiently

Using iterators efficiently

To make the most efficient possible use of iterators:

• Close an iterator's cursor as soon as possible.

Each iterator has an open cursor associated with it, so when you are finished using the
iterator it is a good habit to explicitly close its cursor. This can potentially improve
performance by avoiding locking issues, which will enhanced concurrency. Dbstl will close
the cursor when the iterator is destroyed, but you can close the cursor before that time. If
the cursor is closed, the associated iterator cannot any longer be used.

In some functions of container classes, an iterator is used to access the database, and
its cursor is internally created by dbstl. So if you want to specify a non-zero flag for the
Db::cursor() call, you need to call the container's set_cursor_open_flag() function to
do so.

• Use const iterators where applicable.

If your data access is read only, you are strongly recommended to use a const iterator. In
order to create a const iterator, you must use a const reference to the container object. For
example, supposed we have:

db_vector<int> intv(10);

then we must use a:

const db_vector<int>& intv_ref = intv;

reference to invoke the const begin/end functions. intv_ref.begin() will give you a const
iterator. You can use a const iterator only to read its referenced data elements, not update
them. However, you should have better performance with this iterator using, for example,
either iterator::operator* or iterator::operator->member. Also, using array indices
like intv_ref[i] will also perform better.

All functions in dbstl's containers which return an iterator or data element reference have
two versions — one returns a const iterator/reference, the other returns an iterator/
reference. If your access is read only, choose the version returning const iterators/
references.

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 113

Remember that you can only use a const reference to a container object to call the const
versions of operator* and operator[].

You can also use the non-const container object or its non-const reference to create a read
only iterator by passing true to the readonly parameter in the container's begin() method.

• Use pre-increment/pre-decrement rather than post-increment/post-decrement where
possible

Pre-increment operations are more efficient because the ++iterator avoids two iterator
copy constructions. This is true when you are using C++ standard STL iterators as well.

• Use bulk retrieval in iterators

If your access pattern is to go through the entire database read only, or if you are reading
a continuous range of the database, bulk retrieval can be very useful because it returns
multiple key/data pairs in one database call. But be aware that you can only read the
returned data, you can not update it. Also, if you do a bulk retrieval and read the data, and
simultaneously some other thread of control updates that same data, then unless you are
using a serializable transaction, you will now be working with old data.

Using containers efficiently

To make the most efficient possible use of containers:

• Avoid using container methods that return references. These because they are a little more
expensive.

To implement reference semantics, dbstl has to wrap the data element with the current
key/data pair, and must invoke two iterator copy constructions and two Berkeley DB cursor
duplications for each such a call. This is true of non-const versions of these functions:

db_vector<T>::operator[]()
db_vector<T>::front()
db_vector<T>::back()
db_vector<T>::at()
db_map<>::operator[]()

There are alternatives to these functions, mainly through explicit use of iterators.

• Use const containers where possible.

The const versions of the functions listed above have less overhead than their non-const
counterparts. Using const containers and iterators can bring more performance when you
call the const version of the overloaded container/iterator methods. To do so, you define a
const container reference to an existing container, and then use this reference to call the
methods. For example, if you have:

db_vector<int> container int_vec

then you can define a const reference to int_vec:

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 114

const db_vector<int>& int_vec_ref;

Then you use int_vec_ref.begin() to create a const iterator, citr. You can now can use
int_vec_ref to call the const versions of the container's member functions, and then use
citr to access the data read only. By using int_vec_ref and citr, we can gain better
performance.

It is acceptable to call the non-const versions of container functions that return non-const
iterators, and then assign these return values to const iterator objects. But if you are
using Berkeley DB concurrent data store (CDS), be sure to set the readonly parameter
for each container method that returns an iterator to true. This is because each iterator
corresponds to a Berkeley DB cursor, and so for best performance you should specify that
the returned iterator be read-only so that the underlying cursor is also read-only. Otherwise,
the cursor will be a writable cursor, and performance might be somewhat degraded. If you
are not using CDS, but instead TDS or DS or HA, there is no distinction between read-only
cursors and read-write cursors. Consequently, you do not need to specify the readonly
parameter at all.

Dbstl memory management

Freeing memory

When using dbstl, make sure memory allocated in the heap is released after use. The rules for
this are:

• dbstl will free/delete any memory allocated by dbstl itself.

• You are responsible for freeing/deleting any memory allocated by your code outside of
dbstl.

Type specific notes

DbEnv/Db

When you open a DbEnv or Db object using dbstl::open_env() or dbstl::open_db(), you
do not need to delete that object. However, if you new'd that object and then opened it
without using the dbstl::open_env() or dbstl::open_db() methods, you are responsible
for deleting the object.

Note that you must new the Db or DbEnv object, which allocates it on the heap. You can not
allocate it on the stack. If you do, the order of destruction is uncontrollable, which makes
dbstl unable to work properly.

You can call dbstl_exit() before the process exits, to release any memory allocated by dbstl
that has to live during the entire process lifetime. Releasing the memory explicitly will not
make much difference, because the process is about to exit and so all memory allocated on
the heap is going to be returned to the operating system anyway. The only real difference is
that your memory leak checker will not report false memory leaks.

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 115

dbstl_exit() releases any memory allocated by dbstl on the heap. It also performs other
required shutdown operations, such as closing any databases and environments registered to
dbstl and shared across the process.

If you are calling the dbstl_exit() function, and your DbEnv or Db objects are new'd by
your code, the dbstl_exit() function should be called before deleting the DbEnv or Db
objects, because they need to be closed before being deleted. Alternatively, you can call
the dbstl::close_env() or dbstl::close_db() functions before deleting the DbEnv or Db
objects in order to explicitly close the databases or environments. If you do this, can then
delete these objects, and then call dbstl_exit().

In addition, before exiting a thread that uses dbstl API, you can call the
dbstl_thread_exit() function to release any Berkeley DB handles if they are not used by
other threads. If you do not call the dbstl_thread_exit() function or call this function only
in some threads, all open Berkeley DB handles will be closed by the dbstl_exit()function.
You must call the dbstl_exit() function before the process exits, to avoid memory leak and
database update loss, if you do not have transactions and persistent log files.

DbstlDbt

Only when you are storing raw bytes (such as a bitmap) do you have to store and retrieve data
by using the DbstlDbt helper class. Although you also can do so simply by using the Berkeley
DB Dbt class, the DbstlDbt class offers more convenient memory management behavior.

When you are storing DbstlDbt objects (such as db_vector<DbstlDbt>), you must allocate
heap memory explicitly using the malloc() function for the DbstlDbt object to reference,
but you do not need to free the memory – it is automatically freed by the DbstlDbt object
that owns it by calling the standard C library free() function.

However, because dbstl supports storing any type of object or primitive
data, it is rare that you would have to store data using DbstlDbt objects
while using dbstl. Examples of storing DbstlDbt objects can be found in
the StlAdvancedFeaturesExample::arbitrary_object_storage() and
StlAdvancedFeaturesExample::char_star_string_storage() methods.

Dbstl miscellaneous notes

Special notes about trivial methods

There are some standard STL methods which are meaningless in dbstl, but they are kept in
dbstl as no-ops so as to stay consistent with the standard. These are:

db_vecter::reserve();
db_vector::max_size();
db_vector::capacity();
db_map::reserve();
db_map::max_size();

db_vector<>::max_size() and db_map<>::max_size() both return 2^30. This does not
mean that Berkeley DB can only hold that much data. This value is returned to conform to

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 116

some compilers' overflow rules — if we set bigger numbers like 2^32 or 2^31, some compilers
complain that the number has overflowed.

See the Berkeley DB documentation for information about limitations on how much data a
database can store.

There are also some read-only functions. You set the configuration for these using the
Berkeley DB API. You access them using the container's methods. Again, this is to keep
consistent with C++ standard STL containers, such as:

db_map::key_comp();
db_map::value_comp();
db_map::hash_funct();
db_map::key_eq();

Using correct container and iterator public types

All public types defined by the C++ STL specification are present in dbstl. One thing to note is
the value_type. dbstl defines the value_type for each iterator and container class to be the
raw type without the ElementRef/ElementHolder wrapper, so this type of variable can not
be used to store data in a database. There is a value_type_wrap type for each container and
iterator type, with the raw type wrapped by the ElementRef/ElementHolder.

For example, when type int_vector_t is defined as

db_vector<int, ElementHolder<int> >

its value_type is int, its value_type_wrap is ElementHolder<int>, and its reference and
pointer types are ElementHolder<int>& and ElementHolder<int>* respectively. If you need
to store data, use value_type_wrap to make use of the wrapper to store data into database.

The reason we leave value_type as the raw type is that we want the existing algorithms in the
STL library to work with dbstl because we have seen that without doing so, a few tests will
fail.

You need to use the same type as the return type of the data element retrieval functions to
hold a value in order to properly manipulate the data element. For example, when calling

db_vector<T>::operator[]

check that the return type for this function is

db_vector<T>::datatype_wrap

Then, hold the return value using an object of the same type:

db_vector<T>::datatype_wrap refelem = vctr[3];

Dbstl known issues

Three algorithm functions of gcc's C++ STL test suite do not work with dbstl. They are
find_end(), inplace_merge() and stable_sort().

Library Version 11.2.5.3 Standard Template Library API

9/9/2013 DB Reference Guide Page 117

The reason for the incompatibility of find_end() is that it assumes the data an iterator refers
to is located at a shared place (owned by its container). This assumption is not correct in that
it is part of the C++ STL standards specification. However, this assumption can not be true for
dbstl because each dbstl container iterator caches its referenced value.

Consequently, please do not use find_end() for dbstl container iterators if you are using gcc's
STL library.

The reason for the incompatibility with inplace_merge() and stable_sort() is that their
implementation in gcc requires the value_type for a container to be default constructible.
This requirement is not a part of the the C++ STL standard specification. Dbstl's value type
wrappers (such as ElementHolder) do not support it.

These issues do not exist for any function available with the Microsoft Visual C++ 8 STL library.
There are two algorithm functions of Microsoft Visual C++ 10 STL library that do have an issue:
partial_sort() and partial_sort_copy(). These are not compatible because they require
the dbstl vector iterator to create a new element when updating the current element. Dbstl
vector iterator can copy the new content to the current element, but it cannot create a
new one. This requirement is not a part of the C++ STL standard specification, and so dbstl's
vector iterator does not support it.

9/9/2013 DB Reference Guide Page 118

Chapter 8. Berkeley DB Architecture

The big picture

The previous chapters in this Reference Guide have described applications that use the
Berkeley DB access methods for fast data storage and retrieval. The applications described in
the following chapters are similar in nature to the access method applications, but they are
also threaded and/or recoverable in the face of application or system failure.

Application code that uses only the Berkeley DB access methods might appear as follows:

switch (ret = dbp->/put(dbp, NULL, &key, &data, 0)) {
case 0:
 printf("db: %s: key stored.\n", (char *)key.data);
 break;
default:
 dbp->/err(dbp, ret, "dbp->/put");
 exit (1);
}

The underlying Berkeley DB architecture that supports this is

As you can see from this diagram, the application makes calls into the access methods, and
the access methods use the underlying shared memory buffer cache to hold recently used file
pages in main memory.

Library Version 11.2.5.3 Berkeley DB Architecture

9/9/2013 DB Reference Guide Page 119

When applications require recoverability, their calls to the Access Methods must be wrapped
in calls to the transaction subsystem. The application must inform Berkeley DB where to begin
and end transactions, and must be prepared for the possibility that an operation may fail at
any particular time, causing the transaction to abort.

An example of transaction-protected code might appear as follows:

for (fail = 0;;) {
 /* Begin the transaction. */
 if ((ret = dbenv->/txn_begin(dbenv, NULL, &tid, 0)) != 0) {
 dbenv->/err(dbenv, ret, "dbenv->/txn_begin");
 exit (1);
 }

 /* Store the key. */
 switch (ret = dbp->/put(dbp, tid, &key, &data, 0)) {
 case 0:
 /* Success: commit the change. */
 printf("db: %s: key stored.\n", (char *)key.data);
 if ((ret = tid->/commit(tid, 0)) != 0) {
 dbenv->/err(dbenv, ret, "DB_TXN->/commit");
 exit (1);
 }
 return (0);
 case DB_LOCK_DEADLOCK:
 default:
 /* Failure: retry the operation. */
 if ((t_ret = tid->/abort(tid)) != 0) {
 dbenv->/err(dbenv, t_ret, "DB_TXN->/abort");
 exit (1);
 }
 if (fail++ == MAXIMUM_RETRY)
 return (ret);
 continue;
 }
}

In this example, the same operation is being done as before; however, it is wrapped in
transaction calls. The transaction is started with DB_ENV->txn_begin() and finished with
DB_TXN->commit(). If the operation fails due to a deadlock, the transaction is aborted using
DB_TXN->abort(), after which the operation may be retried.

There are actually five major subsystems in Berkeley DB, as follows:

Access Methods
The access methods subsystem provides general-purpose support for creating
and accessing database files formatted as Btrees, Hashed files, and Fixed- and
Variable-length records. These modules are useful in the absence of transactions for
applications that need fast formatted file support. See DB->open() and DB->cursor()
for more information. These functions were already discussed in detail in the previous
chapters.

../api_reference/C/txnbegin.html
../api_reference/C/txncommit.html
../api_reference/C/txnabort.html
../api_reference/C/dbopen.html
../api_reference/C/dbcursor.html

Library Version 11.2.5.3 Berkeley DB Architecture

9/9/2013 DB Reference Guide Page 120

Memory Pool
The Memory Pool subsystem is the general-purpose shared memory buffer pool used
by Berkeley DB. This is the shared memory cache that allows multiple processes and
threads within processes to share access to databases. This module is useful outside of
the Berkeley DB package for processes that require portable, page-oriented, cached,
shared file access.

Transaction
The Transaction subsystem allows a group of database changes to be treated as an
atomic unit so that either all of the changes are done, or none of the changes are
done. The transaction subsystem implements the Berkeley DB transaction model.
This module is useful outside of the Berkeley DB package for processes that want to
transaction-protect their own data modifications.

Locking
The Locking subsystem is the general-purpose lock manager used by Berkeley DB.
This module is useful outside of the Berkeley DB package for processes that require a
portable, fast, configurable lock manager.

Logging
The Logging subsystem is the write-ahead logging used to support the Berkeley DB
transaction model. It is largely specific to the Berkeley DB package, and unlikely to
be useful elsewhere except as a supporting module for the Berkeley DB transaction
subsystem.

Here is a more complete picture of the Berkeley DB library:

Library Version 11.2.5.3 Berkeley DB Architecture

9/9/2013 DB Reference Guide Page 121

In this model, the application makes calls to the access methods and to the Transaction
subsystem. The access methods and Transaction subsystems in turn make calls into the
Memory Pool, Locking and Logging subsystems on behalf of the application.

The underlying subsystems can be used independently by applications. For example, the
Memory Pool subsystem can be used apart from the rest of Berkeley DB by applications simply
wanting a shared memory buffer pool, or the Locking subsystem may be called directly by
applications that are doing their own locking outside of Berkeley DB. However, this usage is
not common, and most applications will either use only the access methods subsystem, or the
access methods subsystem wrapped in calls to the Berkeley DB transaction interfaces.

Programming model

Berkeley DB is a database library, in which the library is linked into the address space of the
application using it. One or more applications link the Berkeley DB library directly into their
address spaces. There may be many threads of control in this model because Berkeley DB
supports locking for both multiple processes and for multiple threads within a process. This
model provides significantly faster access to the database functionality, but implies trust
among all threads of control sharing the database environment because they will have the
ability to read, write and potentially corrupt each other's data.

Programmatic APIs

The Berkeley DB subsystems can be accessed through interfaces from multiple languages.
Applications can use Berkeley DB via C, C++ or Java, as well as a variety of scripting languages
such as Perl, Python, Ruby or Tcl. Environments can be shared among applications written by
using any of these interfaces. For example, you might have a local server written in C or C++,
a script for an administrator written in Perl or Tcl, and a Web-based user interface written in
Java -- all sharing a single database environment.

C

The Berkeley DB library is written entirely in ANSI C. C applications use a single include file:

#include <db.h>

C++

The C++ classes provide a thin wrapper around the C API, with the major advantages being
improved encapsulation and an optional exception mechanism for errors. C++ applications use
a single include file:

#include <db_cxx.h>

The classes and methods are named in a fashion that directly corresponds to structures and
functions in the C interface. Likewise, arguments to methods appear in the same order as
the C interface, except to remove the explicit this pointer. The #defines used for flags are
identical between the C and C++ interfaces.

As a rule, each C++ object has exactly one structure from the underlying C API associated
with it. The C structure is allocated with each constructor call and deallocated with each

Library Version 11.2.5.3 Berkeley DB Architecture

9/9/2013 DB Reference Guide Page 122

destructor call. Thus, the rules the user needs to follow in allocating and deallocating
structures are the same between the C and C++ interfaces.

To ensure portability to many platforms, both new and old, Berkeley DB makes as few
assumptions as possible about the C++ compiler and library. For example, it does not expect
STL, templates, or namespaces to be available. The newest C++ feature used is exceptions,
which are used liberally to transmit error information. Even the use of exceptions can be
disabled at runtime.

STL

dbstl is an C++ STL style API for Berkeley DB, based on the C++ API above. With it, you can
store data/objects of any type into or retrieve them from Berkeley DB databases as if you
are using C++ STL containers. The full functionality of Berkeley DB can still be utilized via
dbstl with little performance overhead, e.g. you can use all transaction and/or replication
functionality of Berkeley DB.

dbstl container/iterator class templates reside in header files dbstl_vector.h, dbstl_map.h
and dbstl_set.h. Among them, dbstl_vector.h contains dbstl::db_vector and its iterators;
dbstl_map.h contains dbstl::db_map, dbstl::db_multimap and their iterators; dbstl_set.h
contains dbstl::db_set and dbstl::db_multiset and their iterators. You should include needed
header file(s) to use the container/iterator. Note that we don't use the file name with no
extention --- To use dbstl::db_vector, you should do this:

#include "dbstl_vector.h"

rather than this:

#include "dbstl_vector"

And these header files reside in "stl" directory inside Berkeley DB source root directory. If you
have installed Berkeley DB, they are also available in the "include" directory in the directory
where Berkeley DB is installed.

Apart from the above three header files, you may also need to include db_exception.h and
db_utility.h files. The db_exception.h file contains all exception classes of dbstl, which
integrate seamlessly with Berkeley DB C++ API exceptions and C++ standard exception classes
in std namespace. And the db_utility.h file contains the DbstlElemTraits which helps you to
store complex objects. These five header files are all that you need to include in order to
make use of dbstl.

All symbols of dbstl, including classes, class templates, global functions, etc, reside in the
namespace "dbstl", so in order to use them, you may also want to do this:

using namespace dbstl;

The dbstl library is always at the same place where Berkeley DB library is located, you will
need to build it and link with it to use dbstl.

While making use of dbstl, you will probably want to create environment or databases
directly, or set/get configurations to Berkeley DB environment or databases, etc. You are
allowed to do so via Berkeley DB C/C++ API.

Library Version 11.2.5.3 Berkeley DB Architecture

9/9/2013 DB Reference Guide Page 123

Java

The Java classes provide a layer around the C API that is almost identical to the C++ layer. The
classes and methods are, for the most part identical to the C++ layer. Berkeley DB constants
and #defines are represented as "static final int" values. Error conditions are communicated as
Java exceptions.

As in C++, each Java object has exactly one structure from the underlying C API associated
with it. The Java structure is allocated with each constructor or open call, but is deallocated
only by the Java garbage collector. Because the timing of garbage collection is not
predictable, applications should take care to do a close when finished with any object that
has a close method.

Dbm/Ndbm, Hsearch

Berkeley DB supports the standard UNIX dbm and hsearch interfaces. After including a new
header file and recompiling, programs will run orders of magnitude faster, and underlying
databases can grow as large as necessary. Also, historic dbm applications can fail once some
number of entries are inserted into the database, in which the number depends on the
effectiveness of the internal hashing function on the particular data set. This is not a problem
with Berkeley DB.

Scripting languages

Perl

Two Perl wrappers are distributed with the Berkeley DB release. The Perl interface to Berkeley
DB version 1.85 is called DB_File. The Perl interface to Berkeley DB version 2 and later is
called BerkeleyDB. See Using Berkeley DB with Perl (page 311) for more information.

PHP

A PHP wrapper is distributed with the Berkeley DB release. See Using Berkeley DB with
PHP (page 311) for more information.

Tcl

A Tcl wrapper is distributed with the Berkeley DB release. See Loading Berkeley DB with
Tcl (page 306) for more information.

Supporting utilities

The following are the standalone utilities that provide supporting functionality for the
Berkeley DB environment:

db_archive utility
The db_archive utility supports database backup and archival, and log file
administration. It facilitates log reclamation and the creation of database snapshots.
Generally, some form of log archival must be done if a database environment has been
configured for logging or transactions.

../api_reference/C/dbm.html
../api_reference/C/hsearch.html
../api_reference/C/dbm.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html

Library Version 11.2.5.3 Berkeley DB Architecture

9/9/2013 DB Reference Guide Page 124

db_checkpoint utility
The db_checkpoint utility runs as a daemon process, monitoring the database log and
periodically issuing checkpoints. It facilitates log reclamation and the creation of
database snapshots. Generally, some form of database checkpointing must be done if
a database environment has been configured for transactions.

db_deadlock utility
The db_deadlock utility runs as a daemon process, periodically traversing the
database lock structures and aborting transactions when it detects a deadlock.
Generally, some form of deadlock detection must be done if a database environment
has been configured for locking.

db_dump utility
The db_dump utility writes a copy of the database to a flat-text file in a portable
format.

db_hotbackup utility
The db_hotbackup utility creates "hot backup" or "hot failover" snapshots of Berkeley
DB database environments.

db_load utility
The db_load utility reads the flat-text file produced by the db_load utility and loads it
into a database file.

db_printlog utility
The db_printlog utility displays the contents of Berkeley DB log files in a human-
readable and parsable format.

db_recover utility
The db_recover utility runs after an unexpected Berkeley DB or system failure to
restore the database to a consistent state. Generally, some form of database recovery
must be done if databases are being modified.

db_sql_codegen
The db_sql_codegen utility translates a schema description written in a SQL Data
Definition Language dialect into C code that implements the schema using Berkeley
DB.

db_stat utility
The db_stat utility displays statistics for databases and database environments.

db_tuner utility
The db_tuner utility suggests a page size for btree databases that optimizes cache
efficiency and storage space requirements.

db_upgrade utility
The db_upgrade utility provides a command-line interface for upgrading underlying
database formats.

db_verify utility
The db_verify utility provides a command-line interface for verifying the database
format.

All of the functionality implemented for these utilities is also available as part of the standard
Berkeley DB API. This means that threaded applications can easily create a thread that

../api_reference/C/db_checkpoint.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_deadlock.html
../api_reference/C/db_deadlock.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/db_hotbackup.html
../api_reference/C/db_hotbackup.html
../api_reference/C/db_load.html
../api_reference/C/db_load.html
../api_reference/C/db_load.html
../api_reference/C/db_printlog.html
../api_reference/C/db_printlog.html
../api_reference/C/db_recover.html
../api_reference/C/db_recover.html
../api_reference/C/db_stat.html
../api_reference/C/db_stat.html
../api_reference/C/db_tuner.html
../api_reference/C/db_tuner.html
../api_reference/C/db_upgrade.html
../api_reference/C/db_upgrade.html
../api_reference/C/db_verify.html
../api_reference/C/db_verify.html

Library Version 11.2.5.3 Berkeley DB Architecture

9/9/2013 DB Reference Guide Page 125

calls the same Berkeley DB functions as do the utilities. This often simplifies an application
environment by removing the necessity for multiple processes to negotiate database and
database environment creation and shut down.

9/9/2013 DB Reference Guide Page 126

Chapter 9. The Berkeley DB Environment

Database environment introduction

A Berkeley DB environment is an encapsulation of one or more databases, log files and region
files. Region files are the shared memory areas that contain information about the database
environment such as memory pool cache pages. Only databases are byte-order independent
and only database files can be moved between machines of different byte orders. Log files
can be moved between machines of the same byte order. Region files are usually unique to a
specific machine and potentially to a specific operating system release.

The simplest way to administer a Berkeley DB application environment is to create a single
home directory that stores the files for the applications that will share the environment. The
environment home directory must be created before any Berkeley DB applications are run.
Berkeley DB itself never creates the environment home directory. The environment can then
be identified by the name of that directory.

An environment may be shared by any number of processes, as well as by any number of
threads within those processes. It is possible for an environment to include resources from
other directories on the system, and applications often choose to distribute resources to other
directories or disks for performance or other reasons. However, by default, the databases,
shared regions (the locking, logging, memory pool, and transaction shared memory areas) and
log files will be stored in a single directory hierarchy.

It is important to realize that all applications sharing a database environment implicitly trust
each other. They have access to each other's data as it resides in the shared regions, and they
will share resources such as buffer space and locks. At the same time, any applications using
the same databases must share an environment if consistency is to be maintained between
them.

For more information on the operations supported by the database environment handle, see
the Database Environments and Related Methods section in the Berkeley DB C API Reference
Guide.

Creating a database environment

The Berkeley DB environment is created and described by the db_env_create() and DB_ENV-
>open() interfaces. In situations where customization is desired, such as storing log files on
a separate disk drive or selection of a particular cache size, applications must describe the
customization by either creating an environment configuration file in the environment home
directory or by arguments passed to other DB_ENV handle methods.

Once an environment has been created, database files specified using relative pathnames
will be named relative to the home directory. Using pathnames relative to the home directory
allows the entire environment to be easily moved, simplifying restoration and recovery of a
database in a different directory or on a different system.

Applications first obtain an environment handle using the db_env_create() method, then call
the DB_ENV->open() method which creates or joins the database environment. There are a

../api_reference/C/env.html#envlist
../api_reference/C/envcreate.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/env.html
../api_reference/C/envcreate.html
../api_reference/C/envopen.html

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 127

number of options you can set to customize DB_ENV->open() for your environment. These
options fall into four broad categories:
Subsystem Initialization:

These flags indicate which Berkeley DB subsystems will be initialized for the
environment, and what operations will happen automatically when databases are
accessed within the environment. The flags include DB_INIT_CDB, DB_INIT_LOCK,
DB_INIT_LOG, DB_INIT_MPOOL, and DB_INIT_TXN. The DB_INIT_CDB flag does
initialization for Berkeley DB Concurrent Data Store applications. (See Concurrent
Data Store introduction (page 141) for more information.) The rest of the flags
initialize a single subsystem; that is, when DB_INIT_LOCK is specified, applications
reading and writing databases opened in this environment will be using locking to
ensure that they do not overwrite each other's changes.

Recovery options:
These flags, which include DB_RECOVER and DB_RECOVER_FATAL, indicate what
recovery is to be performed on the environment before it is opened for normal use.

Naming options:
These flags, which include DB_USE_ENVIRON and DB_USE_ENVIRON_ROOT, modify how
file naming happens in the environment.

Miscellaneous:
Finally, there are a number of miscellaneous flags, for example, DB_CREATE which
causes underlying files to be created as necessary. See the DB_ENV->open() manual
pages for further information.

Most applications either specify only the DB_INIT_MPOOL flag or they specify all four
subsystem initialization flags (DB_INIT_MPOOL, DB_INIT_LOCK, DB_INIT_LOG, and
DB_INIT_TXN). The former configuration is for applications that simply want to use the
basic Access Method interfaces with a shared underlying buffer pool, but don't care about
recoverability after application or system failure. The latter is for applications that need
recoverability. There are situations in which other combinations of the initialization flags
make sense, but they are rare.

The DB_RECOVER flag is specified by applications that want to perform any necessary
database recovery when they start running. That is, if there was a system or application
failure the last time they ran, they want the databases to be made consistent before they
start running again. It is not an error to specify this flag when no recovery needs to be done.

The DB_RECOVER_FATAL flag is more special-purpose. It performs catastrophic database
recovery, and normally requires that some initial arrangements be made; that is, archived log
files be brought back into the filesystem. Applications should not normally specify this flag.
Instead, under these rare conditions, the db_recover utility should be used.

The following is a simple example of a function that opens a database environment for a
transactional program.
DB_ENV *
db_setup(char *home, char *data_dir, FILE *errfp, char *progname)
 {
 DB_ENV *dbenv;
 int ret;

../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_CDB
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_LOG
../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/envopen.html#envopen_DB_INIT_TXN
../api_reference/C/envopen.html#envopen_DB_INIT_CDB
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html#envopen_DB_RECOVER_FATAL
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON_ROOT
../api_reference/C/dbopen.html#open_DB_CREATE
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_LOG
../api_reference/C/envopen.html#envopen_DB_INIT_TXN
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html#envopen_DB_RECOVER_FATAL
../api_reference/C/db_recover.html

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 128

 /*
 * Create an environment and initialize it for additional error
 * reporting.
 */
 if ((ret = db_env_create(&dbenv, 0)) != 0) {
 fprintf(errfp, "%s: %s\n", progname, db_strerror(ret));
 return (NULL);
 }
 dbenv->set_errfile(dbenv, errfp);
 dbenv->set_errpfx(dbenv, progname);

 /*
 * Specify the shared memory buffer pool cachesize: 5MB.
 * Databases are in a subdirectory of the environment home.
 */
 if ((ret = dbenv->set_cachesize(dbenv, 0,
 5 * 1024 * 1024, 0)) != 0) {
 dbenv->err(dbenv, ret, "set_cachesize");
 goto err;
 }
 if ((ret = dbenv->set_data_dir(dbenv, data_dir)) != 0) {
 dbenv->err(dbenv, ret, "set_data_dir: %s", data_dir);
 goto err;
 }

 /* Open the environment with full transactional support. */
 if ((ret = dbenv->open(dbenv, home, DB_CREATE | DB_INIT_LOG |
 DB_INIT_LOCK | DB_INIT_MPOOL |
 DB_INIT_TXN, 0)) != 0) {
 dbenv->err(dbenv, ret, "environment open: %s", home);
 goto err;
 }

 return (dbenv);

err: (void)dbenv->close(dbenv, 0);
 return (NULL);
}

Sizing a database environment

The Berkeley DB environment allocates memory to hold shared structures, either in shared
regions or in process data space (if the DB_PRIVATE flag is specified). There are three distinct
memory regions:

• The memory pool (also known as the database page cache),

• the area containing mutexes, and

• the main region which holds all other shared structures.

../api_reference/C/envopen.html#envopen_DB_PRIVATE

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 129

The shared structures in the main region are used by the lock, transaction, logging, thread
and replicatoin subsystems.

Determining the amount of space allocated for each of these shared structures is dependent
upon the structure in question. The sizing of the memory pool is discussed in Configuring the
memory pool (page 295). The amount of memory needed for mutexes is calculated from the
number of mutexes needed by various subsystems and can be adjusted using the DB_ENV-
>mutex_set_increment() method.

For applications using shared memory (that is, they do not specify DB_PRIVATE), a maximum
memory size for the main region must be specified or left to default. The maximum memory
size is specified using the DB_ENV->set_memory_max() method.

The amount of memory needed by an application is dependent on the resources that the
application uses. For a very rough estimate, add all of the following together:

1. The environment has an overhead of about 80 kilobytes without statistics enabled or 250
kilobytes with statistics enabled.

2. Identify the amount of space you require for your locks:

a. Estimate the number of threads of control that will simultaneously access the
environment.

b. Estimate the number of concurrency locks that, on average, will be required by each
thread. For information on sizing concurrency locks, see Configuring locking: sizing
the system (page 277).

c. Multiply these two numbers, then multiply by 1/2 to arrive at the number of
kilobytes required to service your locks.

3. Estimate the number of open database handles you will use at any given time. For each
database handle, there is an overhead of about 1/2 kilobyte.

4. Add 1 kilobyte for each active transaction.

Note that these are very rough guidelines. It is best to overestimate the needs of your
applications, because if the memory allocation is exhausted the application must be shutdown
to increase the allocation.

The estimate for maximum memory need not be exact. In most situations there is little
penalty for over estimating. For systems using memory mapped files for the shared
environment, this only allocates the address space in the process to hold the maximum
memory. The backing file will only be extended as needed. For systems running with
DB_PRIVATE specified, the maximum memory serves only as a limit and memory is allocated
from the process data space as needed. No maximum need be set for private environments.

For locking and thread information, groups of objects are allocated when needed so that there
is less contention in the allocator during performance critical operations. Once allocated
to a particular use, this memory will only be used for that structure. To avoid runtime
contention, or to ensure a minimum number of a particular type of object, the DB_ENV-

../api_reference/C/mutexset_increment.html
../api_reference/C/mutexset_increment.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envset_memory_max.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envset_memory_init.html

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 130

>set_memory_init() method can be used. This method can set the initial numbers of particular
types of structures to allocate at environment creation time.

Opening databases within the environment

Once the environment has been created, database handles may be created and then opened
within the environment. This is done by calling the db_create() function and specifying the
appropriate environment as an argument.

File naming, database operations, and error handling will all be done as specified for the
environment. For example, if the DB_INIT_LOCK or DB_INIT_CDB flags were specified when
the environment was created or joined, database operations will automatically perform all
necessary locking operations for the application.

The following is a simple example of opening two databases within a database environment:

DB_ENV *dbenv;
 DB *dbp1, *dbp2;
 int ret;

 dbenv = NULL;
 dbp1 = dbp2 = NULL;
 /*
 * Create an environment and initialize it for additional error
 * reporting.
 */
 if ((ret = db_env_create(&dbenv, 0)) != 0) {
 fprintf(errfp, "%s: %s\n", progname, db_strerror(ret));
 return (ret);
 }

 dbenv->set_errfile(dbenv, errfp);
 dbenv->set_errpfx(dbenv, progname);

 /* Open an environment with just a memory pool. */
 if ((ret =
 dbenv->open(dbenv, home, DB_CREATE | DB_INIT_MPOOL, 0)) != 0) {
 dbenv->err(dbenv, ret, "environment open: %s", home);
 goto err;
 }

 /* Open database #1. */
 if ((ret = db_create(&dbp1, dbenv, 0)) != 0) {
 dbenv->err(dbenv, ret, "database create");
 goto err;
 }
 if ((ret = dbp1->open(dbp1,
 NULL, DATABASE1, NULL, DB_BTREE, DB_CREATE, 0664)) != 0) {
 dbenv->err(dbenv, ret, "DB->open: %s", DATABASE1);
 goto err;

../api_reference/C/envset_memory_init.html
../api_reference/C/dbcreate.html
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_CDB

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 131

 }

 /* Open database #2. */
 if ((ret = db_create(&dbp2, dbenv, 0)) != 0) {
 dbenv->err(dbenv, ret, "database create");
 goto err;
 }
 if ((ret = dbp2->open(dbp2,
 NULL, DATABASE2, NULL, DB_HASH, DB_CREATE, 0664)) != 0) {
 dbenv->err(dbenv, ret, "DB->open: %s", DATABASE2);
 goto err;
 }

 return (0);

err: if (dbp2 != NULL)
 (void)dbp2->close(dbp2, 0);
 if (dbp1 != NULL)
 (void)dbp1->close(dbp1, 0);
 (void)dbenv->close(dbenv, 0);
 return (1);
}

Error support

Berkeley DB offers programmatic support for displaying error return values. The db_strerror()
function returns a pointer to the error message corresponding to any Berkeley DB error return.
This is similar to the ANSI C strerror interface, but can handle both system error returns and
Berkeley DB-specific return values.

For example:
int ret;
if ((ret = dbenv->set_cachesize(dbenv, 0, 32 * 1024, 1)) != 0) {
 fprintf(stderr, "set_cachesize failed: %s\n", db_strerror(ret));
 return (1);
}

There are also two additional error methods: DB_ENV->err() and DB_ENV->errx(). These
methods work like the ANSI C printf function, taking a printf-style format string and argument
list, and writing a message constructed from the format string and arguments.

The DB_ENV->err() function appends the standard error string to the constructed message; the
DB_ENV->errx() function does not.

Error messages can be configured always to include a prefix (for example, the program name)
using the DB_ENV->set_errpfx() method.

These functions provide simpler ways of displaying Berkeley DB error messages:
int ret;
...

../api_reference/C/envstrerror.html
../api_reference/C/enverr.html
../api_reference/C/enverr.html
../api_reference/C/envset_errpfx.html

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 132

dbenv->set_errpfx(dbenv, program_name);
if ((ret = dbenv->open(dbenv, home,
 DB_CREATE | DB_INIT_LOG | DB_INIT_TXN | DB_USE_ENVIRON, 0))
 != 0) {
 dbenv->err(dbenv, ret, "open: %s", home);
 dbenv->errx(dbenv,
 "contact your system administrator: session ID was %d",
 session_id);
 return (1);
}

For example, if the program was called "my_app", and it tried to open an environment home
directory in "/tmp/home" and the open call returned a permission error, the error messages
shown would look like this:
my_app: open: /tmp/home: Permission denied.
my_app: contact your system administrator: session ID was 2

DB_CONFIG configuration file

Almost all of the configuration information that can be specified to DB_ENV class methods can
also be specified using a configuration file. If a file named DB_CONFIG exists in the database
home directory, it will be read for lines of the format NAME VALUE.

One or more whitespace characters are used to delimit the two parts of the line, and trailing
whitespace characters are discarded. All empty lines or lines whose first character is a
whitespace or hash (#) character will be ignored. Each line must specify both the NAME and
the VALUE of the pair. The specific NAME VALUE pairs are documented in the manual for the
corresponding methods (for example, the DB_ENV->set_data_dir() documentation includes
NAME VALUE pair information Berkeley DB administrators can use to configure locations for
database files).

The DB_CONFIG configuration file is intended to allow database environment administrators
to customize environments independent of applications using the environment. For example,
a database administrator can move the database log and data files to a different location
without application recompilation. In addition, because the DB_CONFIG file is read when
the database environment is opened, it can be used to overrule application configuration
done before that time. For example a database administrator could override the compiled-in
application cache size to a size more appropriate for a specific machine.

File naming

One of the most important tasks of the database environment is to structure file naming
within Berkeley DB. Cooperating applications (or multiple invocations of the same application)
must agree on the location of the database environment, log files and other files used by the
Berkeley DB subsystems, and, of course, the database files. Although it is possible to specify
full pathnames to all Berkeley DB methods, this is cumbersome and requires applications be
recompiled when database files are moved.

Applications are normally expected to specify a single directory home for the database
environment. This can be done easily in the call to DB_ENV->open() by specifying a value for

../api_reference/C/env.html
../api_reference/C/envset_data_dir.html
../api_reference/C/envopen.html

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 133

the db_home argument. There are more complex configurations in which it may be desirable
to override db_home or provide supplementary path information.

Specifying file naming to Berkeley DB

The following list describes the possible ways in which file naming information may be
specified to the Berkeley DB library. The specific circumstances and order in which these ways
are applied are described in a subsequent paragraph.

db_home
If the db_home argument to DB_ENV->open() is non-NULL, its value may be used as
the database home, and files named relative to its path.

DB_HOME
If the DB_HOME environment variable is set when DB_ENV->open() is called, its value
may be used as the database home, and files named relative to its path.

The DB_HOME environment variable is intended to permit users and system
administrators to override application and installation defaults. For example:

env DB_HOME=/database/my_home application

Application writers are encouraged to support the -h option found in the supporting
Berkeley DB utilities to let users specify a database home.

DB_ENV methods
There are four DB_ENV methods that affect file naming:

• The DB_ENV->add_data_dir() method specifies a directory to search for database
files.

• The DB_ENV->set_lg_dir() method specifies a directory in which to create logging
files.

• The DB_ENV->set_tmp_dir() method specifies a directory in which to create backing
temporary files.

• The DB_ENV->set_metadata_dir() method specifies the directory in which to create
persistent metadata files used by the environment.

These methods are intended to permit applications to customize a file locations for an
environment. For example, an application writer can place data files and log files in
different directories or instantiate a new log directory each time the application runs.

DB_CONFIG
The same information specified to the DB_ENV methods may also be specified using
the DB_CONFIG configuration file.

Filename resolution in Berkeley DB

The following list describes the specific circumstances and order in which the different ways
of specifying file naming information are applied. Berkeley DB filename processing proceeds
sequentially through the following steps:

../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/envadd_data_dir.html
../api_reference/C/envset_lg_dir.html
../api_reference/C/envset_tmp_dir.html
../api_reference/C/envset_metadata_dir.html
../api_reference/C/env.html

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 134

absolute pathnames
If the filename specified to a Berkeley DB function is an absolute pathname, that
filename is used without modification by Berkeley DB.

On UNIX systems, an absolute pathname is defined as any pathname that begins with a
leading slash (/).

On Windows systems, an absolute pathname is any pathname that begins with a
leading slash or leading backslash (\); or any pathname beginning with a single
alphabetic character, a colon and a leading slash or backslash (for example, C:/tmp).

DB_ENV methods, DB_CONFIG
If a relevant configuration string (for example, set_data_dir), is specified either by
calling a DB_ENV method or as a line in the DB_CONFIG configuration file, the value
is prepended to the filename. If the resulting filename is an absolute pathname, the
filename is used without further modification by Berkeley DB.

db_home
If the application specified a non-NULL db_home argument to DB_ENV->open(), its
value is prepended to the filename. If the resulting filename is an absolute pathname,
the filename is used without further modification by Berkeley DB.

DB_HOME
If the db_home argument is NULL, the DB_HOME environment variable was set, and
the application has set the appropriate DB_USE_ENVIRON or DB_USE_ENVIRON_ROOT
flags, its value is prepended to the filename. If the resulting filename is an absolute
pathname, the filename is used without further modification by Berkeley DB.

default
Finally, all filenames are interpreted relative to the current working directory of the
process.

The common model for a Berkeley DB environment is one in which only the DB_HOME
environment variable, or the db_home argument is specified. In this case, all data filenames
are relative to that directory, and all files created by the Berkeley DB subsystems will be
created in that directory.

The more complex model for a transaction environment might be one in which a database
home is specified, using either the DB_HOME environment variable or the db_home argument
to DB_ENV->open(); and then the data directory and logging directory are set to the relative
pathnames of directories underneath the environment home.

Examples

Store all files in the directory /a/database:

dbenv->open(dbenv, "/a/database", flags, mode);

Create temporary backing files in /b/temporary, and all other files in /a/database:

dbenv->set_tmp_dir(dbenv, "/b/temporary");
dbenv->open(dbenv, "/a/database", flags, mode);

Store data files in /a/database/datadir, log files in /a/database/logdir, and all other
files in the directory /a/database:

../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON_ROOT
../api_reference/C/envopen.html

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 135

dbenv->set_lg_dir(dbenv, "logdir");
dbenv->set_data_dir(dbenv, "datadir");
dbenv->open(dbenv, "/a/database", flags, mode);

Store data files in /a/database/data1 and /b/data2, and all other files in the directory /a/
database. Any data files that are created will be created in /b/data2, because it is the first
data file directory specified:

dbenv->set_data_dir(dbenv, "/b/data2");
dbenv->set_data_dir(dbenv, "data1");
dbenv->open(dbenv, "/a/database", flags, mode);

Shared memory regions

Each of the Berkeley DB subsystems within an environment is described by one or more
regions, or chunks of memory. The regions contain all of the per-process and per-thread
shared information (including mutexes), that comprise a Berkeley DB environment. These
regions are created in one of three types of memory, depending on the flags specified to the
DB_ENV->open() method:

1. If the DB_PRIVATE flag is specified to the DB_ENV->open() method, regions are created in
per-process heap memory; that is, memory returned by malloc(3).

If this flag is specified, then you cannot open more than a single handle for the
environment. For example, if both a server application and Berkeley DB utilities (for
example, the db_archive utility, the db_checkpoint utility or the db_stat utility) are
expected to access the environment, the DB_PRIVATE flag should not be specified because
the second attempt to open the environment will fail.

2. If the DB_SYSTEM_MEM flag is specified to DB_ENV->open(), shared regions are created
in system memory rather than files. This is an alternative mechanism for sharing
the Berkeley DB environment among multiple processes and multiple threads within
processes.

The system memory used by Berkeley DB is potentially useful past the lifetime of any
particular process. Therefore, additional cleanup may be necessary after an application
fails because there may be no way for Berkeley DB to ensure that system resources
backing the shared memory regions are returned to the system.

The system memory that is used is architecture-dependent. For example, on systems
supporting X/Open-style shared memory interfaces, such as UNIX systems, the shmget(2)
and related System V IPC interfaces are used. Additionally, VxWorks systems use system
memory. In these cases, an initial segment ID must be specified by the application
to ensure that applications do not overwrite each other's database environments, so
that the number of segments created does not grow without bounds. See the DB_ENV-
>set_shm_key() method for more information.

On Windows platforms, the use of the DB_SYSTEM_MEM flag is problematic because the
operating system uses reference counting to clean up shared objects in the paging file
automatically. In addition, the default access permissions for shared objects are different
from files, which may cause problems when an environment is accessed by multiple

../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html
../api_reference/C/db_archive.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_stat.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html
../api_reference/C/envset_shm_key.html
../api_reference/C/envset_shm_key.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 136

processes running as different users. See the Windows Notes section in the Berkeley DB
Installation and Build Guide for more information.

3. If no memory-related flags are specified to DB_ENV->open(), memory backed by the
filesystem is used to store the regions. On UNIX systems, the Berkeley DB library will use
the POSIX mmap interface. If mmap is not available, the UNIX shmget interfaces may be
used instead, if they are available.

Any files created in the filesystem to back the regions are created in the environment home
directory specified to the DB_ENV->open() call. These files are named __db.### (for example,
__db.001, __db.002 and so on). When region files are backed by the filesystem, one file
per region is created. When region files are backed by system memory, a single file will still
be created because there must be a well-known name in the filesystem so that multiple
processes can locate the system shared memory that is being used by the environment.

Statistics about the shared memory regions in the environment can be displayed using the -e
option to the db_stat utility.

Security

The following are security issues that should be considered when writing Berkeley DB
applications:

Database environment permissions
The directory used as the Berkeley DB database environment should have its
permissions set to ensure that files in the environment are not accessible to users
without appropriate permissions. Applications that add to the user's permissions
(for example, UNIX setuid or setgid applications), must be carefully checked to not
permit illegal use of those permissions such as general file access in the environment
directory.

Environment variables
Setting the DB_USE_ENVIRON and DB_USE_ENVIRON_ROOT flags and allowing the use
of environment variables during file naming can be dangerous. Setting those flags in
Berkeley DB applications with additional permissions (for example, UNIX setuid or
setgid applications) could potentially allow users to read and write databases to which
they would not normally have access.

File permissions
By default, Berkeley DB always creates files readable and writable by the owner and
the group (that is, S_IRUSR, S_IWUSR, S_IRGRP and S_IWGRP; or octal mode 0660 on
historic UNIX systems). The group ownership of created files is based on the system
and directory defaults, and is not further specified by Berkeley DB.

Temporary backing files
If an unnamed database is created and the cache is too small to hold the database
in memory, Berkeley DB will create a temporary physical file to enable it to page the
database to disk as needed. In this case, environment variables such as TMPDIR may
be used to specify the location of that temporary file. Although temporary backing
files are created readable and writable by the owner only (S_IRUSR and S_IWUSR,
or octal mode 0600 on historic UNIX systems), some filesystems may not sufficiently

../installation/build_win_notes.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/db_stat.html
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON_ROOT

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 137

protect temporary files created in random directories from improper access. To be
absolutely safe, applications storing sensitive data in unnamed databases should use
the DB_ENV->set_tmp_dir() method to specify a temporary directory with known
permissions.

Tcl API
The Berkeley DB Tcl API does not attempt to avoid evaluating input as Tcl commands.
For this reason, it may be dangerous to pass unreviewed user input through the
Berkeley DB Tcl API, as the input may subsequently be evaluated as a Tcl command.
Additionally, the Berkeley DB Tcl API initialization routine resets process' effective
user and group IDs to the real user and group IDs, to minimize the effectiveness of a
Tcl injection attack.

Encryption

Berkeley DB optionally supports encryption using the Rijndael/AES (also known as the
Advanced Encryption Standard and Federal Information Processing Standard (FIPS) 197)
algorithm for encryption or decryption. The algorithm is configured to use a 128-bit key.
Berkeley DB uses a 16-byte initialization vector generated using the Mersenne Twister. All
encrypted information is additionally checksummed using the SHA1 Secure Hash Algorithm,
using a 160-bit message digest.

The encryption support provided with Berkeley DB is intended to protect applications from an
attacker obtaining physical access to the media on which a Berkeley DB database is stored, or
an attacker compromising a system on which Berkeley DB is running but who is unable to read
system or process memory on that system. The encryption support provided with Berkeley
DB will not protect applications from attackers able to read system memory on the system
where Berkeley DB is running.

To encrypt a database, you must configure the database for encryption prior to creating
it. If you are using a database environment, you must also configure the environment for
encryption. In order to create an encrypted database within an environment, you:

1. Configure the environment for encryption using the DB_ENV->set_encrypt() method.

2. Open the database environment.

3. Specify the DB_ENCRYPT flag to the database handle.

4. Open the database.

Once you have done that, all of the databases that you create in the environment are
encrypted/decrypted by the password you specify using the DB_ENV->set_encrypt() method.

For databases not created in an environment:

1. Specify the DB_ENCRYPT flag to the database handle.

2. Call the DB->set_encrypt() method.

3. Open the database.

../api_reference/C/envset_tmp_dir.html
../api_reference/C/envset_encrypt.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_ENCRYPT
../api_reference/C/envset_encrypt.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_ENCRYPT
../api_reference/C/dbset_encrypt.html

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 138

Note that databases cannot be converted to an encrypted format after they have been
created without dumping and re-creating them. Finally, encrypted databases cannot be read
on systems with a different endianness than the system that created the encrypted database.

Each encrypted database environment (including all its encrypted databases) is encrypted
using a single password and a single algorithm. Applications wanting to provide a finer
granularity of database access must either use multiple database environments or implement
additional access controls outside of Berkeley DB.

The only encrypted parts of a database environment are its databases and its log files.
Specifically, the Shared memory regions (page 135) supporting the database environment
are not encrypted. For this reason, it may be possible for an attacker to read some or all of
an encrypted database by reading the on-disk files that back these shared memory regions.
To prevent such attacks, applications may want to use in-memory filesystem support (on
systems that support it), or the DB_PRIVATE or DB_SYSTEM_MEM flags to the DB_ENV->open()
method, to place the shared memory regions in memory that is never written to a disk. As
some systems page system memory to a backing disk, it is important to consider the specific
operating system running on the machine as well. Finally, when backing database environment
shared regions with the filesystem, Berkeley DB can be configured to overwrite the shared
regions before removing them by specifying the DB_OVERWRITE flag. This option is only
effective in the presence of fixed-block filesystems, journaling or logging filesystems will
require operating system support and probably modification of the Berkeley DB sources.

While all user data is encrypted, parts of the databases and log files in an encrypted
environment are maintained in an unencrypted state. Specifically, log record headers are not
encrypted, only the actual log records. Additionally, database internal page header fields
are not encrypted. These page header fields includes information such as the page's DB_LSN
number and position in the database's sort order.

Log records distributed by a replication master to replicated clients are transmitted to the
clients in unencrypted form. If encryption is desired in a replicated application, the use of a
secure transport is strongly suggested.

We gratefully acknowledge:

• Vincent Rijmen, Antoon Bosselaers and Paulo Barreto for writing the Rijndael/AES code used
in Berkeley DB.

• Steve Reid and James H. Brown for writing the SHA1 checksum code used in Berkeley DB.

• Makoto Matsumoto and Takuji Nishimura for writing the Mersenne Twister code used in
Berkeley DB.

• Adam Stubblefield for integrating the Rijndael/AES, SHA1 checksum and Mersenne Twister
code into Berkeley DB.

Berkeley DB 11g Release 2 supports encryption using Intel's Performance Primitive (IPP) on
Linux. This works only on Intel processors. To use Berkeley DB with IPP encryption, you must
have IPP installed along with the cryptography extension. The IPP performance is higher in
most cases compared to the current AES implementation. See --with-cryptography for more
information. See the Intel Documenation for more information on IPP.

../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html
../api_reference/C/envset_flags.html#set_flags_DB_OVERWRITE
../api_reference/C/lsn.html
../installation/build_unix_conf.html#build_unix_conf.--with-cryptography
http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-documentation/

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 139

Remote filesystems

When Berkeley DB database environment shared memory regions are backed by the
filesystem, it is a common application error to create database environments backed by
remote filesystems such as the Network File System (NFS), Windows network shares (SMB/
CIFS) or the Andrew File System (AFS). Remote filesystems rarely support mapping files into
process memory, and even more rarely support correct semantics for mutexes if the mapping
succeeds. For this reason, we recommend database environment directories be created in a
local filesystem.

For remote filesystems that do allow remote files to be mapped into process memory,
database environment directories accessed via remote filesystems cannot be used
simultaneously from multiple clients (that is, from multiple computers). No commercial
remote filesystem of which we're aware supports coherent, distributed shared memory for
remote-mounted files. As a result, different machines will see different versions of these
shared region files, and the behavior is undefined.

Databases, log files, and temporary files may be placed on remote filesystems, as long as
the remote filesystem fully supports standard POSIX filesystem semantics (although the
application may incur a performance penalty for doing so). Further, read-only databases
on remote filesystems can be accessed from multiple systems simultaneously. However, it
is difficult (or impossible) for modifiable databases on remote filesystems to be accessed
from multiple systems simultaneously. The reason is the Berkeley DB library caches modified
database pages, and when those modified pages are written to the backing file is not entirely
under application control. If two systems were to write database pages to the remote
filesystem at the same time, database corruption could result. If a system were to write a
database page back to the remote filesystem at the same time as another system read a page,
a core dump in the reader could result.
FreeBSD note:

Some historic FreeBSD releases will return ENOLCK from fsync and close calls on NFS-
mounted filesystems, even though the call has succeeded. To support Berkeley DB on
these releases, the Berkeley DB code should be modified to ignore ENOLCK errors, or
no Berkeley DB files should be placed on NFS-mounted filesystems on these systems.
Note that current FreeBSD releases do not suffer from this problem.

Linux note:
Some historic Linux releases do not support complete semantics for the POSIX fsync
call on NFS-mounted filesystems. No Berkeley DB files should be placed on NFS-
mounted filesystems on these systems. Note that current Linux releases do not suffer
from this problem.

Environment FAQ

1. I'm using multiple processes to access an Berkeley DB database environment; is there
any way to ensure that two processes don't run transactional recovery at the same
time, or that all processes have exited the database environment so that recovery can
be run?

See Handling failure in Transactional Data Store applications (page 149) and Architecting
Transactional Data Store applications (page 150) for a full discussion of this topic.

Library Version 11.2.5.3 The Berkeley DB Environment

9/9/2013 DB Reference Guide Page 140

2. How can I associate application information with a DB or DB_ENV handle?

In the C API, the DB and DB_ENV structures each contain an "app_private" field intended
to be used to reference application-specific information. See the db_create() and
db_env_create() documentation for more information.

In the C++ or Java APIs, the easiest way to associate application-specific data with a
handle is to subclass the Db or DbEnv, for example subclassing Db to get MyDb. Objects of
type MyDb will still have the Berkeley DB API methods available on them, and you can put
any extra data or methods you want into the MyDb class. If you are using "callback" APIs
that take Db or DbEnv arguments (for example, Db::set_bt_compare()) these will always
be called with the Db or DbEnv objects you create. So if you always use MyDb objects, you
will be able to take the first argument to the callback function and cast it to a MyDb (in C
++, cast it to (MyDb*)). That will allow you to access your data members or methods.

../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/dbcreate.html
../api_reference/C/envcreate.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html
../api_reference/CXX/db.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html
../api_reference/CXX/dbset_bt_compare.html
../api_reference/CXX/db.html
../api_reference/CXX/env.html

9/9/2013 DB Reference Guide Page 141

Chapter 10. Berkeley DB Concurrent Data Store
Applications

Concurrent Data Store introduction

It is often desirable to have concurrent read-write access to a database when there is no
need for full recoverability or transaction semantics. For this class of applications, Berkeley
DB provides interfaces supporting deadlock-free, multiple-reader/single writer access to
the database. This means that at any instant in time, there may be either multiple readers
accessing data or a single writer modifying data. The application is entirely unaware of which
is happening, and Berkeley DB implements the necessary locking and blocking to ensure this
behavior.

To create Berkeley DB Concurrent Data Store applications, you must first initialize
an environment by calling DB_ENV->open(). You must specify the DB_INIT_CDB and
DB_INIT_MPOOL flags to that method. It is an error to specify any of the other DB_ENV-
>open() subsystem or recovery configuration flags, for example, DB_INIT_LOCK, DB_INIT_TXN
or DB_RECOVER All databases must, of course, be created in this environment by using the
db_create() function or Db constructor, and specifying the environment as an argument.

Berkeley DB performs appropriate locking so that safe enforcement of the deadlock-free,
multiple-reader/single-writer semantic is transparent to the application. However, a basic
understanding of Berkeley DB Concurrent Data Store locking behavior is helpful when writing
Berkeley DB Concurrent Data Store applications.

Berkeley DB Concurrent Data Store avoids deadlocks without the need for a deadlock detector
by performing all locking on an entire database at once (or on an entire environment in the
case of the DB_CDB_ALLDB flag), and by ensuring that at any given time only one thread of
control is allowed to simultaneously hold a read (shared) lock and attempt to acquire a write
(exclusive) lock.

All open Berkeley DB cursors hold a read lock, which serves as a guarantee that the database
will not change beneath them; likewise, all non-cursor DB->get() operations temporarily
acquire and release a read lock that is held during the actual traversal of the database.
Because read locks will not conflict with each other, any number of cursors in any number of
threads of control may be open simultaneously, and any number of DB->get() operations may
be concurrently in progress.

To enforce the rule that only one thread of control at a time can attempt to upgrade a read
lock to a write lock, however, Berkeley DB must forbid multiple cursors from attempting to
write concurrently. This is done using the DB_WRITECURSOR flag to the DB->cursor() method.
This is the only difference between access method calls in Berkeley DB Concurrent Data Store
and in the other Berkeley DB products. The DB_WRITECURSOR flag causes the newly created
cursor to be a "write" cursor; that is, a cursor capable of performing writes as well as reads.
Only cursors thus created are permitted to perform write operations (either deletes or puts),
and only one such cursor can exist at any given time.

Any attempt to create a second write cursor or to perform a non-cursor write operation while
a write cursor is open will block until that write cursor is closed. Read cursors may open and

../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_CDB
../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_TXN
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/dbcreate.html
../api_reference/CXX/db.html
../api_reference/C/envset_flags.html#set_flags_DB_CDB_ALLDB
../api_reference/C/dbget.html
../api_reference/C/dbget.html
../api_reference/C/dbcursor.html#cursor_DB_WRITECURSOR
../api_reference/C/dbcursor.html
../api_reference/C/dbcursor.html#cursor_DB_WRITECURSOR

Library Version 11.2.5.3 Berkeley DB Concurrent Data Store Applications

9/9/2013 DB Reference Guide Page 142

perform reads without blocking while a write cursor is extant. However, any attempts to
actually perform a write, either using the write cursor or directly using the DB->put() or DB-
>del() methods, will block until all read cursors are closed. This is how the multiple-reader/
single-writer semantic is enforced, and prevents reads from seeing an inconsistent database
state that may be an intermediate stage of a write operation.

By default, Berkeley DB Concurrent Data Store does locking on a per-database basis. For this
reason, using cursors to access multiple databases in different orders in different threads or
processes, or leaving cursors open on one database while accessing another database, can
cause an application to hang. If this behavior is a requirement for the application, Berkeley DB
should be configured to do locking on an environment-wide basis. See the DB_CDB_ALLDB flag
of the DB_ENV->set_flags() method for more information.

With these behaviors, Berkeley DB can guarantee deadlock-free concurrent database access,
so that multiple threads of control are free to perform reads and writes without needing to
handle synchronization themselves or having to run a deadlock detector. Berkeley DB has no
direct knowledge of which cursors belong to which threads, so some care must be taken to
ensure that applications do not inadvertently block themselves, causing the application to
hang and be unable to proceed.

As a consequence of the Berkeley DB Concurrent Data Store locking model, the following
sequences of operations will cause a thread to block itself indefinitely:

1. Keeping a cursor open while issuing a DB->put() or DB->del() access method call.

2. Attempting to open a write cursor while another cursor is already being held open by
the same thread of control. Note that it is correct operation for one thread of control
to attempt to open a write cursor or to perform a non-cursor write (DB->put() or DB-
>del()) while a write cursor is already active in another thread. It is only a problem if
these things are done within a single thread of control -- in which case that thread will
block and never be able to release the lock that is blocking it.

3. Not testing Berkeley DB error return codes (if any cursor operation returns an unexpected
error, that cursor must still be closed).

If the application needs to open multiple cursors in a single thread to perform an operation,
it can indicate to Berkeley DB that the cursor locks should not block each other by creating
a Berkeley DB Concurrent Data Store group, using DB_ENV->cdsgroup_begin(). This creates a
locker ID that is shared by all cursors opened in the group.

Berkeley DB Concurrent Data Store groups use a TXN handle to indicate the shared locker ID
to Berkeley DB calls, and call DB_TXN->commit() to end the group. This is a convenient way
to pass the locked ID to the calls where it is needed, but should not be confused with the
real transactional semantics provided by Berkeley DB Transactional Data Store. In particular,
Berkeley DB Concurrent Data Store groups do not provide any abort or recovery facilities, and
have no impact on durability of operations.

../api_reference/C/dbput.html
../api_reference/C/dbdel.html
../api_reference/C/dbdel.html
../api_reference/C/envset_flags.html#set_flags_DB_CDB_ALLDB
../api_reference/C/envset_flags.html
../api_reference/C/dbput.html
../api_reference/C/dbdel.html
../api_reference/C/dbput.html
../api_reference/C/dbdel.html
../api_reference/C/dbdel.html
../api_reference/C/envcdsgroup_begin.html
../api_reference/C/txn.html
../api_reference/C/txncommit.html

Library Version 11.2.5.3 Berkeley DB Concurrent Data Store Applications

9/9/2013 DB Reference Guide Page 143

Handling failure in Data Store and Concurrent Data Store
applications

When building Data Store and Concurrent Data Store applications, there are design issues to
consider whenever a thread of control with open Berkeley DB handles fails for any reason
(where a thread of control may be either a true thread or a process).

The simplest case is handling system failure for any Data Store or Concurrent Data Store
application. In the case of system failure, it doesn't matter if the application has opened a
database environment or is just using standalone databases: if the system fails, after the
application has modified a database and has not subsequently flushed the database to stable
storage (by calling either the DB->close(), DB->sync() or DB_ENV->memp_sync() methods), the
database may be left in a corrupted state. In this case, before accessing the database again,
the database should either be:

• removed and re-created,

• removed and restored from the last known good backup, or

• verified using the DB->verify() method or db_verify utility. If the database does not verify
cleanly, the contents may be salvaged using the -R and -r options of the db_dump utility.

Applications where the potential for data loss is unacceptable should consider the Berkeley DB
Transactional Data Store product, which offers standard transactional durability guarantees,
including recoverability after failure.

Additionally, system failure requires that any persistent database environment (that is,
any database environment not created using the DB_PRIVATE flag), be removed. Database
environments may be removed using the DB_ENV->remove() method. If the persistent
database environment was backed by the filesystem (that is, the environment was not created
using the DB_SYSTEM_MEM flag), the database environment may also be safely removed by
deleting the environment's files with standard system utilities.

The second case is application failure for a Data Store application, with or without a database
environment, or application failure for a Concurrent Data Store application without a
database environment: as in the case of system failure, if any thread of control fails, after the
application has modified a database and has not subsequently flushed the database to stable
storage, the database may be left in a corrupted state. In this case, the database should be
handled as described previously in the system failure case.

The third case is application failure for a Concurrent Data Store application with a database
environment. There are resources maintained in database environments that may be
left locked if a thread of control exits without first closing all open Berkeley DB handles.
Concurrent Data Store applications with database environments have an additional option for
handling the unexpected exit of a thread of control, the DB_ENV->failchk() method.

The DB_ENV->failchk() will return DB_RUNRECOVERY (page 259) if the database environment
is unusable as a result of the thread of control failure. (If a data structure mutex or a
database write lock is left held by thread of control failure, the application should not
continue to use the database environment, as subsequent use of the environment is likely to
result in threads of control convoying behind the held locks.) The DB_ENV->failchk() call will

../api_reference/C/dbclose.html
../api_reference/C/dbsync.html
../api_reference/C/mempsync.html
../api_reference/C/dbverify.html
../api_reference/C/db_verify.html
../api_reference/C/db_dump.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envremove.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html

Library Version 11.2.5.3 Berkeley DB Concurrent Data Store Applications

9/9/2013 DB Reference Guide Page 144

release any database read locks that have been left held by the exit of a thread of control. In
this case, the application can continue to use the database environment.

A Concurrent Data Store application recovering from a thread of control failure should
call DB_ENV->failchk(), and, if it returns success, the application can continue. If DB_ENV-
>failchk() returns DB_RUNRECOVERY (page 259), the application should proceed as described
for the case of system failure.

Architecting Data Store and Concurrent Data Store
applications

When building Data Store and Concurrent Data Store applications, the architecture decisions
involve application startup (cleaning up any existing databases, the removal of any existing
database environment and creation of a new environment), and handling system or application
failure. "Cleaning up" databases involves removal and re-creation of the database, restoration
from an archival copy and/or verification and optional salvage, as described in Handling
failure in Data Store and Concurrent Data Store applications (page 143).

Data Store or Concurrent Data Store applications without database environments are single
process, by definition. These applications should start up, re-create, restore, or verify and
optionally salvage their databases and run until eventual exit or application or system failure.
After system or application failure, that process can simply repeat this procedure. This
document will not discuss the case of these applications further.

Otherwise, the first question of Data Store and Concurrent Data Store architecture is the
cleaning up existing databases and the removal of existing database environments, and the
subsequent creation of a new environment. For obvious reasons, the application must serialize
the re-creation, restoration, or verification and optional salvage of its databases. Further,
environment removal and creation must be single-threaded, that is, one thread of control
(where a thread of control is either a true thread or a process) must remove and re-create
the environment before any other thread of control can use the new environment. It may
simplify matters that Berkeley DB serializes creation of the environment, so multiple threads
of control attempting to create a environment will serialize behind a single creating thread.

Removing a database environment will first mark the environment as "failed", causing any
threads of control still running in the environment to fail and return to the application. This
feature allows applications to remove environments without concern for threads of control
that might still be running in the removed environment.

One consideration in removing a database environment which may be in use by another
thread, is the type of mutex being used by the Berkeley DB library. In the case of database
environment failure when using test-and-set mutexes, threads of control waiting on a mutex
when the environment is marked "failed" will quickly notice the failure and will return an error
from the Berkeley DB API. In the case of environment failure when using blocking mutexes,
where the underlying system mutex implementation does not unblock mutex waiters after the
thread of control holding the mutex dies, threads waiting on a mutex when an environment
is recovered might hang forever. Applications blocked on events (for example, an application
blocked on a network socket or a GUI event) may also fail to notice environment recovery
within a reasonable amount of time. Systems with such mutex implementations are rare, but
do exist; applications on such systems should use an application architecture where the thread

../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html

Library Version 11.2.5.3 Berkeley DB Concurrent Data Store Applications

9/9/2013 DB Reference Guide Page 145

recovering the database environment can explicitly terminate any process using the failed
environment, or configure Berkeley DB for test-and-set mutexes, or incorporate some form of
long-running timer or watchdog process to wake or kill blocked processes should they block for
too long.

Regardless, it makes little sense for multiple threads of control to simultaneously attempt to
remove and re-create a environment, since the last one to run will remove all environments
created by the threads of control that ran before it. However, for some few applications, it
may make sense for applications to have a single thread of control that checks the existing
databases and removes the environment, after which the application launches a number of
processes, any of which are able to create the environment.

With respect to cleaning up existing databases, the database environment must be removed
before the databases are cleaned up. Removing the environment causes any Berkeley DB
library calls made by threads of control running in the failed environment to return failure
to the application. Removing the database environment first ensures the threads of control
in the old environment do not race with the threads of control cleaning up the databases,
possibly overwriting them after the cleanup has finished. Where the application architecture
and system permit, many applications kill all threads of control running in the failed database
environment before removing the failed database environment, on general principles as well
as to minimize overall system resource usage. It does not matter if the new environment is
created before or after the databases are cleaned up.

After having dealt with database and database environment recovery after failure, the next
issue to manage is application failure. As described in Handling failure in Data Store and
Concurrent Data Store applications (page 143), when a thread of control in a Data Store or
Concurrent Data Store application fails, it may exit holding data structure mutexes or logical
database locks. These mutexes and locks must be released to avoid the remaining threads of
control hanging behind the failed thread of control's mutexes or locks.

There are three common ways to architect Berkeley DB Data Store and Concurrent Data Store
applications. The one chosen is usually based on whether or not the application is comprised
of a single process or group of processes descended from a single process (for example, a
server started when the system first boots), or if the application is comprised of unrelated
processes (for example, processes started by web connections or users logging into the
system).

1. The first way to architect Data Store and Concurrent Data Store applications is as a single
process (the process may or may not be multithreaded.)
When this process starts, it removes any existing database environment and creates a
new environment. It then cleans up the databases and opens those databases in the
environment. The application can subsequently create new threads of control as it
chooses. Those threads of control can either share already open Berkeley DB DB_ENV
and DB handles, or create their own. In this architecture, databases are rarely opened
or closed when more than a single thread of control is running; that is, they are opened
when only a single thread is running, and closed after all threads but one have exited.
The last thread of control to exit closes the databases and the database environment.

This architecture is simplest to implement because thread serialization is easy and failure
detection does not require monitoring multiple processes.

../api_reference/C/env.html
../api_reference/C/db.html

Library Version 11.2.5.3 Berkeley DB Concurrent Data Store Applications

9/9/2013 DB Reference Guide Page 146

If the application's thread model allows the process to continue after thread failure,
the DB_ENV->failchk() method can be used to determine if the database environment is
usable after the failure. If the application does not call DB_ENV->failchk(), or DB_ENV-
>failchk() returns DB_RUNRECOVERY (page 259), the application must behave as if there
has been a system failure, removing the environment and creating a new environment,
and cleaning up any databases it wants to continue to use. Once these actions have been
taken, other threads of control can continue (as long as all existing Berkeley DB handles
are first discarded), or restarted.

2. The second way to architect Data Store and Concurrent Data Store applications is as a
group of related processes (the processes may or may not be multithreaded).
This architecture requires the order in which threads of control are created be controlled
to serialize database environment removal and creation, and database cleanup.

In addition, this architecture requires that threads of control be monitored. If any
thread of control exits with open Berkeley DB handles, the application may call the
DB_ENV->failchk() method to determine if the database environment is usable after the
exit. If the application does not call DB_ENV->failchk(), or DB_ENV->failchk() returns
DB_RUNRECOVERY (page 259), the application must behave as if there has been a system
failure, removing the environment and creating a new environment, and cleaning up any
databases it wants to continue to use. Once these actions have been taken, other threads
of control can continue (as long as all existing Berkeley DB handles are first discarded), or
restarted.

The easiest way to structure groups of related processes is to first create a single
"watcher" process (often a script) that starts when the system first boots, removes
and creates the database environment, cleans up the databases and then creates the
processes or threads that will actually perform work. The initial thread has no further
responsibilities other than to wait on the threads of control it has started, to ensure none
of them unexpectedly exit. If a thread of control exits, the watcher process optionally
calls the DB_ENV->failchk() method. If the application does not call DB_ENV->failchk(),
or if DB_ENV->failchk() returns DB_RUNRECOVERY (page 259), the environment can
no longer be used, the watcher kills all of the threads of control using the failed
environment, cleans up, and starts new threads of control to perform work.

3. The third way to architect Data Store and Concurrent Data Store applications is as a group
of unrelated processes (the processes may or may not be multithreaded). This is the most
difficult architecture to implement because of the level of difficulty in some systems of
finding and monitoring unrelated processes.
One solution is to log a thread of control ID when a new Berkeley DB handle is opened.
For example, an initial "watcher" process could open/create the database environment,
clean up the databases and then create a sentinel file. Any "worker" process wanting
to use the environment would check for the sentinel file. If the sentinel file does
not exist, the worker would fail or wait for the sentinel file to be created. Once the
sentinel file exists, the worker would register its process ID with the watcher (via shared
memory, IPC or some other registry mechanism), and then the worker would open its
DB_ENV handles and proceed. When the worker finishes using the environment, it would
unregister its process ID with the watcher. The watcher periodically checks to ensure
that no worker has failed while using the environment. If a worker fails while using the

../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/env.html

Library Version 11.2.5.3 Berkeley DB Concurrent Data Store Applications

9/9/2013 DB Reference Guide Page 147

environment, the watcher removes the sentinel file, kills all of the workers currently
using the environment, cleans up the environment and databases, and finally creates a
new sentinel file.

The weakness of this approach is that, on some systems, it is difficult to determine if an
unrelated process is still running. For example, POSIX systems generally disallow sending
signals to unrelated processes. The trick to monitoring unrelated processes is to find a
system resource held by the process that will be modified if the process dies. On POSIX
systems, flock- or fcntl-style locking will work, as will LockFile on Windows systems.
Other systems may have to use other process-related information such as file reference
counts or modification times. In the worst case, threads of control can be required to
periodically re-register with the watcher process: if the watcher has not heard from a
thread of control in a specified period of time, the watcher will take action, cleaning up
the environment.

If it is not practical to monitor the processes sharing a database environment, it may be
possible to monitor the environment to detect if a thread of control has failed holding
open Berkeley DB handles. This would be done by having a "watcher" process periodically
call the DB_ENV->failchk() method. If DB_ENV->failchk() returns DB_RUNRECOVERY (page
259), the watcher would then take action, cleaning up the environment.

The weakness of this approach is that all threads of control using the environment must
specify an "ID" function and an "is-alive" function using the DB_ENV->set_thread_id()
method. (In other words, the Berkeley DB library must be able to assign a unique ID to
each thread of control, and additionally determine if the thread of control is still running.
It can be difficult to portably provide that information in applications using a variety of
different programming languages and running on a variety of different platforms.)

Obviously, when implementing a process to monitor other threads of control, it is important
the watcher process' code be as simple and well-tested as possible, because the application
may hang if it fails.

../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envset_thread_id.html

9/9/2013 DB Reference Guide Page 148

Chapter 11. Berkeley DB Transactional Data Store
Applications
Transactional Data Store introduction

It is difficult to write a useful transactional tutorial and still keep within reasonable bounds of
documentation; that is, without writing a book on transactional programming. We have two
goals in this section: to familiarize readers with the transactional interfaces of Berkeley DB
and to provide code building blocks that will be useful for creating applications.

We have not attempted to present this information using a real-world application. First,
transactional applications are often complex and time-consuming to explain. Also, one of our
goals is to give you an understanding of the wide variety of tools Berkeley DB makes available
to you, and no single application would use most of the interfaces included in the Berkeley DB
library. For these reasons, we have chosen to simply present the Berkeley DB data structures
and programming solutions, using examples that differ from page to page. All the examples
are included in a standalone program you can examine, modify, and run; and from which you
will be able to extract code blocks for your own applications. Fragments of the program will
be presented throughout this chapter, and the complete text of the example program for
IEEE/ANSI Std 1003.1 (POSIX) standard systems is included in the Berkeley DB distribution.

Why transactions?

Perhaps the first question to answer is "Why transactions?" There are a number of reasons to
include transactional support in your applications. The most common ones are the following:
Recoverability

Applications often need to ensure that no matter how the system or application fails,
previously saved data is available the next time the application runs. This is often
called Durability.

Atomicity
Applications may need to make multiple changes to one or more databases, but
ensure that either all of the changes happen, or none of them happens. Transactions
guarantee that a group of changes are atomic; that is, if the application or system
fails, either all of the changes to the databases will appear when the application next
runs, or none of them.

Isolation
Applications may need to make changes in isolation, that is, ensure that only a single
thread of control is modifying a key/data pair at a time. Transactions ensure each
thread of control sees all records as if all other transactions either completed before
or after its transaction.

Terminology

Here are some definitions that will be helpful in understanding transactions:
Thread of control

Berkeley DB is indifferent to the type or style of threads being used by the
application; or, for that matter, if threads are being used at all — because Berkeley DB
supports multiprocess access. In the Berkeley DB documentation, any time we refer

transapp.cs

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 149

to a thread of control, it can be read as a true thread (one of many in an application's
address space) or a process.

Free-threaded
A Berkeley DB handle that can be used by multiple threads simultaneously without any
application-level synchronization is called free-threaded.

Transaction
A transaction is a one or more operations on one or more databases that should be
treated as a single unit of work. For example, changes to a set of databases, in which
either all of the changes must be applied to the database(s) or none of them should.
Applications specify when each transaction starts, what database operations are
included in it, and when it ends.

Transaction abort/commit
Every transaction ends by committing or aborting. If a transaction commits, Berkeley
DB guarantees that any database changes included in the transaction will never
be lost, even after system or application failure. If a transaction aborts, or is
uncommitted when the system or application fails, then the changes involved will
never appear in the database.

System or application failure
System or application failure is the phrase we use to describe something bad
happening near your data. It can be an application dumping core, being interrupted
by a signal, the disk filling up, or the entire system crashing. In any case, for whatever
reason, the application can no longer make forward progress, and its databases are
left in an unknown state.

Recovery
Recovery is what makes the database consistent after a system or application failure.
The recovery process includes review of log files and databases to ensure that
the changes from each committed transaction appear in the database, and that
no changes from an unfinished (or aborted) transaction do. Whenever system or
application failure occurs, applications must usually run recovery.

Deadlock
Deadlock, in its simplest form, happens when one thread of control owns resource
A, but needs resource B; while another thread of control owns resource B, but needs
resource A. Neither thread of control can make progress, and so one has to give up
and release all its resources, at which time the remaining thread of control can make
forward progress.

Handling failure in Transactional Data Store applications
When building Transactional Data Store applications, there are design issues to consider
whenever a thread of control with open Berkeley DB handles fails for any reason (where a
thread of control may be either a true thread or a process).

The first case is handling system failure: if the system fails, the database environment and the
databases may be left in a corrupted state. In this case, recovery must be performed on the
database environment before any further action is taken, in order to:

• recover the database environment resources,

• release any locks or mutexes that may have been held to avoid starvation as the remaining
threads of control convoy behind the held locks, and

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 150

• resolve any partially completed operations that may have left a database in an inconsistent
or corrupted state.

For details on performing recovery, see the Recovery procedures (page 181).

The second case is handling the failure of a thread of control. There are resources maintained
in database environments that may be left locked or corrupted if a thread of control exits
unexpectedly. These resources include data structure mutexes, logical database locks and
unresolved transactions (that is, transactions which were never aborted or committed). While
Transactional Data Store applications can treat the failure of a thread of control in the same
way as they do a system failure, they have an alternative choice, the DB_ENV->failchk()
method.

The DB_ENV->failchk() will return DB_RUNRECOVERY (page 259) if the database environment
is unusable as a result of the thread of control failure. (If a data structure mutex or a
database write lock is left held by thread of control failure, the application should not
continue to use the database environment, as subsequent use of the environment is likely to
result in threads of control convoying behind the held locks.) The DB_ENV->failchk() call will
release any database read locks that have been left held by the exit of a thread of control,
and abort any unresolved transactions. In this case, the application can continue to use the
database environment.

A Transactional Data Store application recovering from a thread of control failure should
call DB_ENV->failchk(), and, if it returns success, the application can continue. If DB_ENV-
>failchk() returns DB_RUNRECOVERY (page 259), the application should proceed as described
for the case of system failure.

It greatly simplifies matters that recovery may be performed regardless of whether recovery
needs to be performed; that is, it is not an error to recover a database environment for
which recovery is not strictly necessary. For this reason, applications should not try to
determine if the database environment was active when the application or system failed.
Instead, applications should run recovery any time the DB_ENV->failchk() method returns
DB_RUNRECOVERY (page 259), or, if the application is not calling the DB_ENV->failchk()
method, any time any thread of control accessing the database environment fails, as well as
any time the system reboots.

Architecting Transactional Data Store applications

When building Transactional Data Store applications, the architecture decisions involve
application startup (running recovery) and handling system or application failure. For details
on performing recovery, see the Recovery procedures (page 181).

Recovery in a database environment is a single-threaded procedure, that is, one thread of
control or process must complete database environment recovery before any other thread of
control or process operates in the Berkeley DB environment.

Performing recovery first marks any existing database environment as "failed" and then
removes it, causing threads of control running in the database environment to fail and
return to the application. This feature allows applications to recover environments without
concern for threads of control that might still be running in the removed environment. The
subsequent re-creation of the database environment is serialized, so multiple threads of

../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 151

control attempting to create a database environment will serialize behind a single creating
thread.

One consideration in removing (as part of recovering) a database environment which may
be in use by another thread, is the type of mutex being used by the Berkeley DB library.
In the case of database environment failure when using test-and-set mutexes, threads of
control waiting on a mutex when the environment is marked "failed" will quickly notice the
failure and will return an error from the Berkeley DB API. In the case of environment failure
when using blocking mutexes, where the underlying system mutex implementation does not
unblock mutex waiters after the thread of control holding the mutex dies, threads waiting on
a mutex when an environment is recovered might hang forever. Applications blocked on events
(for example, an application blocked on a network socket, or a GUI event) may also fail to
notice environment recovery within a reasonable amount of time. Systems with such mutex
implementations are rare, but do exist; applications on such systems should use an application
architecture where the thread recovering the database environment can explicitly terminate
any process using the failed environment, or configure Berkeley DB for test-and-set mutexes,
or incorporate some form of long-running timer or watchdog process to wake or kill blocked
processes should they block for too long.

Regardless, it makes little sense for multiple threads of control to simultaneously attempt
recovery of a database environment, since the last one to run will remove all database
environments created by the threads of control that ran before it. However, for some
applications, it may make sense for applications to have a single thread of control that
performs recovery and then removes the database environment, after which the application
launches a number of processes, any of which will create the database environment and
continue forward.

There are three common ways to architect Berkeley DB Transactional Data Store applications.
The one chosen is usually based on whether or not the application is comprised of a single
process or group of processes descended from a single process (for example, a server started
when the system first boots), or if the application is comprised of unrelated processes (for
example, processes started by web connections or users logged into the system).

1. The first way to architect Transactional Data Store applications is as a single process (the
process may or may not be multithreaded.)

When this process starts, it runs recovery on the database environment and then opens
its databases. The application can subsequently create new threads as it chooses. Those
threads can either share already open Berkeley DB DB_ENV and DB handles, or create
their own. In this architecture, databases are rarely opened or closed when more than a
single thread of control is running; that is, they are opened when only a single thread is
running, and closed after all threads but one have exited. The last thread of control to
exit closes the databases and the database environment.

This architecture is simplest to implement because thread serialization is easy and failure
detection does not require monitoring multiple processes.

If the application's thread model allows processes to continue after thread failure, the
DB_ENV->failchk() method can be used to determine if the database environment is
usable after thread failure. If the application does not call DB_ENV->failchk(), or DB_ENV-
>failchk() returns DB_RUNRECOVERY (page 259), the application must behave as if

../api_reference/C/env.html
../api_reference/C/db.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 152

there has been a system failure, performing recovery and re-creating the database
environment. Once these actions have been taken, other threads of control can continue
(as long as all existing Berkeley DB handles are first discarded).

2. The second way to architect Transactional Data Store applications is as a group of related
processes (the processes may or may not be multithreaded).

This architecture requires the order in which threads of control are created be controlled
to serialize database environment recovery.

In addition, this architecture requires that threads of control be monitored. If any thread
of control exits with open Berkeley DB handles, the application may call the DB_ENV-
>failchk() method to detect lost mutexes and locks and determine if the application
can continue. If the application does not call DB_ENV->failchk(), or DB_ENV->failchk()
returns that the database environment can no longer be used, the application must
behave as if there has been a system failure, performing recovery and creating a new
database environment. Once these actions have been taken, other threads of control can
be continued (as long as all existing Berkeley DB handles are first discarded), or

The easiest way to structure groups of related processes is to first create a single
"watcher" process (often a script) that starts when the system first boots, runs recovery
on the database environment and then creates the processes or threads that will actually
perform work. The initial thread has no further responsibilities other than to wait on the
threads of control it has started, to ensure none of them unexpectedly exit. If a thread
of control exits, the watcher process optionally calls the DB_ENV->failchk() method. If
the application does not call DB_ENV->failchk() or if DB_ENV->failchk() returns that the
environment can no longer be used, the watcher kills all of the threads of control using
the failed environment, runs recovery, and starts new threads of control to perform work.

3. The third way to architect Transactional Data Store applications is as a group of unrelated
processes (the processes may or may not be multithreaded). This is the most difficult
architecture to implement because of the level of difficulty in some systems of finding
and monitoring unrelated processes. There are several possible techniques to implement
this architecture.

One solution is to log a thread of control ID when a new Berkeley DB handle is opened.
For example, an initial "watcher" process could run recovery on the database environment
and then create a sentinel file. Any "worker" process wanting to use the environment
would check for the sentinel file. If the sentinel file does not exist, the worker would fail
or wait for the sentinel file to be created. Once the sentinel file exists, the worker would
register its process ID with the watcher (via shared memory, IPC or some other registry
mechanism), and then the worker would open its DB_ENV handles and proceed. When
the worker finishes using the environment, it would unregister its process ID with the
watcher. The watcher periodically checks to ensure that no worker has failed while using
the environment. If a worker fails while using the environment, the watcher removes the
sentinel file, kills all of the workers currently using the environment, runs recovery on the
environment, and finally creates a new sentinel file.

The weakness of this approach is that, on some systems, it is difficult to determine if an
unrelated process is still running. For example, POSIX systems generally disallow sending

../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/env.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 153

signals to unrelated processes. The trick to monitoring unrelated processes is to find a
system resource held by the process that will be modified if the process dies. On POSIX
systems, flock- or fcntl-style locking will work, as will LockFile on Windows systems.
Other systems may have to use other process-related information such as file reference
counts or modification times. In the worst case, threads of control can be required to
periodically re-register with the watcher process: if the watcher has not heard from a
thread of control in a specified period of time, the watcher will take action, recovering
the environment.

The Berkeley DB library includes one built-in implementation of this approach, the
DB_ENV->open() method's DB_REGISTER flag:

If the DB_REGISTER flag is set, each process opening the database environment first
checks to see if recovery needs to be performed. If recovery needs to be performed
for any reason (including the initial creation of the database environment), and
DB_RECOVER is also specified, recovery will be performed and then the open will
proceed normally. If recovery needs to be performed and DB_RECOVER is not specified,
DB_RUNRECOVERY (page 259) will be returned. If recovery does not need to be
performed, DB_RECOVER will be ignored.

Prior to the actual recovery beginning, the DB_EVENT_REG_PANIC event is set for the
environment. Processes in the application using the DB_ENV->set_event_notify() method
will be notified when they do their next operations in the environment. Processes
receiving this event should exit the environment. Also, the DB_EVENT_REG_ALIVE event
will be triggered if there are other processes currently attached to the environment. Only
the process doing the recovery will receive this event notification. It will receive this
notification once for each process still attached to the environment. The parameter of
the DB_ENV->set_event_notify() callback will contain the process identifier of the process
still attached. The process doing the recovery can then signal the attached process or
perform some other operation prior to recovery (i.e. kill the attached process).

The DB_ENV->set_timeout() method's DB_SET_REG_TIMEOUT flag can be set to establish a
wait period before starting recovery. This creates a window of time for other processes to
receive the DB_EVENT_REG_PANIC event and exit the environment.

There are three additional requirements for the DB_REGISTER architecture to work:

• First, all applications using the database environment must specify the DB_REGISTER
flag when opening the environment. However, there is no additional requirement if the
application chooses a single process to recover the environment, as the first process to
open the database environment will know to perform recovery.

• Second, there can only be a single DB_ENV handle per database environment in each
process. As the DB_REGISTER locking is per-process, not per-thread, multiple DB_ENV
handles in a single environment could race with each other, potentially causing data
corruption.

• Third, the DB_REGISTER implementation does not explicitly terminate processes
using the database environment which is being recovered. Instead, it relies on the
processes themselves noticing the database environment has been discarded from

../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REG_PANIC
../api_reference/C/envevent_notify.html
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REG_ALIVE
../api_reference/C/envevent_notify.html
../api_reference/C/envset_timeout.html
../api_reference/C/envset_timeout.html#set_timeout_DB_SET_REG_TIMEOUT
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/env.html
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/env.html
../api_reference/C/envopen.html#envopen_DB_REGISTER

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 154

underneath them. For this reason, the DB_REGISTER flag should be used with a mutex
implementation that does not block in the operating system, as that risks a thread
of control blocking forever on a mutex which will never be granted. Using any test-
and-set mutex implementation ensures this cannot happen, and for that reason the
DB_REGISTER flag is generally used with a test-and-set mutex implementation.

A second solution for groups of unrelated processes is also based on a "watcher process".
This solution is intended for systems where it is not practical to monitor the processes
sharing a database environment, but it is possible to monitor the environment to detect
if a thread of control has failed holding open Berkeley DB handles. This would be done
by having a "watcher" process periodically call the DB_ENV->failchk() method. If DB_ENV-
>failchk() returns that the environment can no longer be used, the watcher would then
take action, recovering the environment.

The weakness of this approach is that all threads of control using the environment must
specify an "ID" function and an "is-alive" function using the DB_ENV->set_thread_id()
method. (In other words, the Berkeley DB library must be able to assign a unique ID to
each thread of control, and additionally determine if the thread of control is still running.
It can be difficult to portably provide that information in applications using a variety of
different programming languages and running on a variety of different platforms.)

A third solution for groups of unrelated processes is a hybrid of the two above. Along
with implementing the built-in sentinel approach with the the DB_ENV->open() methods
DB_REGISTER flag, the DB_FAILCHK flag can be specified. When using both flags, each
process opening the database environment first checks to see if recocvery needs to be
performed. If recovery needs to be performed for any reason, it will first determine if a
thread of control exited while holding database read locks, and release those. Then it will
abort any unresolved transactions. If these steps are successful, the process opening the
environment will continue without the need for any additional recocvery. If these steps
are unsuccessful, then additional recovery will be performed if DB_RECOVER is specified
and if DB_RECOVER is not specified, DB_RUNRECOVERY (page 259)will be returned.

Since this solution is hybrid of the first two, all of the requirements of both of them must
be implemented (will need "ID" function, "is-alive" function, single DB_ENV handle per
database, etc.)

The described approaches are different, and should not be combined. Applications might
use either the DB_REGISTER approach, the DB_ENV->failchk() or the hybrid approach,
but not together in the same application. For example, a POSIX application written as
a library underneath a wide variety of interfaces and differing APIs might choose the
DB_REGISTER approach for a few reasons: first, it does not require making periodic calls
to the DB_ENV->failchk() method; second, when implementing in a variety of languages,
is may be more difficult to specify unique IDs for each thread of control; third, it may be
more difficult determine if a thread of control is still running, as any particular thread
of control is likely to lack sufficient permissions to signal other processes. Alternatively,
an application with a dedicated watcher process, running with appropriate permissions,
might choose the DB_ENV->failchk() approach as supporting higher overall throughput
and reliability, as that approach allows the application to abort unresolved transactions
and continue forward without having to recover the database environment. The hybrid
approach is useful in situations where running a dedicated watcher process is not

../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html
../api_reference/C/envset_thread_id.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envopen.html#envopen_DB_FAILCHK
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/env.html
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envfailchk.html
../api_reference/C/envopen.html#envopen_DB_REGISTER
../api_reference/C/envfailchk.html
../api_reference/C/envfailchk.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 155

practical but getting the equivalent of DB_ENV->failchk() on the DB_ENV->open() is
important.

Obviously, when implementing a process to monitor other threads of control, it is important
the watcher process' code be as simple and well-tested as possible, because the application
may hang if it fails.

Opening the environment

Creating transaction-protected applications using the Berkeley DB library is quite
easy. Applications first use DB_ENV->open() to initialize the database environment.
Transaction-protected applications normally require all four Berkeley DB subsystems, so the
DB_INIT_MPOOL, DB_INIT_LOCK, DB_INIT_LOG, and DB_INIT_TXN flags should be specified.

Once the application has called DB_ENV->open(), it opens its databases within the
environment. Once the databases are opened, the application makes changes to the databases
inside of transactions. Each set of changes that entails a unit of work should be surrounded
by the appropriate DB_ENV->txn_begin(), DB_TXN->commit() and DB_TXN->abort() calls. The
Berkeley DB access methods will make the appropriate calls into the Lock, Log and Memory
Pool subsystems in order to guarantee transaction semantics. When the application is ready to
exit, all outstanding transactions should have been committed or aborted.

Databases accessed by a transaction must not be closed during the transaction. Once all
outstanding transactions are finished, all open Berkeley DB files should be closed. When the
Berkeley DB database files have been closed, the environment should be closed by calling
DB_ENV->close().

The following code fragment creates the database environment directory then opens the
environment, running recovery. Our DB_ENV database environment handle is declared to be
free-threaded using the DB_THREAD flag, and so may be used by any number of threads that
we may subsequently create.
#include <sys/types.h>
#include <sys/stat.h>

#include <errno.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <db.h>

#define ENV_DIRECTORY "TXNAPP"

void env_dir_create(void);
void env_open(DB_ENV **);
...

int
main(int argc, char *argv[])

../api_reference/C/envfailchk.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_LOG
../api_reference/C/envopen.html#envopen_DB_INIT_TXN
../api_reference/C/envopen.html
../api_reference/C/txnbegin.html
../api_reference/C/txncommit.html
../api_reference/C/txnabort.html
../api_reference/C/envclose.html
../api_reference/C/env.html
../api_reference/C/dbopen.html#open_DB_THREAD

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 156

{
 extern int optind;
 DB_ENV *dbenv;
 int ch;

 while ((ch = getopt(argc, argv, "")) != EOF)
 switch (ch) {
 case '?':
 default:
 usage();
 }
 argc -= optind;
 argv += optind;

 env_dir_create();
 env_open(&dbenv);
 ...

 return (0);
}

...

void
env_dir_create()
{
 struct stat sb;

 /*
 * If the directory exists, we're done. We do not further check
 * the type of the file, DB will fail appropriately if it's the
 * wrong type.
 */
 if (stat(ENV_DIRECTORY, &sb) == 0)
 return;

 /* Create the directory, read/write/access owner only. */
 if (mkdir(ENV_DIRECTORY, S_IRWXU) != 0) {
 fprintf(stderr,
 "txnapp: mkdir: %s: %s\n", ENV_DIRECTORY, strerror(errno));
 exit (1);
 }
}

void
env_open(DB_ENV **dbenvp)
{
 DB_ENV *dbenv;
 int ret;

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 157

 /* Create the environment handle. */
 if ((ret = db_env_create(&dbenv, 0)) != 0) {
 fprintf(stderr,
 "txnapp: db_env_create: %s\n", db_strerror(ret));
 exit (1);
 }

 /* Set up error handling. */
 dbenv->set_errpfx(dbenv, "txnapp");
 dbenv->set_errfile(dbenv, stderr);

 /*
 * Open a transactional environment:
 * create if it doesn't exist
 * free-threaded handle
 * run recovery
 * read/write owner only
 */
 if ((ret = dbenv->open(dbenv, ENV_DIRECTORY,
 DB_CREATE | DB_INIT_LOCK | DB_INIT_LOG |
 DB_INIT_MPOOL | DB_INIT_TXN | DB_RECOVER | DB_THREAD,
 S_IRUSR | S_IWUSR)) != 0) {
 (void)dbenv->close(dbenv, 0);
 fprintf(stderr, "dbenv->open: %s: %s\n",
 ENV_DIRECTORY, db_strerror(ret));
 exit (1);
 }

 *dbenvp = dbenv;
}

After running this initial program, we can use the db_stat utility to display the contents of the
environment directory:

prompt> db_stat -e -h TXNAPP
3.2.1 Environment version.
120897 Magic number.
0 Panic value.
1 References.
6 Locks granted without waiting.
0 Locks granted after waiting.
=-=
Mpool Region: 4.
264KB Size (270336 bytes).
-1 Segment ID.
1 Locks granted without waiting.
0 Locks granted after waiting.
=-=
Log Region: 3.

../api_reference/C/db_stat.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 158

96KB Size (98304 bytes).
-1 Segment ID.
3 Locks granted without waiting.
0 Locks granted after waiting.
=-=
Lock Region: 2.
240KB Size (245760 bytes).
-1 Segment ID.
1 Locks granted without waiting.
0 Locks granted after waiting.
=-=
Txn Region: 5.
8KB Size (8192 bytes).
-1 Segment ID.
1 Locks granted without waiting.
0 Locks granted after waiting.

Opening the databases

Next, we open three databases ("color" and "fruit" and "cats"), in the database environment.
Again, our DB database handles are declared to be free-threaded using the DB_THREAD flag,
and so may be used by any number of threads we subsequently create.
int
main(int argc, char *argv[])
{
 extern int optind;
 DB *db_cats, *db_color, *db_fruit;
 DB_ENV *dbenv;
 int ch;

 while ((ch = getopt(argc, argv, "")) != EOF)
 switch (ch) {
 case '?':
 default:
 usage();
 }
 argc -= optind;
 argv += optind;

 env_dir_create();
 env_open(&dbenv);
 ...

 /* Open database: Key is fruit class; Data is specific type. */
 if (db_open(dbenv, &db_fruit, "fruit", 0))
 return (1);

 /* Open database: Key is a color; Data is an integer. */
 if (db_open(dbenv, &db_color, "color", 0))

../api_reference/C/db.html
../api_reference/C/dbopen.html#open_DB_THREAD

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 159

 return (1);

 /*
 * Open database:
 * Key is a name; Data is: company name, cat breeds.
 */
 if (db_open(dbenv, &db_cats, "cats", 1))
 return (1);

 ...

 return (0);
}

int
db_open(DB_ENV *dbenv, DB **dbp, char *name, int dups)
{
 DB *db;
 int ret;

 /* Create the database handle. */
 if ((ret = db_create(&db, dbenv, 0)) != 0) {
 dbenv->err(dbenv, ret, "db_create");
 return (1);
 }

 /* Optionally, turn on duplicate data items. */
 if (dups && (ret = db->set_flags(db, DB_DUP)) != 0) {
 (void)db->close(db, 0);
 dbenv->err(dbenv, ret, "db->set_flags: DB_DUP");
 return (1);
 }

 /*
 * Open a database in the environment:
 * create if it doesn't exist
 * free-threaded handle
 * read/write owner only
 */
 if ((ret = db->open(db, NULL, name, NULL, DB_BTREE,
 DB_AUTO_COMMIT | DB_CREATE | DB_THREAD, S_IRUSR | S_IWUSR)) != 0) {
 (void)db->close(db, 0);
 dbenv->err(dbenv, ret, "db->open: %s", name);
 return (1);
 }

 *dbp = db;
 return (0);
}

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 160

After opening the database, we can use the db_stat utility to display information about a
database we have created:

prompt> db_stat -h TXNAPP -d color
53162 Btree magic number.
8 Btree version number.
Flags:
2 Minimum keys per-page.
8192 Underlying database page size.
1 Number of levels in the tree.
0 Number of unique keys in the tree.
0 Number of data items in the tree.
0 Number of tree internal pages.
0 Number of bytes free in tree internal pages (0% ff).
1 Number of tree leaf pages.
8166 Number of bytes free in tree leaf pages (0.% ff).
0 Number of tree duplicate pages.
0 Number of bytes free in tree duplicate pages (0% ff).
0 Number of tree overflow pages.
0 Number of bytes free in tree overflow pages (0% ff).
0 Number of pages on the free list.

The database open must be enclosed within a transaction in order to be recoverable. The
transaction will ensure that created files are re-created in recovered environments (or do
not appear at all). Additional database operations or operations on other databases can be
included in the same transaction, of course. In the simple case, where the open is the only
operation in the transaction, an application can set the DB_AUTO_COMMIT flag instead of
creating and managing its own transaction handle. The DB_AUTO_COMMIT flag will internally
wrap the operation in a transaction, simplifying application code.

The previous example is the simplest case of transaction protection for database open.
Obviously, additional database operations can be done in the scope of the same transaction.
For example, an application maintaining a list of the databases in a database environment
in a well-known file might include an update of the list in the same transaction in which the
database is created. Or, an application might create both a primary and secondary database in
a single transaction.

DB handles that will later be used for transactionally protected database operations must be
opened within a transaction. Specifying a transaction handle to database operations using
DB handles not opened within a transaction will return an error. Similarly, not specifying a
transaction handle to database operations that will modify the database, using handles that
were opened within a transaction, will also return an error.

Recoverability and deadlock handling

The first reason listed for using transactions was recoverability. Any logical change to a
database may require multiple changes to underlying data structures. For example, modifying
a record in a Btree may require leaf and internal pages to split, so a single DB->put() method
call can potentially require that multiple physical database pages be written. If only some
of those pages are written and then the system or application fails, the database is left

../api_reference/C/db_stat.html
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbput.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 161

inconsistent and cannot be used until it has been recovered; that is, until the partially
completed changes have been undone.

Write-ahead-logging is the term that describes the underlying implementation that Berkeley
DB uses to ensure recoverability. What it means is that before any change is made to a
database, information about the change is written to a database log. During recovery, the log
is read, and databases are checked to ensure that changes described in the log for committed
transactions appear in the database. Changes that appear in the database but are related to
aborted or unfinished transactions in the log are undone from the database.

For recoverability after application or system failure, operations that modify the database
must be protected by transactions. More specifically, operations are not recoverable unless
a transaction is begun and each operation is associated with the transaction via the Berkeley
DB interfaces, and then the transaction successfully committed. This is true even if logging is
turned on in the database environment.

Here is an example function that updates a record in a database in a transactionally protected
manner. The function takes a key and data items as arguments and then attempts to store
them into the database.
int
main(int argc, char *argv)
{
 extern int optind;
 DB *db_cats, *db_color, *db_fruit;
 DB_ENV *dbenv;
 int ch;

 while ((ch = getopt(argc, argv, "")) != EOF)
 switch (ch) {
 case '?':
 default:
 usage();
 }
 argc -= optind;
 argv += optind;

 env_dir_create();
 env_open(&dbenv);

 /* Open database: Key is fruit class; Data is specific type. */
 db_open(dbenv, &db_fruit, "fruit", 0);

 /* Open database: Key is a color; Data is an integer. */
 db_open(dbenv, &db_color, "color", 0);

 /*
 * Open database:
 * Key is a name; Data is: company name, cat breeds.
 */
 db_open(dbenv, &db_cats, "cats", 1);

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 162

 add_fruit(dbenv, db_fruit, "apple", "yellow delicious");

 return (0);
}

int
add_fruit(DB_ENV *dbenv, DB *db, char *fruit, char *name)
{
 DBT key, data;
 DB_TXN *tid;
 int fail, ret, t_ret;

 /* Initialization. */
 memset(&key, 0, sizeof(key));
 memset(&data, 0, sizeof(data));
 key.data = fruit;
 key.size = strlen(fruit);
 data.data = name;
 data.size = strlen(name);

 for (fail = 0;;) {
 /* Begin the transaction. */
 if ((ret = dbenv->txn_begin(dbenv, NULL, &tid, 0)) != 0) {
 dbenv->err(dbenv, ret, "DB_ENV->txn_begin");
 exit (1);
 }

 /* Store the value. */
 switch (ret = db->put(db, tid, &key, &data, 0)) {
 case 0:
 /* Success: commit the change. */
 if ((ret = tid->commit(tid, 0)) != 0) {
 dbenv->err(dbenv, ret, "DB_TXN->commit");
 exit (1);
 }
 return (0);
 case DB_LOCK_DEADLOCK:
 default:
 /* Retry the operation. */
 if ((t_ret = tid->abort(tid)) != 0) {
 dbenv->err(dbenv, t_ret, "DB_TXN->abort");
 exit (1);
 }
 if (fail++ == MAXIMUM_RETRY)
 return (ret);
 break;
 }
 }

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 163

}

Berkeley DB also uses transactions to recover from deadlock. Database operations (that is, any
call to a function underlying the handles returned by DB->open() and DB->cursor()) are usually
performed on behalf of a unique locker. Transactions can be used to perform multiple calls on
behalf of the same locker within a single thread of control. For example, consider the case in
which an application uses a cursor scan to locate a record and then the application accesses
another other item in the database, based on the key returned by the cursor, without first
closing the cursor. If these operations are done using default locker IDs, they may conflict. If
the locks are obtained on behalf of a transaction, using the transaction's locker ID instead of
the database handle's locker ID, the operations will not conflict.

There is a new error return in this function that you may not have seen before. In
transactional (not Concurrent Data Store) applications supporting both readers and writers,
or just multiple writers, Berkeley DB functions have an additional possible error return:
DB_LOCK_DEADLOCK (page 259). This means two threads of control deadlocked, and the
thread receiving the DB_LOCK_DEADLOCK error return has been selected to discard its locks
in order to resolve the problem. When an application receives a DB_LOCK_DEADLOCK return,
the correct action is to close any cursors involved in the operation and abort any enclosing
transaction. In the sample code, any time the DB->put() method returns DB_LOCK_DEADLOCK,
DB_TXN->abort() is called (which releases the transaction's Berkeley DB resources and undoes
any partial changes to the databases), and then the transaction is retried from the beginning.

There is no requirement that the transaction be attempted again, but that is a common course
of action for applications. Applications may want to set an upper bound on the number of
times an operation will be retried because some operations on some data sets may simply be
unable to succeed. For example, updating all of the pages on a large Web site during prime
business hours may simply be impossible because of the high access rate to the database.

The DB_TXN->abort() method is called in error cases other than deadlock. Any time an error
occurs, such that a transactionally protected set of operations cannot complete successfully,
the transaction must be aborted. While deadlock is by far the most common of these errors,
there are other possibilities; for example, running out of disk space for the filesystem. In
Berkeley DB transactional applications, there are three classes of error returns: "expected"
errors, "unexpected but recoverable" errors, and a single "unrecoverable" error. Expected
errors are errors like DB_NOTFOUND (page 259), which indicates that a searched-for key
item is not present in the database. Applications may want to explicitly test for and handle
this error, or, in the case where the absence of a key implies the enclosing transaction
should fail, simply call DB_TXN->abort(). Unexpected but recoverable errors are errors like
DB_LOCK_DEADLOCK (page 259), which indicates that an operation has been selected to
resolve a deadlock, or a system error such as EIO, which likely indicates that the filesystem
has no available disk space. Applications must immediately call DB_TXN->abort() when these
returns occur, as it is not possible to proceed otherwise. The only unrecoverable error is
DB_RUNRECOVERY (page 259), which indicates that the system must stop and recovery must
be run.

The above code can be simplified in the case of a transaction comprised entirely of a single
database put or delete operation, as operations occurring in transactional databases are
implicitly transaction protected. For example, in a transactional database, the above code
could be more simply written as:

../api_reference/C/dbopen.html
../api_reference/C/dbcursor.html
../api_reference/C/dbput.html
../api_reference/C/txnabort.html
../api_reference/C/txnabort.html
../api_reference/C/txnabort.html
../api_reference/C/txnabort.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 164

 for (fail = 0; fail++ <= MAXIMUM_RETRY &&
 (ret = db->put(db, NULL, &key, &data, 0)) == DB_LOCK_DEADLOCK;)
 continue;
 return (ret == 0 ? 0 : 1);

and the underlying transaction would be automatically handled by Berkeley DB.

Programmers should not attempt to enumerate all possible error returns in their software.
Instead, they should explicitly handle expected returns and default to aborting the
transaction for the rest. It is entirely the choice of the programmer whether to check for
DB_RUNRECOVERY (page 259) explicitly or not — attempting new Berkeley DB operations
after DB_RUNRECOVERY (page 259) is returned does not worsen the situation. Alternatively,
using the DB_ENV->set_event_notify() method to handle an unrecoverable error and simply
doing some number of abort-and-retry cycles for any unexpected Berkeley DB or system error
in the mainline code often results in the simplest and cleanest application code.

Atomicity
The second reason listed for using transactions was atomicity. Atomicity means that multiple
operations can be grouped into a single logical entity, that is, other threads of control
accessing the database will either see all of the changes or none of the changes. Atomicity is
important for applications wanting to update two related databases (for example, a primary
database and secondary index) in a single logical action. Or, for an application wanting to
update multiple records in one database in a single logical action.

Any number of operations on any number of databases can be included in a single transaction
to ensure the atomicity of the operations. There is, however, a trade-off between the number
of operations included in a single transaction and both throughput and the possibility of
deadlock. The reason for this is because transactions acquire locks throughout their lifetime
and do not release the locks until commit or abort time. So, the more operations included
in a transaction, the more likely it is that a transaction will block other operations and that
deadlock will occur. However, each transaction commit requires a synchronous disk I/O, so
grouping multiple operations into a transaction can increase overall throughput. (There is one
exception to this: the DB_TXN_WRITE_NOSYNC and DB_TXN_NOSYNC flags cause transactions
to exhibit the ACI (atomicity, consistency and isolation) properties, but not D (durability);
avoiding the write and/or synchronous disk I/O on transaction commit greatly increases
transaction throughput for some applications.)

When applications do create complex transactions, they often avoid having more than
one complex transaction at a time because simple operations like a single DB->put() are
unlikely to deadlock with each other or the complex transaction; while multiple complex
transactions are likely to deadlock with each other because they will both acquire many
locks over their lifetime. Alternatively, complex transactions can be broken up into smaller
sets of operations, and each of those sets may be encapsulated in a nested transaction.
Because nested transactions may be individually aborted and retried without causing the
entire transaction to be aborted, this allows complex transactions to proceed even in the face
of heavy contention, repeatedly trying the suboperations until they succeed.

It is also helpful to order operations within a transaction; that is, access the databases and
items within the databases in the same order, to the extent possible, in all transactions.

../api_reference/C/envevent_notify.html
../api_reference/C/envset_flags.html#set_flags_DB_TXN_WRITE_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/dbput.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 165

Accessing databases and items in different orders greatly increases the likelihood of
operations being blocked and failing due to deadlocks.

Isolation

The third reason listed for using transactions was isolation. Consider an application suite in
which multiple threads of control (multiple processes or threads in one or more processes)
are changing the values associated with a key in one or more databases. Specifically, they are
taking the current value, incrementing it, and then storing it back into the database.

Such an application requires isolation. Because we want to change a value in the database,
we must make sure that after we read it, no other thread of control modifies it. For example,
assume that both thread #1 and thread #2 are doing similar operations in the database, where
thread #1 is incrementing records by 3, and thread #2 is incrementing records by 5. We want
to increment the record by a total of 8. If the operations interleave in the right (well, wrong)
order, that is not what will happen:
thread #1 read record: the value is 2
thread #2 read record: the value is 2
thread #2 write record + 5 back into the database (new value 7)
thread #1 write record + 3 back into the database (new value 5)

As you can see, instead of incrementing the record by a total of 8, we've incremented it
only by 3 because thread #1 overwrote thread #2's change. By wrapping the operations in
transactions, we ensure that this cannot happen. In a transaction, when the first thread
reads the record, locks are acquired that will not be released until the transaction finishes,
guaranteeing that all writers will block, waiting for the first thread's transaction to complete
(or to be aborted).

Here is an example function that does transaction-protected increments on database records
to ensure isolation:
int
main(int argc, char *argv)
{
 extern int optind;
 DB *db_cats, *db_color, *db_fruit;
 DB_ENV *dbenv;
 int ch;

 while ((ch = getopt(argc, argv, "")) != EOF)
 switch (ch) {
 case '?':
 default:
 usage();
 }
 argc -= optind;
 argv += optind;

 env_dir_create();
 env_open(&dbenv);

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 166

 /* Open database: Key is fruit class; Data is specific type. */
 db_open(dbenv, &db_fruit, "fruit", 0);

 /* Open database: Key is a color; Data is an integer. */
 db_open(dbenv, &db_color, "color", 0);

 /*
 * Open database:
 * Key is a name; Data is: company name, cat breeds.
 */
 db_open(dbenv, &db_cats, "cats", 1);

 add_fruit(dbenv, db_fruit, "apple", "yellow delicious");

 add_color(dbenv, db_color, "blue", 0);
 add_color(dbenv, db_color, "blue", 3);

 return (0);
}

int
add_color(DB_ENV *dbenv, DB *dbp, char *color, int increment)
{
 DBT key, data;
 DB_TXN *tid;
 int fail, original, ret, t_ret;
 char buf64;

 /* Initialization. */
 memset(&key, 0, sizeof(key));
 key.data = color;
 key.size = strlen(color);
 memset(&data, 0, sizeof(data));
 data.flags = DB_DBT_MALLOC;

 for (fail = 0;;) {
 /* Begin the transaction. */
 if ((ret = dbenv->txn_begin(dbenv, NULL, &tid, 0)) != 0) {
 dbenv->err(dbenv, ret, "DB_ENV->txn_begin");
 exit (1);
 }

 /*
 * Get the key. If it exists, we increment the value. If it
 * doesn't exist, we create it.
 */
 switch (ret = dbp->get(dbp, tid, &key, &data, DB_RMW)) {
 case 0:
 original = atoi(data.data);

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 167

 break;
 case DB_LOCK_DEADLOCK:
 default:
 /* Retry the operation. */
 if ((t_ret = tid->abort(tid)) != 0) {
 dbenv->err(dbenv, t_ret, "DB_TXN->abort");
 exit (1);
 }
 if (fail++ == MAXIMUM_RETRY)
 return (ret);
 continue;
 case DB_NOTFOUND:
 original = 0;
 break;
 }
 if (data.data != NULL)
 free(data.data);

 /* Create the new data item. */
 (void)snprintf(buf, sizeof(buf), "%d", original + increment);
 data.data = buf;
 data.size = strlen(buf) + 1;

 /* Store the new value. */
 switch (ret = dbp->put(dbp, tid, &key, &data, 0)) {
 case 0:
 /* Success: commit the change. */
 if ((ret = tid->commit(tid, 0)) != 0) {
 dbenv->err(dbenv, ret, "DB_TXN->commit");
 exit (1);
 }
 return (0);
 case DB_LOCK_DEADLOCK:
 default:
 /* Retry the operation. */
 if ((t_ret = tid->abort(tid)) != 0) {
 dbenv->err(dbenv, t_ret, "DB_TXN->abort");
 exit (1);
 }
 if (fail++ == MAXIMUM_RETRY)
 return (ret);
 break;
 }
 }
}

The DB_RMW flag in the DB->get() call specifies a write lock should be acquired on the key/
data pair, instead of the more obvious read lock. We do this because the application expects
to write the key/data pair in a subsequent operation, and the transaction is much more likely

../api_reference/C/dbcget.html#dbcget_DB_RMW
../api_reference/C/dbget.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 168

to deadlock if we first obtain a read lock and subsequently a write lock, than if we obtain the
write lock initially.

Degrees of isolation
Transactions can be isolated from each other to different degrees. Serializable provides
the most isolation, and means that, for the life of the transaction, every time a thread of
control reads a data item, it will be unchanged from its previous value (assuming, of course,
the thread of control does not itself modify the item). By default, Berkeley DB enforces
serializability whenever database reads are wrapped in transactions. This is also known as
degree 3 isolation.

Most applications do not need to enclose all reads in transactions, and when possible,
transactionally protected reads at serializable isolation should be avoided as they can cause
performance problems. For example, a serializable cursor sequentially reading each key/
data pair in a database, will acquire a read lock on most of the pages in the database and so
will gradually block all write operations on the databases until the transaction commits or
aborts. Note, however, that if there are update transactions present in the application, the
read operations must still use locking, and must be prepared to repeat any operation (possibly
closing and reopening a cursor) that fails with a return value of DB_LOCK_DEADLOCK (page
259). Applications that need repeatable reads are ones that require the ability to repeatedly
access a data item knowing that it will not have changed (for example, an operation modifying
a data item based on its existing value).

Snapshot isolation also guarantees repeatable reads, but avoids read locks by using
multiversion concurrency control (MVCC). This makes update operations more expensive,
because they have to allocate space for new versions of pages in cache and make copies, but
avoiding read locks can significantly increase throughput for many applications. Snapshot
isolation is discussed in detail below.

A transaction may only require cursor stability, that is only be guaranteed that cursors see
committed data that does not change so long as it is addressed by the cursor, but may change
before the reading transaction completes. This is also called degree 2 isolation. Berkeley DB
provides this level of isolation when a transaction is started with the DB_READ_COMMITTED
flag. This flag may also be specified when opening a cursor within a fully isolated transaction.

Berkeley DB optionally supports reading uncommitted data; that is, read operations may
request data which has been modified but not yet committed by another transaction. This is
also called degree 1 isolation. This is done by first specifying the DB_READ_UNCOMMITTED
flag when opening the underlying database, and then specifying the DB_READ_UNCOMMITTED
flag when beginning a transaction, opening a cursor, or performing a read operation. The
advantage of using DB_READ_UNCOMMITTED is that read operations will not block when
another transaction holds a write lock on the requested data; the disadvantage is that read
operations may return data that will disappear should the transaction holding the write lock
abort.

Snapshot Isolation

To make use of snapshot isolation, databases must first be configured for multiversion access
by calling DB->open() with the DB_MULTIVERSION flag. Then transactions or cursors must be
configured with the DB_TXN_SNAPSHOT flag.

../api_reference/C/dbcget.html#dbcget_DB_READ_COMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html#dbopen_DB_MULTIVERSION
../api_reference/C/txnbegin.html#txnbegin_DB_TXN_SNAPSHOT

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 169

When configuring an environment for snapshot isolation, it is important to realize that having
multiple versions of pages in cache means that the working set will take up more of the
cache. As a result, snapshot isolation is best suited for use with larger cache sizes.

If the cache becomes full of page copies before the old copies can be discarded, additional I/
O will occur as pages are written to temporary "freezer" files. This can substantially reduce
throughput, and should be avoided if possible by configuring a large cache and keeping
snapshot isolation transactions short. The amount of cache required to avoid freezing buffers
can be estimated by taking a checkpoint followed by a call to DB_ENV->log_archive(). The
amount of cache required is approximately double the size of logs that remains.

The environment should also be configured for sufficient transactions using DB_ENV-
>set_tx_max(). The maximum number of transactions needs to include all transactions
executed concurrently by the application plus all cursors configured for snapshot isolation.
Further, the transactions are retained until the last page they created is evicted from cache,
so in the extreme case, an additional transaction may be needed for each page in the cache.
Note that cache sizes under 500MB are increased by 25%, so the calculation of number of
pages needs to take this into account.

So when should applications use snapshot isolation?

• There is a large cache relative to size of updates performed by concurrent transactions; and

• Read/write contention is limiting the throughput of the application; or

• The application is all or mostly read-only, and contention for the lock manager mutex is
limiting throughput.

The simplest way to take advantage of snapshot isolation is for queries: keep update
transactions using full read/write locking and set DB_TXN_SNAPSHOT on read-only transactions
or cursors. This should minimize blocking of snapshot isolation transactions and will avoid
introducing new DB_LOCK_DEADLOCK (page 259) errors.

If the application has update transactions which read many items and only update a small set
(for example, scanning until a desired record is found, then modifying it), throughput may be
improved by running some updates at snapshot isolation as well.

Transactional cursors
Berkeley DB cursors may be used inside a transaction, exactly as any other DB method. The
enclosing transaction ID must be specified when the cursor is created, but it does not then
need to be further specified on operations performed using the cursor. One important point
to remember is that a cursor must be closed before the enclosing transaction is committed or
aborted.

The following code fragment uses a cursor to store a new key in the cats database with four
associated data items. The key is a name. The data items are a company name and a list of
the breeds of cat owned. Each of the data entries is stored as a duplicate data item. In this
example, transactions are necessary to ensure that either all or none of the data items appear
in case of system or application failure.
int
main(int argc, char *argv)

../api_reference/C/logarchive.html
../api_reference/C/envset_tx_max.html
../api_reference/C/envset_tx_max.html
../api_reference/C/txnbegin.html#txnbegin_DB_TXN_SNAPSHOT
../api_reference/C/db.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 170

{
 extern int optind;
 DB *db_cats, *db_color, *db_fruit;
 DB_ENV *dbenv;
 int ch;

 while ((ch = getopt(argc, argv, "")) != EOF)
 switch (ch) {
 case '?':
 default:
 usage();
 }
 argc -= optind;
 argv += optind;

 env_dir_create();
 env_open(&dbenv);

 /* Open database: Key is fruit class; Data is specific type. */
 db_open(dbenv, &db_fruit, "fruit", 0);

 /* Open database: Key is a color; Data is an integer. */
 db_open(dbenv, &db_color, "color", 0);

 /*
 * Open database:
 * Key is a name; Data is: company name, cat breeds.
 */
 db_open(dbenv, &db_cats, "cats", 1);

 add_fruit(dbenv, db_fruit, "apple", "yellow delicious");

 add_color(dbenv, db_color, "blue", 0);
 add_color(dbenv, db_color, "blue", 3);

 add_cat(dbenv, db_cats,
 "Amy Adams",
 "Oracle",
 "abyssinian",
 "bengal",
 "chartreaux",
 NULL);

 return (0);
}

int
add_cat(DB_ENV *dbenv, DB *db, char *name, ...)
{

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 171

 va_list ap;
 DBC *dbc;
 DBT key, data;
 DB_TXN *tid;
 int fail, ret, t_ret;
 char *s;

 /* Initialization. */
 fail = 0;

 memset(&key, 0, sizeof(key));
 memset(&data, 0, sizeof(data));
 key.data = name;
 key.size = strlen(name);

retry: /* Begin the transaction. */
 if ((ret = dbenv->txn_begin(dbenv, NULL, &tid, 0)) != 0) {
 dbenv->err(dbenv, ret, "DB_ENV->txn_begin");
 exit (1);
 }

 /* Delete any previously existing item. */
 switch (ret = db->del(db, tid, &key, 0)) {
 case 0:
 case DB_NOTFOUND:
 break;
 case DB_LOCK_DEADLOCK:
 default:
 /* Retry the operation. */
 if ((t_ret = tid->abort(tid)) != 0) {
 dbenv->err(dbenv, t_ret, "DB_TXN->abort");
 exit (1);
 }
 if (fail++ == MAXIMUM_RETRY)
 return (ret);
 goto retry;
 }

 /* Create a cursor. */
 if ((ret = db->cursor(db, tid, &dbc, 0)) != 0) {
 dbenv->err(dbenv, ret, "db->cursor");
 exit (1);
 }

 /* Append the items, in order. */
 va_start(ap, name);
 while ((s = va_arg(ap, char *)) != NULL) {
 data.data = s;
 data.size = strlen(s);

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 172

 switch (ret = dbc->put(dbc, &key, &data, DB_KEYLAST)) {
 case 0:
 break;
 case DB_LOCK_DEADLOCK:
 default:
 va_end(ap);

 /* Retry the operation. */
 if ((t_ret = dbc->close(dbc)) != 0) {
 dbenv->err(
 dbenv, t_ret, "dbc->close");
 exit (1);
 }
 if ((t_ret = tid->abort(tid)) != 0) {
 dbenv->err(dbenv, t_ret, "DB_TXN->abort");
 exit (1);
 }
 if (fail++ == MAXIMUM_RETRY)
 return (ret);
 goto retry;
 }
 }
 va_end(ap);

 /* Success: commit the change. */
 if ((ret = dbc->close(dbc)) != 0) {
 dbenv->err(dbenv, ret, "dbc->close");
 exit (1);
 }
 if ((ret = tid->commit(tid, 0)) != 0) {
 dbenv->err(dbenv, ret, "DB_TXN->commit");
 exit (1);
 }
 return (0);
}

Nested transactions
Berkeley DB provides support for nested transactions. Nested transactions allow an application
to decompose a large or long-running transaction into smaller units that may be independently
aborted.

Normally, when beginning a transaction, the application will pass a NULL value for the
parent argument to DB_ENV->txn_begin(). If, however, the parent argument is a TXN handle,
the newly created transaction will be treated as a nested transaction within the parent.
Transactions may nest arbitrarily deeply. For the purposes of this discussion, transactions
created with a parent identifier will be called child transactions.

Once a transaction becomes a parent, as long as any of its child transactions are unresolved
(that is, they have neither committed nor aborted), the parent may not issue any Berkeley

../api_reference/C/txnbegin.html
../api_reference/C/txn.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 173

DB calls except to begin more child transactions, or to commit or abort. For example, it may
not issue any access method or cursor calls. After all of a parent's children have committed or
aborted, the parent may again request operations on its own behalf.

The semantics of nested transactions are as follows. When a child transaction is begun, it
inherits all the locks of its parent. This means that the child will never block waiting on a lock
held by its parent. Further, locks held by two children of the same parent will also conflict. To
make this concrete, consider the following set of transactions and lock acquisitions.

Transaction T1 is the parent transaction. It acquires a write lock on item A and then begins
two child transactions: C1 and C2. C1 also wants to acquire a write lock on A; this succeeds.
If C2 attempts to acquire a write lock on A, it will block until C1 releases the lock, at which
point it will succeed. Now, let's say that C1 acquires a write lock on B. If C2 now attempts to
obtain a lock on B, it will block. However, let's now assume that C1 commits. Its locks are anti-
inherited, which means they are given to T1, so T1 will now hold a lock on B. At this point, C2
would be unblocked and would then acquire a lock on B.

Child transactions are entirely subservient to their parent transaction. They may abort,
undoing their operations regardless of the eventual fate of the parent. However, even if a
child transaction commits, if its parent transaction is eventually aborted, the child's changes
are undone and the child's transaction is effectively aborted. Any child transactions that
are not yet resolved when the parent commits or aborts are resolved based on the parent's
resolution -- committing if the parent commits and aborting if the parent aborts. Any child
transactions that are not yet resolved when the parent prepares are also prepared.

Environment infrastructure

When building transactional applications, it is usually necessary to build an administrative
infrastructure around the database environment. There are five components to this
infrastructure, and each is supported by the Berkeley DB package in two different ways: a
standalone utility and one or more library interfaces.

• Deadlock detection: db_deadlock utility, DB_ENV->lock_detect(), DB_ENV->set_lk_detect()

• Checkpoints: the db_checkpoint utility, DB_ENV->txn_checkpoint()

• Database and log file archival: the db_archive utility, DB_ENV->log_archive()

• Log file removal: db_archive utility, DB_ENV->log_archive()

• Recovery procedures: db_recover utility, DB_ENV->open()

When writing multithreaded server applications and/or applications intended for download
from the Web, it is usually simpler to create local threads that are responsible for
administration of the database environment as scheduling is often simpler in a single-
process model, and only a single binary need be installed and run. However, the supplied
utilities can be generally useful tools even when the application is responsible for doing
its own administration because applications rarely offer external interfaces to database
administration. The utilities are required when programming to a Berkeley DB scripting
interface because the scripting APIs do not always offer interfaces to the administrative
functionality.

../api_reference/C/db_deadlock.html
../api_reference/C/lockdetect.html
../api_reference/C/envset_lk_detect.html
../api_reference/C/db_checkpoint.html
../api_reference/C/txncheckpoint.html
../api_reference/C/db_archive.html
../api_reference/C/logarchive.html
../api_reference/C/db_archive.html
../api_reference/C/logarchive.html
../api_reference/C/db_recover.html
../api_reference/C/envopen.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 174

Deadlock detection

The first component of the infrastructure, deadlock detection, is not so much a requirement
specific to transaction-protected applications, but instead is necessary for almost all
applications in which more than a single thread of control will be accessing the database
at one time. Even when Berkeley DB automatically handles database locking, it is normally
possible for deadlock to occur. Because the underlying database access methods may update
multiple pages during a single Berkeley DB API call, deadlock is possible even when threads
of control are making only single update calls into the database. The exception to this rule
is when all the threads of control accessing the database are read-only or when the Berkeley
DB Concurrent Data Store product is used; the Berkeley DB Concurrent Data Store product
guarantees deadlock-free operation at the expense of reduced concurrency.

When the deadlock occurs, two (or more) threads of control each request additional locks
that can never be granted because one of the threads of control waiting holds the requested
resource. For example, consider two processes: A and B. Let's say that A obtains a write lock
on item X, and B obtains a write lock on item Y. Then, A requests a lock on Y, and B requests
a lock on X. A will wait until resource Y becomes available and B will wait until resource X
becomes available. Unfortunately, because both A and B are waiting, neither will release
the locks they hold and neither will ever obtain the resource on which it is waiting. For
another example, consider two transactions, A and B, each of which may want to modify item
X. Assume that transaction A obtains a read lock on X and confirms that a modification is
needed. Then it is descheduled and the thread containing transaction B runs. At that time,
transaction B obtains a read lock on X and confirms that it also wants to make a modification.
Both transactions A and B will block when they attempt to upgrade their read locks to write
locks because the other already holds a read lock. This is a deadlock. Transaction A cannot
make forward progress until Transaction B releases its read lock on X, but Transaction B cannot
make forward progress until Transaction A releases its read lock on X.

In order to detect that deadlock has happened, a separate process or thread must review the
locks currently held in the database. If deadlock has occurred, a victim must be selected,
and that victim will then return the error DB_LOCK_DEADLOCK (page 259) from whatever
Berkeley DB call it was making. Berkeley DB provides the db_deadlock utility that can be used
to perform this deadlock detection. Alternatively, applications can create their own deadlock
utility or thread using the underlying DB_ENV->lock_detect() function, or specify that Berkeley
DB run the deadlock detector internally whenever there is a conflict over a lock (see DB_ENV-
>set_lk_detect() for more information). The following code fragment does the latter:

void
env_open(DB_ENV **dbenvp)
{
 DB_ENV *dbenv;
 int ret;

 /* Create the environment handle. */
 if ((ret = db_env_create(&dbenv, 0)) != 0) {
 fprintf(stderr,
 "txnapp: db_env_create: %s\n", db_strerror(ret));
 exit (1);
 }

../api_reference/C/db_deadlock.html
../api_reference/C/lockdetect.html
../api_reference/C/envset_lk_detect.html
../api_reference/C/envset_lk_detect.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 175

 /* Set up error handling. */
 dbenv->set_errpfx(dbenv, "txnapp");
 dbenv->set_errfile(dbenv, stderr);

 /* Do deadlock detection internally. */
 if ((ret = dbenv->set_lk_detect(dbenv, DB_LOCK_DEFAULT)) != 0) {
 dbenv->err(dbenv, ret, "set_lk_detect: DB_LOCK_DEFAULT");
 exit (1);
 }

 /*
 * Open a transactional environment:
 * create if it doesn't exist
 * free-threaded handle
 * run recovery
 * read/write owner only
 */
 if ((ret = dbenv->open(dbenv, ENV_DIRECTORY,
 DB_CREATE | DB_INIT_LOCK | DB_INIT_LOG |
 DB_INIT_MPOOL | DB_INIT_TXN | DB_RECOVER | DB_THREAD,
 S_IRUSR | S_IWUSR)) != 0) {
 dbenv->err(dbenv, ret, "dbenv->open: %s", ENV_DIRECTORY);
 exit (1);
 }

 *dbenvp = dbenv;
}

Deciding how often to run the deadlock detector and which of the deadlocked transactions
will be forced to abort when the deadlock is detected is a common tuning parameter for
Berkeley DB applications.

Checkpoints

The second component of the infrastructure is performing checkpoints of the log files.
Performing checkpoints is necessary for two reasons.

First, you may be able to remove Berkeley DB log files from your database environment after
a checkpoint. Change records are written into the log files when databases are modified, but
the actual changes to the database are not necessarily written to disk. When a checkpoint
is performed, changes to the database are written into the backing database file. Once
the database pages are written, log files can be archived and removed from the database
environment because they will never be needed for anything other than catastrophic failure.
(Log files which are involved in active transactions may not be removed, and there must
always be at least one log file in the database environment.)

The second reason to perform checkpoints is because checkpoint frequency is inversely
proportional to the amount of time it takes to run database recovery after a system or
application failure. This is because recovery after failure has to redo or undo changes only

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 176

since the last checkpoint, as changes before the checkpoint have all been flushed to the
databases.

Berkeley DB provides the db_checkpoint utility, which can be used to perform checkpoints.
Alternatively, applications can write their own checkpoint thread using the underlying
DB_ENV->txn_checkpoint() function. The following code fragment checkpoints the database
environment every 60 seconds:

int
main(int argc, char *argv)
{
 extern int optind;
 DB *db_cats, *db_color, *db_fruit;
 DB_ENV *dbenv;
 pthread_t ptid;
 int ch;

 while ((ch = getopt(argc, argv, "")) != EOF)
 switch (ch) {
 case '?':
 default:
 usage();
 }
 argc -= optind;
 argv += optind;

 env_dir_create();
 env_open(&dbenv);

 /* Start a checkpoint thread. */
 if ((errno = pthread_create(
 &ptid, NULL, checkpoint_thread, (void *)dbenv)) != 0) {
 fprintf(stderr,
 "txnapp: failed spawning checkpoint thread: %s\n",
 strerror(errno));
 exit (1);
 }

 /* Open database: Key is fruit class; Data is specific type. */
 db_open(dbenv, &db_fruit, "fruit", 0);

 /* Open database: Key is a color; Data is an integer. */
 db_open(dbenv, &db_color, "color", 0);

 /*
 * Open database:
 * Key is a name; Data is: company name, cat breeds.
 */
 db_open(dbenv, &db_cats, "cats", 1);

../api_reference/C/db_checkpoint.html
../api_reference/C/txncheckpoint.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 177

 add_fruit(dbenv, db_fruit, "apple", "yellow delicious");

 add_color(dbenv, db_color, "blue", 0);
 add_color(dbenv, db_color, "blue", 3);

 add_cat(dbenv, db_cats,
 "Amy Adams",
 "Oracle",
 "abyssinian",
 "bengal",
 "chartreaux",
 NULL);

 return (0);
}

void *
checkpoint_thread(void *arg)
{
 DB_ENV *dbenv;
 int ret;

 dbenv = arg;
 dbenv->errx(dbenv, "Checkpoint thread: %lu", (u_long)pthread_self());

 /* Checkpoint once a minute. */
 for (;; sleep(60))
 if ((ret = dbenv->txn_checkpoint(dbenv, 0, 0, 0)) != 0) {
 dbenv->err(dbenv, ret, "checkpoint thread");
 exit (1);
 }

 /* NOTREACHED */
}

Because checkpoints can be quite expensive, choosing how often to perform a checkpoint is a
common tuning parameter for Berkeley DB applications.

Database and log file archival

The third component of the administrative infrastructure, archival for catastrophic recovery,
concerns the recoverability of the database in the face of catastrophic failure. Recovery
after catastrophic failure is intended to minimize data loss when physical hardware has been
destroyed — for example, loss of a disk that contains databases or log files. Although the
application may still experience data loss in this case, it is possible to minimize it.

First, you may want to periodically create snapshots (that is, backups) of your databases to
make it possible to recover from catastrophic failure. These snapshots are either a standard
backup, which creates a consistent picture of the databases as of a single instant in time;

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 178

or an on-line backup (also known as a hot backup), which creates a consistent picture of
the databases as of an unspecified instant during the period of time when the snapshot was
made. The advantage of a hot backup is that applications may continue to read and write the
databases while the snapshot is being taken. The disadvantage of a hot backup is that more
information must be archived, and recovery based on a hot backup is to an unspecified time
between the start of the backup and when the backup is completed.

Second, after taking a snapshot, you should periodically archive the log files being created
in the environment. It is often helpful to think of database archival in terms of full and
incremental filesystem backups. A snapshot is a full backup, whereas the periodic archival
of the current log files is an incremental backup. For example, it might be reasonable to
take a full snapshot of a database environment weekly or monthly, and archive additional log
files daily. Using both the snapshot and the log files, a catastrophic crash at any time can be
recovered to the time of the most recent log archival; a time long after the original snapshot.

When incremental backups are implemented using this procedure, it is important to know
that a database copy taken prior to a bulk loading event (that is, a transaction started with
the DB_TXN_BULK flag) can no longer be used as the target of an incremental backup. This is
true because bulk loading omits logging of some record insertions, so these insertions cannot
be rolled forward by recovery. It is recommended that a full backup be scheduled following a
bulk loading event.

To create a standard backup of your database that can be used to recover from catastrophic
failure, take the following steps:

1. Commit or abort all ongoing transactions.

2. Stop writing your databases until the backup has completed. Read-only operations are
permitted, but no write operations and no filesystem operations may be performed (for
example, the DB_ENV->remove() and DB->open() methods may not be called).

3. Force an environment checkpoint (see the db_checkpoint utility for more information).

4. Run the db_archive utility with option -s to identify all the database data files, and copy
them to a backup device such as CD-ROM, alternate disk, or tape.

If the database files are stored in a separate directory from the other Berkeley DB files, it
may be simpler to archive the directory itself instead of the individual files (see DB_ENV-
>set_data_dir() for additional information).

Note

If any of the database files did not have an open DB handle during the lifetime
of the current log files, the db_archive utility will not list them in its output.
This is another reason it may be simpler to use a separate database file directory
and archive the entire directory instead of archiving only the files listed by the
db_archive utility.

5. Run the db_archive utility with option -l to identify all the log files, and copy the last one
(that is, the one with the highest number) to a backup device such as CD-ROM, alternate
disk, or tape.

../api_reference/C/txnbegin.html#txnbegin_DB_TXN_BULK
../api_reference/C/envremove.html
../api_reference/C/dbopen.html
../api_reference/C/db_checkpoint.html
../api_reference/C/db_archive.html
../api_reference/C/envset_data_dir.html
../api_reference/C/envset_data_dir.html
../api_reference/C/db.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 179

To create a hot backup of your database that can be used to recover from catastrophic failure,
take the following steps:

1. Set the DB_HOTBACKUP_IN_PROGRESS flag in the environment. This affects the behavior
of transactions started with the DB_TXN_BULK flag.

2. Archive your databases, as described in the previous step #4. You do not have to halt
ongoing transactions or force a checkpoint. As this is a hot backup, and the databases
may be modified during the copy, it is critical that database pages be read atomically as
described by Berkeley DB recoverability (page 186).

Note that only UNIX based systems are known to support the atomicity of reads. These
systems include: Solaris, Mac OSX, HPUX and various BSD based systems. Linux and
Windows based systems do not support atomic filesystem reads directly. The XFS file
system supports atomic reads despite the lack of it in Linux. On systems that do not
support atomic file system reads, the db_hotbackup utility should be used or a tool can
be constructed using the DB_ENV->backup() method. Alternatively, you can construct a
tool using the the db_copy() method. You can also perform a hot backup of just a single
database in your environment using the DB_ENV->dbbackup() method.

3. Archive all of the log files. The order of these two operations is required, and the
database files must be archived before the log files. This means that if the database files
and log files are in the same directory, you cannot simply archive the directory; you must
make sure that the correct order of archival is maintained.

To archive your log files, run the db_archive utility using the -l option to identify all the
database log files, and copy them to your backup media. If the database log files are
stored in a separate directory from the other database files, it may be simpler to archive
the directory itself instead of the individual files (see the DB_ENV->set_lg_dir() method
for more information).

4. Reset the DB_HOTBACKUP_IN_PROGRESS flag.

To minimize the archival space needed for log files when doing a hot backup, run db_archive
to identify those log files which are not in use. Log files which are not in use do not need to
be included when creating a hot backup, and you can discard them or move them aside for use
with previous backups (whichever is appropriate), before beginning the hot backup.

After completing one of these two sets of steps, the database environment can be recovered
from catastrophic failure (see Recovery procedures (page 181) for more information).

To update either a hot or cold backup so that recovery from catastrophic failure is possible to
a new point in time, repeat step #2 under the hot backup instructions and archive all of the
log files in the database environment. Each time both the database and log files are copied to
backup media, you may discard all previous database snapshots and saved log files. Archiving
additional log files does not allow you to discard either previous database snapshots or log
files. Generally, updating a backup must be integrated with the application's log file removal
procedures.

The time to restore from catastrophic failure is a function of the number of log records that
have been written since the snapshot was originally created. Perhaps more importantly, the

../api_reference/C/envset_flags.html#set_flags_DB_HOTBACKUP_IN_PROGRESS
../api_reference/C/txnbegin.html#txnbegin_DB_TXN_BULK
../api_reference/C/db_hotbackup.html
../api_reference/C/envbackup.html
../api_reference/C/db_copy.html
../api_reference/C/envdbbackup.html
../api_reference/C/db_archive.html
../api_reference/C/envset_lg_dir.html
../api_reference/C/envset_flags.html#set_flags_DB_HOTBACKUP_IN_PROGRESS

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 180

more separate pieces of backup media you use, the more likely it is that you will have a
problem reading from one of them. For these reasons, it is often best to make snapshots on a
regular basis.

Obviously, the reliability of your archive media will affect the safety of your data. For
archival safety, ensure that you have multiple copies of your database backups, verify that
your archival media is error-free and readable, and that copies of your backups are stored
offsite!

The functionality provided by the db_archive utility is also available directly from the
Berkeley DB library. The following code fragment prints out a list of log and database files that
need to be archived:

void
log_archlist(DB_ENV *dbenv)
{
 int ret;
 char **begin, **list;

 /* Get the list of database files. */
 if ((ret = dbenv->log_archive(dbenv,
 &list, DB_ARCH_ABS | DB_ARCH_DATA)) != 0) {
 dbenv->err(dbenv, ret, "DB_ENV->log_archive: DB_ARCH_DATA");
 exit (1);
 }
 if (list != NULL) {
 for (begin = list; *list != NULL; ++list)
 printf("database file: %s\n", *list);
 free (begin);
 }

 /* Get the list of log files. */
 if ((ret = dbenv->log_archive(dbenv,
 &list, DB_ARCH_ABS | DB_ARCH_LOG)) != 0) {
 dbenv->err(dbenv, ret, "DB_ENV->log_archive: DB_ARCH_LOG");
 exit (1);
 }
 if (list != NULL) {
 for (begin = list; *list != NULL; ++list)
 printf("log file: %s\n", *list);
 free (begin);
 }
}

Log file removal

The fourth component of the infrastructure, log file removal, concerns the ongoing disk
consumption of the database log files. Depending on the rate at which the application writes
to the databases and the available disk space, the number of log files may increase quickly
enough so that disk space will be a resource problem. For this reason, you will periodically

../api_reference/C/db_archive.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 181

want to remove log files in order to conserve disk space. This procedure is distinct from
database and log file archival for catastrophic recovery, and you cannot remove the current
log files simply because you have created a database snapshot or copied log files to archival
media.

Log files may be removed at any time, as long as:

• the log file is not involved in an active transaction.

• a checkpoint has been written subsequent to the log file's creation.

• the log file is not the only log file in the environment.

Additionally, when Replication Manager is running the log file is older than the most out of
date active site in the replication group.

If you are preparing for catastrophic failure, you will want to copy the log files to archival
media before you remove them as described in Database and log file archival (page 177).

If you are not preparing for catastrophic failure, any one of the following methods can be used
to remove log files:

1. Run the standalone db_archive utility with the -d option, to remove any log files that are
no longer needed at the time the command is executed.

2. Call the DB_ENV->log_archive() method from the application, with the DB_ARCH_REMOVE
flag, to remove any log files that are no longer needed at the time the call is made.

3. Call the DB_ENV->log_set_config() method from the application, with the
DB_LOG_AUTO_REMOVE flag, to remove any log files that are no longer needed on an
ongoing basis. With this configuration, Berkeley DB will automatically remove log files,
and the application will not have an opportunity to copy the log files to backup media.

Recovery procedures

The fifth component of the infrastructure, recovery procedures, concerns the recoverability
of the database. After any application or system failure, there are two possible approaches to
database recovery:

1. There is no need for recoverability, and all databases can be re-created from scratch.
Although these applications may still need transaction protection for other reasons,
recovery usually consists of removing the Berkeley DB environment home directory and
all files it contains, and then restarting the application. Such an application may use the
DB_TXN_NOT_DURABLE flag to avoid writing log records.

2. It is necessary to recover information after system or application failure. In this case,
recovery processing must be performed on any database environments that were active
at the time of the failure. Recovery processing involves running the db_recover utility or
calling the DB_ENV->open() method with the DB_RECOVER or DB_RECOVER_FATAL flags.

../api_reference/C/db_archive.html
../api_reference/C/logarchive.html
../api_reference/C/logarchive.html#archive_DB_ARCH_REMOVE
../api_reference/C/envlog_set_config.html
../api_reference/C/envlog_set_config.html#log_set_config_DB_LOG_AUTO_REMOVE
../api_reference/C/dbset_flags.html#dbset_flags_DB_TXN_NOT_DURABLE
../api_reference/C/db_recover.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html#envopen_DB_RECOVER_FATAL

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 182

During recovery processing, all database changes made by aborted or unfinished
transactions are undone, and all database changes made by committed transactions
are redone, as necessary. Database applications must not be restarted until recovery
completes. After recovery finishes, the environment is properly initialized so that
applications may be restarted.

If performing recovery, there are two types of recovery processing: normal and catastrophic.
Which you choose depends on the source for the database and log files you are using to
recover.

If up-to-the-minute database and log files are accessible on a stable filesystem, normal
recovery is sufficient. Run the db_recover utility or call the DB_ENV->open() method
specifying the DB_RECOVER flag. However, the normal recovery case never includes recovery
using hot backups of the database environment. For example, you cannot perform a hot
backup of databases and log files, restore the backup and then run normal recovery — you
must always run catastrophic recovery when using hot backups.

If the database or log files have been destroyed or corrupted, or normal recovery fails,
catastrophic recovery is required. For example, catastrophic failure includes the case where
the disk drive on which the database or log files are stored has been physically destroyed,
or when the underlying filesystem is corrupted and the operating system's normal filesystem
checking procedures cannot bring that filesystem to a consistent state. This is often difficult
to detect, and a common sign of the need for catastrophic recovery is when normal Berkeley
DB recovery procedures fail, or when checksum errors are displayed during normal database
procedures. When catastrophic recovery is necessary, take the following steps:

1. Restore the most recent snapshots of the database and log files from the backup media
into the directory where recovery will be performed.

2. If any log files were archived since the last snapshot was made, they should be restored
into the directory where recovery will be performed.

If any log files are available from the database environment that failed (for example, the
disk holding the database files crashed, but the disk holding the log files is fine), those log
files should be copied into the directory where recovery will be performed.

Be sure to restore all log files in the order they were written. The order is important
because it's possible the same log file appears on multiple backups, and you want to run
recovery using the most recent version of each log file.

3. Run the db_recover utility, specifying its -c option; or call the DB_ENV->open() method,
specifying the DB_RECOVER_FATAL flag. The catastrophic recovery process will review
the logs and database files to bring the environment databases to a consistent state as of
the time of the last uncorrupted log file that is found. It is important to realize that only
transactions committed before that date will appear in the databases.

It is possible to re-create the database in a location different from the original by
specifying appropriate pathnames to the -h option of the db_recover utility. In order
for this to work properly, it is important that your application refer to files by names

../api_reference/C/db_recover.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/db_recover.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_RECOVER_FATAL
../api_reference/C/db_recover.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 183

relative to the database home directory or the pathname(s) specified in calls to DB_ENV-
>set_data_dir(), instead of using full pathnames.

Hot failover

For some applications, it may be useful to periodically snapshot the database environment for
use as a hot failover should the primary system fail. The following steps can be taken to keep
a backup environment in close synchrony with an active environment. The active environment
is entirely unaffected by these procedures, and both read and write operations are allowed
during all steps described here.

The procedure described here is not compatible with the concurrent use of the transactional
bulk insert optimization (transactions started with the DB_TXN_BULK flag). After the bulk
optimization is used, the archive must be created again from scratch starting with step 1.

The db_hotbackup utility is the preferred way to automate generating a hot failover
system. The first step is to run db_hotbackup utility without the -u flag. This will create
hot backup copy of the databases in your environment. After that point periodically running
the db_hotbackup utility with the -u flag will copy the new log files and run recovery on the
backup copy to bring it current with the primary environment.

Note that you can also create your own hot backup solution using the DB_ENV->backup() or
DB_ENV->dbbackup() methods.

To implement your own hot fail over system, the steps below can be followed. However, care
should be taken on non-UNIX based systems when copying the database files to be sure that
they are either quiescent, or that either the DB_ENV->backup() or db_copy() routine is used to
ensure atomic reads of the database pages.

1. Run the db_archive utility with the -s option in the active environment to identify all of
the active environment's database files, and copy them to the backup directory.

If the database files are stored in a separate directory from the other Berkeley DB files,
it will be simpler (and much faster!) to copy the directory itself instead of the individual
files (see DB_ENV->add_data_dir() for additional information).

Note

If any of the database files did not have an open DB handle during the lifetime
of the current log files, the db_archive utility will not list them in its output.
This is another reason it may be simpler to use a separate database file directory
and copy the entire directory instead of archiving only the files listed by the
db_archive utility.

2. Remove all existing log files from the backup directory.

3. Run the db_archive utility with the -l option in the active environment to identify all of
the active environment's log files, and copy them to the backup directory.

4. Run the db_recover utility with the -c option in the backup directory to catastrophically
recover the copied environment.

../api_reference/C/envset_data_dir.html
../api_reference/C/envset_data_dir.html
../api_reference/C/txnbegin.html#txnbegin_DB_TXN_BULK
../api_reference/C/db_hotbackup.html
../api_reference/C/db_hotbackup.html
../api_reference/C/db_hotbackup.html
../api_reference/C/envbackup.html
../api_reference/C/envdbbackup.html
../api_reference/C/envbackup.html
../api_reference/C/db_copy.html
../api_reference/C/db_archive.html
../api_reference/C/envadd_data_dir.html
../api_reference/C/db.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/db_recover.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 184

Steps 2, 3 and 4 may be repeated as often as you like. If Step 1 (the initial copy of the
database files) is repeated, then Steps 2, 3 and 4 must be performed at least once in order to
ensure a consistent database environment snapshot.

These procedures must be integrated with your other archival procedures, of course. If you
are periodically removing log files from your active environment, you must be sure to copy
them to the backup directory before removing them from the active directory. Not copying
a log file to the backup directory and subsequently running recovery with it present may
leave the backup snapshot of the environment corrupted. A simple way to ensure this never
happens is to archive the log files in Step 2 as you remove them from the backup directory,
and move inactive log files from your active environment into your backup directory (rather
than copying them), in Step 3. The following steps describe this procedure in more detail:

1. Run the db_archive utility with the -s option in the active environment to identify all of
the active environment's database files, and copy them to the backup directory.

2. Archive all existing log files from the backup directory, moving them to a backup device
such as CD-ROM, alternate disk, or tape.

3. Run the db_archive utility (without any option) in the active environment to identify all
of the log files in the active environment that are no longer in use, and move them to the
backup directory.

4. Run the db_archive utility with the -l option in the active environment to identify all of
the remaining log files in the active environment, and copy the log files to the backup
directory.

5. Run the db_recover utility with the -c option in the backup directory to catastrophically
recover the copied environment.

As before, steps 2, 3, 4 and 5 may be repeated as often as you like. If Step 1 (the initial copy
of the database files) is repeated, then Steps 2 through 5 must be performed at least once in
order to ensure a consistent database environment snapshot.

Using Recovery on Journaling Filesystems

In some cases, the use of meta-data only journaling file systems can lead to log file
corruption. The window of vulnerability is quite small, but if the operating system experiences
an unclean shutdown while Berkeley DB is creating a new log file, it is possible that upon file
system recovery, the system will be in a state where the log file has been created, but its own
meta-data has not.

When a log file is corrupted to this degree, normal recovery can fail and your application may
be unable to open your environment. Instead, an error something like this is issued when you
attempt to run normal recovery on environment open:
 Ignoring log file: /var/dblog/log.0000000074: magic number
 6c73732f, not 40988
 Invalid log file: log.0000000074: Invalid argument
 PANIC: Invalid argument
 process-private: unable to find environment
 txn_checkpoint interface requires an environment configured for

../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/db_archive.html
../api_reference/C/db_recover.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 185

 the transaction subsystem

In this case, it may be possible to successfully recover the environment by ignoring the log
file that was being created — to do this, rename the log file with the highest number to a
temporary name:

 mv DBHOME/log.000000XXX my-temporary-log-file

and try running normal environment recovery again. If recovery is successful, and your
application is able to open the environment, then you can delete the log file that you
renamed.

If recovery is not successful, then you must perform a catastrophic recovery from a previous
backup.

This situation has been shown to occur when using ext3 in writeback mode, but other
journaling filesystems could exhibit similar behavior.

To be absolutely certain of your application's ability to recover your environment in the event
of a system crash, either use non-journaling filesystems, or use a journaling filesystem in a
safe (albeit slower) configuration, such as ext3 in ordered mode.

Recovery and filesystem operations

The Berkeley DB API supports creating, removing and renaming files. Creating files is
supported by the DB->open() method. Removing files is supported by the DB_ENV->dbremove()
and DB->remove() methods. Renaming files is supported by the DB_ENV->dbrename() and DB-
>rename() methods. (There are two methods for removing and renaming files because one of
the methods is transactionally protected and one is not.)

Berkeley DB does not permit specifying the DB_TRUNCATE flag when opening a file in a
transaction-protected environment. This is an implicit file deletion, but one that does not
always require the same operating system file permissions as deleting and creating a file do.

If you have changed the name of a file or deleted it outside of the Berkeley DB library (for
example, you explicitly removed a file using your normal operating system utilities), then it
is possible that recovery will not be able to find a database to which the log refers. In this
case, the db_recover utility will produce a warning message, saying it was unable to locate
a file it expected to find. This message is only a warning because the file may have been
subsequently deleted as part of normal database operations before the failure occurred, so is
not necessarily a problem.

Generally, any filesystem operations that are performed outside the Berkeley DB interface
should be performed at the same time as making a snapshot of the database. To perform
filesystem operations correctly, do the following:

1. Cleanly shut down database operations.

To shut down database operations cleanly, all applications accessing the database
environment must be shut down and a transaction checkpoint must be taken. If the
applications are not implemented so they can be shut down gracefully (that is, closing
all references to the database environment), recovery must be performed after all

../api_reference/C/dbopen.html
../api_reference/C/envdbremove.html
../api_reference/C/dbremove.html
../api_reference/C/envdbrename.html
../api_reference/C/dbrename.html
../api_reference/C/dbrename.html
../api_reference/C/dbopen.html#open_DB_TRUNCATE
../api_reference/C/db_recover.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 186

applications have been killed to ensure that the underlying databases are consistent on
disk.

2. Perform the filesystem operations; for example, remove or rename one or more files.

3. Make an archival snapshot of the database.

Although this step is not strictly necessary, it is strongly recommended. If this step is
not performed, recovery from catastrophic failure will require that recovery first be
performed up to the time of the filesystem operations, the filesystem operations be
redone, and then recovery be performed from the filesystem operations forward.

4. Restart the database applications.

Berkeley DB recoverability

Berkeley DB recovery is based on write-ahead logging. This means that when a change is made
to a database page, a description of the change is written into a log file. This description in
the log file is guaranteed to be written to stable storage before the database pages that were
changed are written to stable storage. This is the fundamental feature of the logging system
that makes durability and rollback work.

If the application or system crashes, the log is reviewed during recovery. Any database
changes described in the log that were part of committed transactions and that were never
written to the actual database itself are written to the database as part of recovery. Any
database changes described in the log that were never committed and that were written to
the actual database itself are backed-out of the database as part of recovery. This design
allows the database to be written lazily, and only blocks from the log file have to be forced to
disk as part of transaction commit.

There are two interfaces that are a concern when considering Berkeley DB recoverability:

1. The interface between Berkeley DB and the operating system/filesystem.

2. The interface between the operating system/filesystem and the underlying stable storage
hardware.

Berkeley DB uses the operating system interfaces and its underlying filesystem when writing
its files. This means that Berkeley DB can fail if the underlying filesystem fails in some
unrecoverable way. Otherwise, the interface requirements here are simple: The system call
that Berkeley DB uses to flush data to disk (normally fsync or fdatasync), must guarantee that
all the information necessary for a file's recoverability has been written to stable storage
before it returns to Berkeley DB, and that no possible application or system crash can cause
that file to be unrecoverable.

In addition, Berkeley DB implicitly uses the interface between the operating system and the
underlying hardware. The interface requirements here are not as simple.

First, it is necessary to consider the underlying page size of the Berkeley DB databases.
The Berkeley DB library performs all database writes using the page size specified by the
application, and Berkeley DB assumes pages are written atomically. This means that if the
operating system performs filesystem I/O in blocks of different sizes than the database

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 187

page size, it may increase the possibility for database corruption. For example, assume that
Berkeley DB is writing 32KB pages for a database, and the operating system does filesystem
I/O in 16KB blocks. If the operating system writes the first 16KB of the database page
successfully, but crashes before being able to write the second 16KB of the database, the
database has been corrupted and this corruption may or may not be detected during recovery.
For this reason, it may be important to select database page sizes that will be written as
single block transfers by the underlying operating system. If you do not select a page size that
the underlying operating system will write as a single block, you may want to configure the
database to use checksums (see the DB->set_flags() flag for more information). By configuring
checksums, you guarantee this kind of corruption will be detected at the expense of the
CPU required to generate the checksums. When such an error is detected, the only course of
recovery is to perform catastrophic recovery to restore the database.

Second, if you are copying database files (either as part of doing a hot backup or creation of
a hot failover area), there is an additional question related to the page size of the Berkeley
DB databases. You must copy databases atomically, in units of the database page size. In
other words, the reads made by the copy program must not be interleaved with writes by
other threads of control, and the copy program must read the databases in multiples of the
underlying database page size. On Unix systems, this is not a problem, as these operating
systems already make this guarantee and system utilities normally read in power-of-2 sized
chunks, which are larger than the largest possible Berkeley DB database page size. Other
operating systems, particularly those based on Linux and Windows, do not provide this
guarantee and hot backups may not be performed on these systems by reading data from the
file system. The db_hotbackup utility should be used on these systems.

An additional problem we have seen in this area was in some releases of Solaris where the
cp utility was implemented using the mmap system call rather than the read system call.
Because the Solaris' mmap system call did not make the same guarantee of read atomicity
as the read system call, using the cp utility could create corrupted copies of the databases.
Another problem we have seen is implementations of the tar utility doing 10KB block reads
by default, and even when an output block size was specified to that utility, not reading from
the underlying databases in multiples of the block size. Using the dd utility instead of the cp
or tar utilities (and specifying an appropriate block size), fixes these problems. If you plan
to use a system utility to copy database files, you may want to use a system call trace utility
(for example, ktrace or truss) to check for an I/O size smaller than or not a multiple of the
database page size and system calls other than read.

Third, it is necessary to consider the behavior of the system's underlying stable storage
hardware. For example, consider a SCSI controller that has been configured to cache data
and return to the operating system that the data has been written to stable storage, when,
in fact, it has only been written into the controller RAM cache. If power is lost before the
controller is able to flush its cache to disk, and the controller cache is not stable (that is,
the writes will not be flushed to disk when power returns), the writes will be lost. If the
writes include database blocks, there is no loss because recovery will correctly update the
database. If the writes include log file blocks, it is possible that transactions that were
already committed may not appear in the recovered database, although the recovered
database will be coherent after a crash.

If the underlying hardware can fail in any way so that only part of the block was written, the
failure conditions are the same as those described previously for an operating system failure

../api_reference/C/dbset_flags.html
../api_reference/C/db_hotbackup.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 188

that writes only part of a logical database block. In such cases, configuring the database for
checksums will ensure the corruption is detected.

For these reasons, it may be important to select hardware that does not do partial writes
and does not cache data writes (or does not return that the data has been written to stable
storage until it has either been written to stable storage or the actual writing of all of the
data is guaranteed, barring catastrophic hardware failure — that is, your disk drive exploding).

If the disk drive on which you are storing your databases explodes, you can perform normal
Berkeley DB catastrophic recovery, because it requires only a snapshot of your databases plus
the log files you have archived since those snapshots were taken. In this case, you should lose
no database changes at all.

If the disk drive on which you are storing your log files explodes, you can also perform
catastrophic recovery, but you will lose any database changes made as part of transactions
committed since your last archival of the log files. Alternatively, if your database environment
and databases are still available after you lose the log file disk, you should be able to dump
your databases. However, you may see an inconsistent snapshot of your data after doing the
dump, because changes that were part of transactions that were not yet committed may
appear in the database dump. Depending on the value of the data, a reasonable alternative
may be to perform both the database dump and the catastrophic recovery and then compare
the databases created by the two methods.

Regardless, for these reasons, storing your databases and log files on different disks should be
considered a safety measure as well as a performance enhancement.

Finally, you should be aware that Berkeley DB does not protect against all cases of stable
storage hardware failure, nor does it protect against simple hardware misbehavior (for
example, a disk controller writing incorrect data to the disk). However, configuring the
database for checksums will ensure that any such corruption is detected.

Transaction tuning

There are a few different issues to consider when tuning the performance of Berkeley DB
transactional applications. First, you should review Access method tuning (page 81), as the
tuning issues for access method applications are applicable to transactional applications as
well. The following are additional tuning issues for Berkeley DB transactional applications:
access method

Highly concurrent applications should use the Queue access method, where possible,
as it provides finer-granularity of locking than the other access methods. Otherwise,
applications usually see better concurrency when using the Btree access method than
when using either the Hash or Recno access methods.

record numbers
Using record numbers outside of the Queue access method will often slow down
concurrent applications as they limit the degree of concurrency available in the
database. Using the Recno access method, or the Btree access method with retrieval
by record number configured can slow applications down.

Btree database size
When using the Btree access method, applications supporting concurrent access
may see excessive numbers of deadlocks in small databases. There are two different

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 189

approaches to resolving this problem. First, as the Btree access method uses page-
level locking, decreasing the database page size can result in fewer lock conflicts.
Second, in the case of databases that are cyclically growing and shrinking, turning off
reverse splits (with DB_REVSPLITOFF) can leave the database with enough pages that
there will be fewer lock conflicts.

read locks
Performing all read operations outside of transactions or at Degrees of isolation (page
168) can often significantly increase application throughput. In addition, limiting the
lifetime of non-transactional cursors will reduce the length of times locks are held,
thereby improving concurrency.

DB_DIRECT_DB, DB_LOG_DIRECT
On some systems, avoiding caching in the operating system can improve write
throughput and allow the creation of larger Berkeley DB caches.

DB_READ_UNCOMMITTED, DB_READ_COMMITTED
Consider decreasing the level of isolation of transaction using the
DB_READ_UNCOMMITTED, or DB_READ_COMMITTED flags for transactions or
cursors or the DB_READ_UNCOMMITTED flag on individual read operations. The
DB_READ_COMMITTED flag will release read locks on cursors as soon as the data
page is nolonger referenced. This is also called degree 2 isolation. This will tend to
block write operations for shorter periods for applications that do not need to have
repeatable reads for cursor operations.

The DB_READ_UNCOMMITTED flag will allow read operations to potentially return
data which has been modified but not yet committed, and can significantly increase
application throughput in applications that do not require data be guaranteed to be
permanent in the database. This is also called degree 1 isolation, or dirty reads.

DB_RMW
If there are many deadlocks, consider using the DB_RMW flag to immediately acquire
write locks when reading data items that will subsequently be modified. Although this
flag may increase contention (because write locks are held longer than they would
otherwise be), it may decrease the number of deadlocks that occur.

DB_TXN_WRITE_NOSYNC, DB_TXN_NOSYNC
By default, transactional commit in Berkeley DB implies durability, that is, all
committed operations will be present in the database after recovery from any
application or system failure. For applications not requiring that level of certainty,
specifying the DB_TXN_NOSYNC flag will often provide a significant performance
improvement. In this case, the database will still be fully recoverable, but some
number of committed transactions might be lost after application or system failure.

access databases in order
When modifying multiple databases in a single transaction, always access physical files
and databases within physical files, in the same order where possible. In addition,
avoid returning to a physical file or database, that is, avoid accessing a database,
moving on to another database and then returning to the first database. This can
significantly reduce the chance of deadlock between threads of control.

large key/data items
Transactional protections in Berkeley DB are guaranteed by before and after physical
image logging. This means applications modifying large key/data items also write

../api_reference/C/dbset_flags.html#dbset_flags_DB_REVSPLITOFF
../api_reference/C/envset_flags.html#set_flags_DB_DIRECT_DB
../api_reference/C/envlog_set_config.html#log_set_config_DB_LOG_DIRECT
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/dbcget.html#dbcget_DB_READ_COMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/dbcget.html#dbcget_DB_READ_COMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/dbcget.html#dbcget_DB_READ_COMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/dbcget.html#dbcget_DB_RMW
../api_reference/C/dbcget.html#dbcget_DB_RMW
../api_reference/C/envset_flags.html#set_flags_DB_TXN_WRITE_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 190

large log records, and, in the case of the default transaction commit, threads of
control must wait until those log records have been flushed to disk. Applications
supporting concurrent access should try and keep key/data items small wherever
possible.

mutex selection
During configuration, Berkeley DB selects a mutex implementation for the
architecture. Berkeley DB normally prefers blocking-mutex implementations over non-
blocking ones. For example, Berkeley DB will select POSIX pthread mutex interfaces
rather than assembly-code test-and-set spin mutexes because pthread mutexes are
usually more efficient and less likely to waste CPU cycles spinning without getting any
work accomplished.

For some applications and systems (generally highly concurrent applications on large
multiprocessor systems), Berkeley DB makes the wrong choice. In some cases, better
performance can be achieved by configuring with the --with-mutex argument and
selecting a different mutex implementation than the one selected by Berkeley DB.
When a test-and-set spin mutex implementation is selected, it may be useful to
tune the number of spins made before yielding the processor and sleeping. For more
information, see the DB_ENV->mutex_set_tas_spins() method.

Finally, Berkeley DB may put multiple mutexes on individual cache lines. When
tuning Berkeley DB for large multiprocessor systems, it may be useful to tune mutex
alignment using the DB_ENV->mutex_set_align() method.

--enable-posix-mutexes
By default, the Berkeley DB library will only select the POSIX pthread mutex
implementation if it supports mutexes shared between multiple processes. If your
application does not share its database environment between processes and your
system's POSIX mutex support was not selected because it did not support inter-
process mutexes, you may be able to increase performance and transactional
throughput by configuring with the --enable-posix-mutexes argument.

log buffer size
Berkeley DB internally maintains a buffer of log writes. The buffer is written to disk
at transaction commit, by default, or, whenever it is filled. If it is consistently being
filled before transaction commit, it will be written multiple times per transaction,
costing application performance. In these cases, increasing the size of the log buffer
can increase application throughput.

log file location
If the database environment's log files are on the same disk as the databases, the disk
arms will have to seek back-and-forth between the two. Placing the log files and the
databases on different disk arms can often increase application throughput.

trickle write
In some applications, the cache is sufficiently active and dirty that readers frequently
need to write a dirty page in order to have space in which to read a new page from
the backing database file. You can use the db_stat utility (or the statistics returned
by the DB_ENV->memp_stat() method) to see how often this is happening in your
application's cache. In this case, using a separate thread of control and the DB_ENV-

../installation/build_unix_conf.html#build_unix_conf.--with-mutex
../api_reference/C/mutexset_tas_spins.html
../api_reference/C/mutexset_align.html
../installation/build_unix_conf.html#build_unix_conf.--enable-posixmutexes
../installation/build_unix_conf.html#build_unix_conf.--enable-posixmutexes
../api_reference/C/db_stat.html
../api_reference/C/mempstat.html
../api_reference/C/memptrickle.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 191

>memp_trickle() method to trickle-write pages can often increase the overall
throughput of the application.

Transaction throughput

Generally, the speed of a database system is measured by the transaction throughput,
expressed as a number of transactions per second. The two gating factors for Berkeley DB
performance in a transactional system are usually the underlying database files and the log
file. Both are factors because they require disk I/O, which is slow relative to other system
resources such as CPU.

In the worst-case scenario:

• Database access is truly random and the database is too large for any significant percentage
of it to fit into the cache, resulting in a single I/O per requested key/data pair.

• Both the database and the log are on a single disk.

This means that for each transaction, Berkeley DB is potentially performing several filesystem
operations:

• Disk seek to database file

• Database file read

• Disk seek to log file

• Log file write

• Flush log file information to disk

• Disk seek to update log file metadata (for example, inode information)

• Log metadata write

• Flush log file metadata to disk

There are a number of ways to increase transactional throughput, all of which attempt to
decrease the number of filesystem operations per transaction. First, the Berkeley DB software
includes support for group commit. Group commit simply means that when the information
about one transaction is flushed to disk, the information for any other waiting transactions
will be flushed to disk at the same time, potentially amortizing a single log write over a
large number of transactions. There are additional tuning parameters which may be useful to
application writers:

• Tune the size of the database cache. If the Berkeley DB key/data pairs used during the
transaction are found in the database cache, the seek and read from the database are no
longer necessary, resulting in two fewer filesystem operations per transaction. To determine
whether your cache size is too small, see Selecting a cache size (page 24).

• Put the database and the log files on different disks. This allows reads and writes to the log
files and the database files to be performed concurrently.

../api_reference/C/memptrickle.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 192

• Set the filesystem configuration so that file access and modification times are not updated.
Note that although the file access and modification times are not used by Berkeley DB, this
may affect other programs -- so be careful.

• Upgrade your hardware. When considering the hardware on which to run your application,
however, it is important to consider the entire system. The controller and bus can have as
much to do with the disk performance as the disk itself. It is also important to remember
that throughput is rarely the limiting factor, and that disk seek times are normally the true
performance issue for Berkeley DB.

• Turn on the DB_TXN_NOSYNC or DB_TXN_WRITE_NOSYNC flags. This changes the Berkeley
DB behavior so that the log files are not written and/or flushed when transactions are
committed. Although this change will greatly increase your transaction throughput, it means
that transactions will exhibit the ACI (atomicity, consistency, and isolation) properties,
but not D (durability). Database integrity will be maintained, but it is possible that some
number of the most recently committed transactions may be undone during recovery
instead of being redone.

If you are bottlenecked on logging, the following test will help you confirm that the number
of transactions per second that your application does is reasonable for the hardware on which
you are running. Your test program should repeatedly perform the following operations:

• Seek to the beginning of a file

• Write to the file

• Flush the file write to disk

The number of times that you can perform these three operations per second is a rough
measure of the minimum number of transactions per second of which the hardware is capable.
This test simulates the operations applied to the log file. (As a simplifying assumption in this
experiment, we assume that the database files are either on a separate disk; or that they
fit, with some few exceptions, into the database cache.) We do not have to directly simulate
updating the log file directory information because it will normally be updated and flushed to
disk as a result of flushing the log file write to disk.

Running this test program, in which we write 256 bytes for 1000 operations on reasonably
standard commodity hardware (Pentium II CPU, SCSI disk), returned the following results:

% testfile -b256 -o1000
running: 1000 ops
Elapsed time: 16.641934 seconds
1000 ops: 60.09 ops per second

Note that the number of bytes being written to the log as part of each transaction can
dramatically affect the transaction throughput. The test run used 256, which is a reasonable
size log write. Your log writes may be different. To determine your average log write size, use
the db_stat utility to display your log statistics.

As a quick sanity check, the average seek time is 9.4 msec for this particular disk, and the
average latency is 4.17 msec. That results in a minimum requirement for a data transfer to

../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html#set_flags_DB_TXN_WRITE_NOSYNC
../api_reference/C/db_stat.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 193

the disk of 13.57 msec, or a maximum of 74 transfers per second. This is close enough to the
previous 60 operations per second (which was not done on a quiescent disk) that the number is
believable.

An implementation of the previous example test program for IEEE/ANSI Std 1003.1 (POSIX)
standard systems is included in the Berkeley DB distribution.

Transaction FAQ

1. What should a transactional program do when an error occurs?

Any time an error occurs, such that a transactionally protected set of operations cannot
complete successfully, the transaction must be aborted. While deadlock is by far the
most common of these errors, there are other possibilities; for example, running out of
disk space for the filesystem. In Berkeley DB transactional applications, there are three
classes of error returns: "expected" errors, "unexpected but recoverable" errors, and a
single "unrecoverable" error. Expected errors are errors like DB_NOTFOUND (page 259),
which indicates that a searched-for key item is not present in the database. Applications
may want to explicitly test for and handle this error, or, in the case where the absence
of a key implies the enclosing transaction should fail, simply call DB_TXN->abort().
Unexpected but recoverable errors are errors like DB_LOCK_DEADLOCK (page 259),
which indicates that an operation has been selected to resolve a deadlock, or a system
error such as EIO, which likely indicates that the filesystem has no available disk space.
Applications must immediately call DB_TXN->abort() when these returns occur, as it is not
possible to proceed otherwise. The only unrecoverable error is DB_RUNRECOVERY (page
259), which indicates that the system must stop and recovery must be run.

2. How can hot backups work? Can't you get an inconsistent picture of the database
when you copy it?

First, Berkeley DB is based on the technique of "write-ahead logging", which means that
before any change is made to a database, a log record is written that describes the
change. Further, Berkeley DB guarantees that the log record that describes the change
will always be written to stable storage (that is, disk) before the database page where the
change was made is written to stable storage. Because of this guarantee, we know that
any change made to a database will appear either in just a log file, or both the database
and a log file, but never in just the database.

Second, you can always create a consistent and correct database based on the log files
and the databases from a database environment. So, during a hot backup, we first make
a copy of the databases and then a copy of the log files. The tricky part is that there may
be pages in the database that are related for which we won't get a consistent picture
during this copy. For example, let's say that we copy pages 1-4 of the database, and
then are swapped out. For whatever reason (perhaps because we needed to flush pages
from the cache, or because of a checkpoint), the database pages 1 and 5 are written.
Then, the hot backup process is re-scheduled, and it copies page 5. Obviously, we have
an inconsistent database snapshot, because we have a copy of page 1 from before it was
written by the other thread of control, and a copy of page 5 after it was written by the
other thread. What makes this work is the order of operations in a hot backup. Because of
the write-ahead logging guarantees, we know that any page written to the database will

writetest.cs
../api_reference/C/txnabort.html
../api_reference/C/txnabort.html

Library Version 11.2.5.3 Berkeley DB Transactional Data Store
Applications

9/9/2013 DB Reference Guide Page 194

first be referenced in the log. If we copy the database first, then we can also know that
any inconsistency in the database will be described in the log files, and so we know that
we can fix everything up during recovery.

3. My application has DB_LOCK_DEADLOCK (page 259) errors. Is the normal, and what
should I do?

It is quite rare for a transactional application to be deadlock free. All applications should
be prepared to handle deadlock returns, because even if the application is deadlock free
when deployed, future changes to the application or the Berkeley DB implementation
might introduce deadlocks.

Practices which reduce the chance of deadlock include:

• Not using cursors which move backwards through the database (DB_PREV), as backward
scanning cursors can deadlock with page splits;

• Configuring DB_REVSPLITOFF to turn off reverse splits in applications which repeatedly
delete and re-insert the same keys, to minimize the number of page splits as keys are
re-inserted;

• Not configuring DB_READ_UNCOMMITTED as that flag requires write transactions
upgrade their locks when aborted, which can lead to deadlock. Generally,
DB_READ_COMMITTED or non-transactional read operations are less prone to deadlock
than DB_READ_UNCOMMITTED.

4. How can I move a database from one transactional environment into another?

Because database pages contain references to log records, databases cannot be simply
moved into different database environments. To move a database into a different
environment, dump and reload the database before moving it. If the database is too
large to dump and reload, the database may be prepared in place using the DB_ENV-
>lsn_reset() method or the -r argument to the db_load utility.

5. I'm seeing the error "log_flush: LSN past current end-of-log", what does that mean?

The most common cause of this error is that a system administrator has removed all
of the log files from a database environment. You should shut down your database
environment as gracefully as possible, first flushing the database environment cache to
disk, if that's possible. Then, dump and reload your databases. If the database is too large
to dump and reload, the database may be reset in place using the DB_ENV->lsn_reset()
method or the -r argument to the db_load utility. However, if you reset the database in
place, you should verify your databases before using them again. (It is possible for the
databases to be corrupted by running after all of the log files have been removed, and
the longer the application runs, the worse it can get.)

../api_reference/C/dbcget.html#dbcget_DB_PREV
../api_reference/C/dbset_flags.html#dbset_flags_DB_REVSPLITOFF
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/dbcget.html#dbcget_DB_READ_COMMITTED
../api_reference/C/dbopen.html#dbopen_DB_READ_UNCOMMITTED
../api_reference/C/envlsn_reset.html
../api_reference/C/envlsn_reset.html
../api_reference/C/db_load.html
../api_reference/C/envlsn_reset.html
../api_reference/C/db_load.html

9/9/2013 DB Reference Guide Page 195

Chapter 12. Berkeley DB Replication

Replication introduction

Berkeley DB includes support for building highly available applications based on replication.
Berkeley DB replication groups consist of some number of independently configured database
environments. There is a single master database environment and one or more client
database environments. Master environments support both database reads and writes; client
environments support only database reads. If the master environment fails, applications may
upgrade a client to be the new master. The database environments might be on separate
computers, on separate hardware partitions in a non-uniform memory access (NUMA) system,
or on separate disks in a single server. As always with Berkeley DB environments, any number
of concurrent processes or threads may access a database environment. In the case of a
master environment, any number of threads of control may read and write the environment,
and in the case of a client environment, any number of threads of control may read the
environment.

Applications may be written to provide various degrees of consistency between the master
and clients. The system can be run synchronously such that replicas are guaranteed to be up-
to-date with all committed transactions, but doing so may incur a significant performance
penalty. Higher performance solutions sacrifice total consistency, allowing the clients to be
out of date for an application-controlled amount of time.

There are two ways to build replicated applications. The simpler way is to use the Berkeley
DB Replication Manager. The Replication Manager provides a standard communications
infrastructure, and it creates and manages the background threads needed for processing
replication messages.

The Replication Manager implementation is based on TCP/IP sockets, and uses POSIX 1003.1
style networking and thread support. (On Windows systems, it uses standard Windows thread
support.) As a result, it is not as portable as the rest of the Berkeley DB library itself.

The alternative is to use the lower-level replication "Base APIs". This approach affords more
flexibility, but requires the application to provide some critical components:

1. A communication infrastructure. Applications may use whatever wire protocol is
appropriate for their application (for example, RPC, TCP/IP, UDP, VI or message-passing
over the backplane).

2. The application is responsible for naming. Berkeley DB refers to the members of a
replication group using an application-provided ID, and applications must map that ID to a
particular database environment or communication channel.

3. The application is responsible for monitoring the status of the master and clients, and
identifying any unavailable database environments.

4. The application must provide whatever security policies are needed. For example, the
application may choose to encrypt data, use a secure socket layer, or do nothing at all.
The level of security is left to the sole discretion of the application.

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 196

(Note that Replication Manager does not provide wire security for replication messages.)

The following pages present various programming considerations, many of which are directly
relevant only for Base API applications. However, even when using Replication Manager it is
important to understand the concepts.

Finally, the Berkeley DB replication implementation has one other additional feature to
increase application reliability. Replication in Berkeley DB is implemented to perform
database updates using a different code path than the standard ones. This means operations
that manage to crash the replication master due to a software bug will not necessarily also
crash replication clients.

For more information on the replication manager operations, see the Replication and Related
Methods section in the Berkeley DB C API Reference Guide.

Replication environment IDs

Each database environment included in a replication group must have a unique identifier for
itself and for the other members of the replication group. The identifiers do not need to be
global, that is, each database environment can assign local identifiers to members of the
replication group as it encounters them. For example, given three sites: A, B and C, site A
might assign the identifiers 1 and 2 to sites B and C respectively, while site B might assign the
identifiers 301 and 302 to sites A and C respectively. Note that it is not wrong to have global
identifiers, it is just not a requirement.

Replication Manager assigns and manages environment IDs on behalf of the application.

It is the responsibility of a Base API application to label each incoming replication message
passed to DB_ENV->rep_process_message() method with the appropriate identifier.
Subsequently, Berkeley DB will label outgoing messages to the send function with those same
identifiers.

Negative identifiers are reserved for use by Berkeley DB, and should never be assigned
to environments by the application. Two of these reserved identifiers are intended for
application use, as follows:

DB_EID_BROADCAST
The DB_EID_BROADCAST identifier indicates a message should be broadcast to all
members of a replication group.

DB_EID_INVALID
The DB_EID_INVALID identifier is an invalid environment ID, and may be used to
initialize environment ID variables that are subsequently checked for validity.

Replication environment priorities

Each database environment included in a replication group must have a priority, which
specifies a relative ordering among the different environments in a replication group. This
ordering is a factor in determining which environment will be selected as a new master in
case the existing master fails. Both Replication Manager applications and Base API applications
should specify environment priorities.

../api_reference/C/rep.html#replist
../api_reference/C/rep.html#replist
../api_reference/C/repmessage.html
../api_reference/C/reptransport.html#transport_DB_EID_BROADCAST
../api_reference/C/reptransport.html#transport_DB_EID_BROADCAST

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 197

Priorities are an unsigned integer, but do not need to be unique throughout the replication
group. A priority of 0 means the system can never become a master. Otherwise, larger valued
priorities indicate a more desirable master. For example, if a replication group consists of
three database environments, two of which are connected by an OC3 and the third of which is
connected by a T1, the third database environment should be assigned a priority value which
is lower than either of the other two.

Desirability of the master is first determined by the client having the most recent log records.
Ties in log records are broken with the client priority. If both sites have the same log and the
same priority, one is selected at random.

Building replicated applications

The simplest way to build a replicated Berkeley DB application is to first build (and debug!)
the transactional version of the same application. Then, add a thin replication layer:
application initialization must be changed and the application's communication infrastructure
must be added.

The application initialization changes are relatively simple. Replication Manager provides a
communication infrastructure, but in order to use the replication Base APIs you must provide
your own.

For implementation reasons, all replicated databases must reside in the data directories set
from DB_ENV->set_data_dir() (or in the default environment home directory, if not using
DB_ENV->set_data_dir()), rather than in a subdirectory below the specified directory. Care
must be taken in applications using relative pathnames and changing working directories after
opening the environment. In such applications the replication initialization code may not be
able to locate the databases, and applications that change their working directories may need
to use absolute pathnames.

During application initialization, the application performs three additional tasks: first, it
must specify the DB_INIT_REP flag when opening its database environment and additionally,
a Replication Manager application must also specify the DB_THREAD flag; second, it must
provide Berkeley DB information about its communications infrastructure; and third, it must
start the Berkeley DB replication system. Generally, a replicated application will do normal
Berkeley DB recovery and configuration, exactly like any other transactional application.

Replication Manager applications configure the built-in communications infrastructure
by calling obtaining a DB_SITE handle, and then using it to configure the local site. It
can optionally obtain one or more DB_SITE handles to configure remote sites. Once the
environment has been opened, the application starts the replication system by calling the
DB_ENV->repmgr_start() method.

A Base API application calls the DB_ENV->rep_set_transport() method to configure the entry
point to its own communications infrastructure, and then calls the DB_ENV->rep_start()
method to join or create the replication group.

When starting the replication system, an application has two choices: it may choose the group
master site explicitly, or alternatively it may configure all group members as clients and then
call for an election, letting the clients select the master from among themselves. Either is
correct, and the choice is entirely up to the application.

../api_reference/C/envset_data_dir.html
../api_reference/C/envset_data_dir.html
../api_reference/C/envopen.html#envopen_DB_INIT_REP
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/db_site.html
../api_reference/C/db_site.html
../api_reference/C/repmgrstart.html
../api_reference/C/reptransport.html
../api_reference/C/repstart.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 198

Replication Manager applications make this choice simply by setting the flags parameter to the
DB_ENV->repmgr_start() method.

For a Base API application, the result of calling DB_ENV->rep_start() is usually the discovery
of a master, or the declaration of the local environment as the master. If a master has not
been discovered after a reasonable amount of time, the application should call DB_ENV-
>rep_elect() to call for an election.

Consider a Base API application with multiple processes or multiple environment handles
that modify databases in the replicated environment. All modifications must be done on the
master environment. The first process to join or create the master environment must call
both the DB_ENV->rep_set_transport() and the DB_ENV->rep_start() method. Subsequent
replication processes must at least call the DB_ENV->rep_set_transport() method. Those
processes may call the DB_ENV->rep_start() method (as long as they use the same master or
client argument). If multiple processes are modifying the master environment there must be
a unified communication infrastructure such that messages arriving at clients have a single
master ID. Additionally the application must be structured so that all incoming messages are
able to be processed by a single DB_ENV handle.

Note that not all processes running in replicated environments need to call DB_ENV-
>repmgr_start(), DB_ENV->rep_set_transport() or DB_ENV->rep_start(). Read-only processes
running in a master environment do not need to be configured for replication in any way.
Processes running in a client environment are read-only by definition, and so do not need
to be configured for replication either (although, in the case of clients that may become
masters, it is usually simplest to configure for replication on process startup rather than trying
to reconfigure when the client becomes a master). Obviously, at least one thread of control
on each client must be configured for replication as messages must be passed between the
master and the client.

Any site in a replication group may have its own private transactional databases
in the environment as well. A site may create a local database by specifying the
DB_TXN_NOT_DURABLE flag to the DB->set_flags() method. The application must never
create a private database with the same name as a database replicated across the entire
environment as data corruption can result.

For implementation reasons, Base API applications must process all incoming replication
messages using the same DB_ENV handle. It is not required that a single thread of control
process all messages, only that all threads of control processing messages use the same
handle.

No additional calls are required to shut down a database environment participating in a
replication group. The application should shut down the environment in the usual manner,
by calling the DB_ENV->close() method. For Replication Manager applications, this also
terminates all network connections and background processing threads.

Replication Manager methods

Applications which use the Replication Manager support generally call the following Berkeley
DB methods. The general pattern is to call various methods to configure Replication Manager,
and then start it by calling DB_ENV->repmgr_start(). Once this initialization is complete,

../api_reference/C/repmgrstart.html
../api_reference/C/repstart.html
../api_reference/C/repelect.html
../api_reference/C/repelect.html
../api_reference/C/reptransport.html
../api_reference/C/repstart.html
../api_reference/C/reptransport.html
../api_reference/C/repstart.html
../api_reference/C/env.html
../api_reference/C/repmgrstart.html
../api_reference/C/repmgrstart.html
../api_reference/C/reptransport.html
../api_reference/C/repstart.html
../api_reference/C/dbset_flags.html#dbset_flags_DB_TXN_NOT_DURABLE
../api_reference/C/dbset_flags.html
../api_reference/C/env.html
../api_reference/C/envclose.html
../api_reference/C/repmgrstart.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 199

the application rarely needs to call any of these methods. (A prime example of an exception
to this rule would be the DB_ENV->rep_sync() method, if the application is Delaying client
synchronization (page 216).)
DB_SITE

The DB_SITE handle is used to configure a site that belongs to the replication group.
You can obtain a DB_SITE handle by calling the DB_ENV->repmgr_site() method. When
you do this, you provide the TCP/IP host name and port that the replication site uses
for incoming connections.

Once you have the DB_SITE handle, you use the DB_SITE->set_config() method to
configure the handle. One of the things you can configure about the handle is whether
it is the local site (using the DB_LOCAL_SITE parameter). You must configure one and
only one DB_SITE handle to be a local site before you start replication.

You can also optionally configure DB_SITE handles for remote sites to help Replication
Manager startup more efficiently. Note that it is usually not necessary for each site
in the replication group initially to know about all other sites in the group. Sites can
discover each other dynamically, as described in Connecting to a new site (page 202).

Once you have configured your DB_SITE handles, you start replication using DB_ENV-
>repmgr_start().

When you are shutting down your application, you must use the DB_SITE->close()
method to close all your open DB_SITE handles before you close your environment
handles.

DB_ENV->repmgr_set_ack_policy()
The DB_ENV->repmgr_set_ack_policy() method configures the acknowledgement
policy to be used in the replication group, in other words, the behavior of the master
with respect to acknowledgements for "permanent" messages, which implements the
application's requirements for Transactional guarantees (page 218). The current
implementation requires all sites in the replication group to configure the same
acknowledgement policy.

DB_ENV->rep_set_priority()
The DB_ENV->rep_set_priority() method configures the local site's priority for the
purpose of elections.

DB_ENV->rep_set_timeout()
This method optionally configures various timeout values. Otherwise default timeout
values as specified in DB_ENV->rep_set_timeout() are used. In particular, Replication
Manager client sites can be configured to monitor the health of the TCP/IP connection
to the master site using heartbeat messages. If the client receives no messages from
the master for a certain amount of time, it considers the connection to be broken,
and calls for an election to choose a new master. Heartbeat messages also help clients
request missing master changes in the absence of master activity.

DB_ENV->set_event_notify()
Once configured and started, Replication Manager does virtually all of its work
in the background, usually without the need for any direct communication with
the application. However, occasionally events occur which the application may be
interested in knowing about. The application can request notification of these events
by calling the DB_ENV->set_event_notify() method.

../api_reference/C/repsync.html
../api_reference/C/db_site.html
../api_reference/C/db_site.html
../api_reference/C/db_site.html
../api_reference/C/repmgr_site.html
../api_reference/C/db_site.html
../api_reference/C/dbsite_set_config.html
../api_reference/C/db_site.html
../api_reference/C/db_site.html
../api_reference/C/db_site.html
../api_reference/C/repmgrstart.html
../api_reference/C/repmgrstart.html
../api_reference/C/dbsite_close.html
../api_reference/C/db_site.html
../api_reference/C/repmgrset_ack_policy.html
../api_reference/C/repmgrset_ack_policy.html
../api_reference/C/reppriority.html
../api_reference/C/reppriority.html
../api_reference/C/repset_timeout.html
../api_reference/C/repset_timeout.html
../api_reference/C/envevent_notify.html
../api_reference/C/envevent_notify.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 200

DB_ENV->repmgr_start()
The DB_ENV->repmgr_start() method starts the replication system. It opens the
listening TCP/IP socket and creates all the background processing threads that will be
needed.

In addition to the methods previously described, Replication Manager applications may also
call the following methods, as needed: DB_ENV->rep_set_config(), DB_ENV->rep_set_limit(),
DB_ENV->rep_set_request(), DB_ENV->rep_sync() and DB_ENV->rep_stat().

Finally, Replication Manager applications can also make use of the Replication Manager's
message channels. This allows the various sites in the replication group to pass messages that
are tailored to the application's requirements. For more information, see Using Replication
Manager message channels (page 228).

Base API Methods

Base API applications use the following Berkeley DB methods.

DB_ENV->rep_set_transport()
The DB_ENV->rep_set_transport() method configures the replication system's
communications infrastructure.

DB_ENV->rep_start()
The DB_ENV->rep_start() method configures (or reconfigures) an existing database
environment to be a replication master or client.

DB_ENV->rep_process_message()
The DB_ENV->rep_process_message() method is used to process incoming messages
from other environments in the replication group. For clients, it is responsible for
accepting log records and updating the local databases based on messages from
the master. For both the master and the clients, it is responsible for handling
administrative functions (for example, the protocol for dealing with lost messages),
and permitting new clients to join an active replication group. This method should
only be called after the replication system's communications infrastructure has been
configured via DB_ENV->rep_set_transport().

DB_ENV->rep_elect()
The DB_ENV->rep_elect() method causes the replication group to elect a new master;
it is called whenever contact with the master is lost and the application wants the
remaining sites to select a new master.

DB_ENV->set_event_notify()
The DB_ENV->set_event_notify() method is needed for applications to discover
important replication-related events, such as the result of an election and
appointment of a new master.

DB_ENV->rep_set_priority()
The DB_ENV->rep_set_priority() method configures the local site's priority for the
purpose of elections.

DB_ENV->rep_set_timeout()
This method optionally configures various timeout values. Otherwise default timeout
values as specified in DB_ENV->rep_set_timeout() are used.

../api_reference/C/repmgrstart.html
../api_reference/C/repmgrstart.html
../api_reference/C/repconfig.html
../api_reference/C/repset_limit.html
../api_reference/C/repset_request.html
../api_reference/C/repsync.html
../api_reference/C/repstat.html
../api_reference/C/reptransport.html
../api_reference/C/reptransport.html
../api_reference/C/repstart.html
../api_reference/C/repstart.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/reptransport.html
../api_reference/C/repelect.html
../api_reference/C/repelect.html
../api_reference/C/envevent_notify.html
../api_reference/C/envevent_notify.html
../api_reference/C/reppriority.html
../api_reference/C/reppriority.html
../api_reference/C/repset_timeout.html
../api_reference/C/repset_timeout.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 201

DB_ENV->rep_set_limit()
The DB_ENV->rep_set_limit() method imposes an upper bound on the amount of data
that will be sent in response to a single call to DB_ENV->rep_process_message().
During client recovery, that is, when a replica site is trying to synchronize with the
master, clients may ask the master for a large number of log records. If it is going
to harm an application for the master message loop to remain busy for an extended
period transmitting records to the replica, then the application will want to use
DB_ENV->rep_set_limit() to limit the amount of data the master will send before
relinquishing control and accepting other messages.

DB_ENV->rep_set_request()
This method sets a threshold for the minimum and maximum time that a client waits
before requesting retransmission of a missing message.

In addition to the methods previously described, Base API applications may also call the
following methods, as needed: DB_ENV->rep_stat(), DB_ENV->rep_sync() and DB_ENV-
>rep_set_config().

Building the communications infrastructure

Replication Manager provides a built-in communications infrastructure.

Base API applications must provide their own communications infrastructure, which is typically
written with one or more threads of control looping on one or more communication channels,
receiving and sending messages. These threads accept messages from remote environments
for the local database environment, and accept messages from the local environment for
remote environments. Messages from remote environments are passed to the local database
environment using the DB_ENV->rep_process_message() method. Messages from the local
environment are passed to the application for transmission using the callback function
specified to the DB_ENV->rep_set_transport() method.

Processes establish communication channels by calling the DB_ENV->rep_set_transport()
method, regardless of whether they are running in client or server environments. This
method specifies the send function, a callback function used by Berkeley DB for sending
messages to other database environments in the replication group. The send function takes an
environment ID and two opaque data objects. It is the responsibility of the send function to
transmit the information in the two data objects to the database environment corresponding
to the ID, with the receiving application then calling the DB_ENV->rep_process_message()
method to process the message.

The details of the transport mechanism are left entirely to the application; the only
requirement is that the data buffer and size of each of the control and rec DBTs passed to the
send function on the sending site be faithfully copied and delivered to the receiving site by
means of a call to DB_ENV->rep_process_message() with corresponding arguments. Messages
that are broadcast (whether by broadcast media or when directed by setting the DB_ENV-
>rep_set_transport() method's envid parameter DB_EID_BROADCAST), should not be processed
by the message sender. In all cases, the application's transport media or software must ensure
that DB_ENV->rep_process_message() is never called with a message intended for a different
database environment or a broadcast message sent from the same environment on which
DB_ENV->rep_process_message() will be called. The DB_ENV->rep_process_message() method

../api_reference/C/repset_limit.html
../api_reference/C/repset_limit.html
../api_reference/C/repmessage.html
../api_reference/C/repset_limit.html
../api_reference/C/repset_request.html
../api_reference/C/repstat.html
../api_reference/C/repsync.html
../api_reference/C/repconfig.html
../api_reference/C/repconfig.html
../api_reference/C/repmessage.html
../api_reference/C/reptransport.html
../api_reference/C/reptransport.html
../api_reference/C/repmessage.html
../api_reference/C/dbt.html
../api_reference/C/repmessage.html
../api_reference/C/reptransport.html
../api_reference/C/reptransport.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 202

is free-threaded; it is safe to deliver any number of messages simultaneously, and from any
arbitrary thread or process in the Berkeley DB environment.

There are a number of informational returns from the DB_ENV->rep_process_message()
method:
DB_REP_DUPMASTER

When DB_ENV->rep_process_message() returns DB_REP_DUPMASTER, it means that
another database environment in the replication group also believes itself to be
the master. The application should complete all active transactions, close all open
database handles, reconfigure itself as a client using the DB_ENV->rep_start() method,
and then call for an election by calling the DB_ENV->rep_elect() method.

DB_REP_HOLDELECTION
When DB_ENV->rep_process_message() returns DB_REP_HOLDELECTION, it means that
another database environment in the replication group has called for an election. The
application should call the DB_ENV->rep_elect() method.

DB_REP_IGNORE
When DB_ENV->rep_process_message() returns DB_REP_IGNORE, it means that this
message cannot be processed. This is normally an indication that this message is
irrelevant to the current replication state, such as a message from an old generation
that arrived late.

DB_REP_ISPERM
When DB_ENV->rep_process_message() returns DB_REP_ISPERM, it means a permanent
record, perhaps a message previously returned as DB_REP_NOTPERM, was successfully
written to disk. This record may have filled a gap in the log record that allowed
additional records to be written. The ret_lsnp contains the maximum LSN of the
permanent records written.

DB_REP_NEWSITE
When DB_ENV->rep_process_message() returns DB_REP_NEWSITE, it means that
a message from a previously unknown member of the replication group has been
received. The application should reconfigure itself as necessary so it is able to send
messages to this site.

DB_REP_NOTPERM
When DB_ENV->rep_process_message() returns DB_REP_NOTPERM, it means a message
marked as DB_REP_PERMANENT was processed successfully but was not written to
disk. This is normally an indication that one or more messages, which should have
arrived before this message, have not yet arrived. This operation will be written to
disk when the missing messages arrive. The ret_lsnp argument will contain the LSN
of this record. The application should take whatever action is deemed necessary to
retain its recoverability characteristics.

Connecting to a new site

To add a new site to the replication group all that is needed is for the client member to join.
Berkeley DB will perform an internal initialization from the master to the client automatically
and will run recovery on the client to bring it up to date with the master.

For Base API applications, connecting to a new site in the replication group happens whenever
the DB_ENV->rep_process_message() method returns DB_REP_NEWSITE. The application should

../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_DUPMASTER
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_DUPMASTER
../api_reference/C/repstart.html
../api_reference/C/repelect.html
../api_reference/C/repmessage.html#repmsg_DB_REP_HOLDELECTION
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_HOLDELECTION
../api_reference/C/repelect.html
../api_reference/C/repmessage.html#repmsg_DB_REP_IGNORE
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_IGNORE
../api_reference/C/repmessage.html#repmsg_DB_REP_ISPERM
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_ISPERM
../api_reference/C/repmessage.html#repmsg_DB_REP_NOTPERM
../api_reference/C/repmessage.html#repmsg_DB_REP_NEWSITE
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_NEWSITE
../api_reference/C/repmessage.html#repmsg_DB_REP_NOTPERM
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_NOTPERM
../api_reference/C/reptransport.html#transport_DB_REP_PERMANENT
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_NEWSITE

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 203

assign the new site a local environment ID number, and all future messages from the site
passed to DB_ENV->rep_process_message() should include that environment ID number. It is
possible, of course, for the application to be aware of a new site before the return of DB_ENV-
>rep_process_message() (for example, applications using connection-oriented protocols are
likely to detect new sites immediately, while applications using broadcast protocols may not).

Regardless, in applications supporting the dynamic addition of database environments to
replication groups, environments joining an existing replication group may need to provide
contact information. (For example, in an application using TCP/IP sockets, a DNS name or IP
address might be a reasonable value to provide.) This can be done using the cdata parameter
to the DB_ENV->rep_start() method. The information referenced by cdata is wrapped in the
initial contact message sent by the new environment, and is provided to the existing members
of the group using the rec parameter returned by DB_ENV->rep_process_message(). If no
additional information was provided for Berkeley DB to forward to the existing members of
the group, the data field of the rec parameter passed to the DB_ENV->rep_process_message()
method will be NULL after DB_ENV->rep_process_message() returns DB_REP_NEWSITE.

Replication Manager automatically distributes contact information using the mechanisms
previously described.

Managing Replication Manager Group Membership

A replication group is a collection of two or more database environments which are configured
to replicate with one another. When operating normally, a replication group consists of a
master site and one or more read-only sites.

For Replication Manager applications, the sites comprising the replication group are recorded
in an internal database, so even if a group member is not available, it counts towards the
group's total site count. This matters for certain replication activities, such as holding
elections and acknowledging replication messages that require some number of sites to
participate in these activities. Replicated applications will often require all sites, or a
majority of sites, to participate before the activity can be completed.

Note

If you are configuring your application to keep replication metadata in-memory by
specifying the DB_REP_CONF_INMEM flag to the DB_ENV->rep_set_config() method,
then the internal database containing group site information is not stored persistently
on disk. This severely limits Replication Manager's ability to automatically manage
group membership. For more information, including some work-arounds, see Managing
Replication Files (page 206).

Because Replication Manager tracks group members, there are some administrative activities
that you should know about when using BDB replication.

Adding Sites to a Replication Group

To add a site to a replication group, you merely start up the site such that it knows where
at least one site in the group is located. The site new site then joins the group. When this
happens, the new site is recorded in the Replication Manager's group member database.

../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/repstart.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_NEWSITE
../api_reference/C/repconfig.html#config_DB_REP_CONF_INMEM
../api_reference/C/repconfig.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 204

Note that when you are starting the very first site in the group for the very first time (called
the primordial start up), there are no other existing sites to help the new site join the group.
In fact, a primordial start up actually creates the group. For this reason, there are some slight
differences on how to perform a primordial start up. For a description of this, see Primordial
Startups (page 205).

When you add a site to a replication group, you use the following general procedure:

• Make sure your replication group is operating well enough that write activity can occur.

• Create and open the environment such that it is configured to use replication.

• Use DB_ENV->repmgr_site() to obtain a DB_SITE handle. Configure this handle for the
local site's host and port information when you create the handle. Then, use DB_SITE-
>set_config() to indicate that this is the local site by setting the DB_LOCAL_SITE parameter.

• Use DB_ENV->repmgr_site() to obtain a second DB_SITE handle. Configure this handle with
the host and port information for a site that already belongs to the replication group.
Then, use DB_SITE->set_config() to indicate this site is a "helper" site by setting the
DB_BOOTSTRAP_HELPER parameter. By configuring a DB_SITE handle in this way, your new
site will know how to contact the replication group so that it can join the group.

• Start replication as normal by configuring an acknowledgement policy, setting the site's
replication priority, and then calling DB_ENV->repmgr_start().

Note that on subsequent start-ups of your replication code, any helper site information
you might provide is ignored because the Replication Manager reads the group membership
database in order to obtain this information.

Also, be aware that if the new site cannot be added to the group for some reason (because
a master site is not available, or because insufficient replicas are running to acknowledge
the new site), the attempt to start the new site via DB_ENV->repmgr_start() will fail and
return DB_REP_UNAVAIL. You can then pause and retry the start up attempt until it completes
successfully.

You must use the exact same host string and port number to refer to a given site throughout
your application and on each of its sites.

Removing Sites from a Replication Group

Elections and message acknowledgements require knowledge of the total number of sites in
the group. If a site is shut down, or is otherwise unable to communicate with the rest of the
group, it still counts towards the total number of sites in the group. In most cases, this is the
desirable behavior.

However, if you are shutting down a site permanently, then you should remove that site from
the group. You might also want to remove a site from the group if you are shutting it down
temporarily, but nevertheless for a very long period of time (days or weeks). In either case,
you remove a site from the group by:

• Make sure your replication group is operating well enough that write activity can occur.

../api_reference/C/repmgr_site.html
../api_reference/C/db_site.html
../api_reference/C/dbsite_set_config.html
../api_reference/C/dbsite_set_config.html
../api_reference/C/repmgr_site.html
../api_reference/C/db_site.html
../api_reference/C/dbsite_set_config.html
../api_reference/C/db_site.html
../api_reference/C/repmgrstart.html
../api_reference/C/repmgrstart.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 205

• On one of the sites in your replication group (this does not have to be the master site), use
DB_ENV->repmgr_site() to obtain a DB_SITE handle. Configure this handle with the host and
port information of the site that you want to remove.

Note that this step can occur at any site — including the site that you are removing from the
group.

• Call the DB_SITE->remove() method. This removes the identified site from the replication
group database. If this action is not performed on the master site, the client sends a
request to the master to perform the operation and awaits confirmation.

Note

Upon completing the above procedure, DO NOT call the DB_SITE->close() method.
After removing (or even attempting to remove) a site from the group using a DB_SITE
handle, the handle must never be accessed again.

Primordial Startups

If you have never started a site in a replication group before, then the replication group
membership database does not exist. In this situation, you must start the site and declare it to
be the group creator. This causes the site to become the master, create the group membership
database, and create a replication group of size 1. After that, subsequent sites can add
themselves to the group as described in Adding Sites to a Replication Group (page 203).

Note

It is never incorrect to declare a site the group creator. This is true even well-after
the replication group has been established. This is because group creator information
is ignored on any site start-up, except for the primoridial start-up; that is, a start-up
where the group membership database does not exist.

To declare a site as the group creator:

• Create and open the environment such that it is configured to use replication.

• Use DB_ENV->repmgr_site() to obtain a DB_SITE handle. Configure this handle for
the local site's host and port information when you create the handle. Then, use
DB_SITE->set_config() to indicate that this is the group creator site by setting the
DB_GROUP_CREATOR parameter.

• Start replication as normal by configuring acknowledgement policies, setting replication
priorities for the site, and then calling DB_ENV->repmgr_start().

Upgrading Groups

Prior to the Berkeley DB 11.2.5.2 release, replication group membership was managed
differently than in the way it is described in the previous sections. For this reason, when you
upgrade from older releases of Berkeley DB to 11.2.5.2 or later, the upgrade procedure is
different than when upgrading between other releases.

../api_reference/C/repmgr_site.html
../api_reference/C/db_site.html
../api_reference/C/dbsite_remove.html
../api_reference/C/dbsite_close.html
../api_reference/C/db_site.html
../api_reference/C/repmgr_site.html
../api_reference/C/db_site.html
../api_reference/C/dbsite_set_config.html
../api_reference/C/repmgrstart.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 206

To perform an upgrade that takes you from the old way of managing group membership to
the new way of managing group membership (pre-11.2.5.2 to 11.2.5.2 and later), do the
following:

• Update your replication code to use the new DB_SITE handle and related methods.
Recompile and thoroughly test your code to make sure it is production-ready.

• Do the following one production machine at a time. Make sure to do this at the master site
LAST.

1. Shut down the old replication code.

2. Install the new replication code.

3. Configure a DB_SITE handle for the local site. Use DB_SITE->set_config() to indicate
that this is a legacy site by setting the DB_LEGACY parameter.

4. Configure a DB_SITE handle for every other site in the replication group. Set the
DB_LEGACY parameter for each of these handles.

Please pay careful attention to this step. To repeat: a DB_SITE handle MUST be
configured for EVERY site in the replication group.

5. Start replication. The site is upgraded at this point.

Once you have performed this procedure for each production site, making sure to upgrade
the master only after every other site has been upgraded, you are done upgrading your
replicated application to use the current group membership mechanism.

On subsequent restarts of your replication code, you do not need to specify the DB_LEGACY
parameter, nor do you need to identify all of the replication group members. However, it is
not an error if you do specify this information on subsequent start ups.

Managing Replication Files

Whether you use the Base API or the Replication Manager, replication creates a set of internal
files that are normally stored on-disk in your environment home directory. These files contain
metadata which is necessary for replication operations, and so you should never delete these
files.

You can cause these files to not be stored on disk, but instead to be held entirely in-memory,
by specifying the DB_REP_CONF_INMEM flag to the DB_ENV->rep_set_config() method. Doing
this can improve your application's data throughput by avoiding the disk I/O associated
with these metadata files. However, in the event that your application is shut down, the
contents of these files are lost. This results in some loss of functionality, including an
increased chance that elections will fail, or that the wrong site will win an election. See the
DB_REP_CONF_INMEM flag description for more information.

Note that turning on DB_REP_CONF_INMEM means that Replication Manager cannot store
group membership changes persistently. This is because Replication Manager stores
group membership information in an internal database, which is held in memory when

../api_reference/C/db_site.html
../api_reference/C/db_site.html
../api_reference/C/dbsite_set_config.html
../api_reference/C/db_site.html
../api_reference/C/db_site.html
../api_reference/C/repconfig.html#config_DB_REP_CONF_INMEM
../api_reference/C/repconfig.html
../api_reference/C/repconfig.html#config_DB_REP_CONF_INMEM
../api_reference/C/repconfig.html#config_DB_REP_CONF_INMEM

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 207

DB_REP_CONF_INMEM is turned on. For this reason, if your Replication Manager application
requires replication metadata to be stored in memory, then you must manually identify all
the sites in your replication group using the DB_LEGACY site configuration attribute. Be aware
that this configuration needs to be made permanent. (Normally, DB_LEGACY is used only on a
temporary basis for the purpose of upgrading old Replication Manager applications.)

Do the following:

1. Shut down all the sites in your replication group.

2. For every site in your replication group:

a. Configure a DB_SITE handle for the local site. Use DB_SITE->set_config() to indicate
that this is a legacy site by setting the DB_LEGACY parameter.

b. Configure a DB_SITE handle for every other site in the replication group. Set the
DB_LEGACY parameter for each of these handles.

Please pay careful attention to this step. To repeat: a DB_SITE handle MUST be
configured for EVERY site in the replication group.

3. Restart all the sites in the replication group.

Alternatively, you can store persistent environment metadata files, including those required
by replication, in a location other than your environment home directory. Doing so can help
improve I/O throughput by placing these files on a spindle that is not being used for other
environment data I/O. You do this using the DB_ENV->set_metadata_dir() method.

Note that you must configure the handling of your environment metadata consistently across
your entire replication group. That is, if you place your replication metadata in-memory on
one site, then it must be placed in-memory on all the sites in the group. Similarly, if you place
your replication metadata files in a non-standard directory location on one site, then they
must be placed in the exact same directory location on all the sites in your group.

Running Replication Manager in multiple processes

Replication Manager supports shared access to a database environment from multiple
processes.

One replication process and multiple subordinate processes

Each site in a replication group has just one network address (TCP/IP host name and
port number). This means that only one process can accept incoming connections. At
least one application process must invoke the DB_ENV->repmgr_start() method to initiate
communications and management of the replication state.

If it is convenient, multiple processes may issue calls to the Replication Manager configuration
methods, and multiple processes may call DB_ENV->repmgr_start(). Replication Manager
automatically opens the TCP/IP listening socket in the first process to do so (we'll call it the
"replication process" here), and ignores this step in any subsequent processes ("subordinate
processes").

../api_reference/C/repconfig.html#config_DB_REP_CONF_INMEM
../api_reference/C/db_site.html
../api_reference/C/dbsite_set_config.html
../api_reference/C/db_site.html
../api_reference/C/db_site.html
../api_reference/C/envset_metadata_dir.html
../api_reference/C/repmgrstart.html
../api_reference/C/repmgrstart.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 208

Persistence of local site network address configuration

The local site network address is stored in shared memory, and remains intact even when (all)
processes close their environment handles gracefully and terminate. A process which opens
an environment handle without running recovery automatically inherits the existing local site
network address configuration. Such a process may not change the local site address (although
it is allowed to redundantly specify a local site configuration matching that which is already in
effect).

In order to change the local site network address, the application must run recovery. The
application can then specify a new local site address before restarting Replication Manager.
The application should also remove the old local site address from the replication group if it is
no longer needed.

Programming considerations

Note that Replication Manager applications must follow all the usual rules for Berkeley
DB multi-threaded and/or multi-process applications, such as ensuring that the recovery
operation occurs single-threaded, only once, before any other thread or processes operate
in the environment. Since Replication Manager creates its own background threads which
operate on the environment, all environment handles must be opened with the DB_THREAD
flag, even if the application is otherwise single-threaded per process.

At the replication master site, each Replication Manager process opens outgoing TCP/IP
connections to all clients in the replication group. It uses these direct connections to send
to clients any log records resulting from update transactions that the process executes. But
all other replication activity —message processing, elections, etc.— takes place only in the
"replication process".

Replication Manager notifies the application of certain events, using the callback function
configured with the DB_ENV->set_event_notify() method. These notifications occur only in the
process where the event itself occurred. Generally this means that most notifications occur
only in the "replication process". Currently the only replication notification that can occur in a
"subordinate process" is DB_EVENT_REP_PERM_FAILED.

It is not supported for a process running Replication Manager to spawn a subprocess.

Handling failure

Multi-process Replication Manager applications should handle failures in a manner consistent
with the rules described in Handling failure in Transactional Data Store applications (page
149). To summarize, there are two ways to handle failure of a process:

1. The simple way is to kill all remaining processes, run recovery, and then restart all
processes from the beginning. But this can be a bit drastic.

2. Using the DB_ENV->failchk() method, it is sometimes possible to leave surviving processes
running, and just restart the failed process.

Multi-process Replication Manager applications using this technique must start a new
process when an old process fails. It is not possible for a "subordinate process" to take
over the duties of a failed "replication process". If the failed process happens to be

../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/envevent_notify.html
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_PERM_FAILED
../api_reference/C/envfailchk.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 209

the replication process, then after a failchk() call the next process to call DB_ENV-
>repmgr_start() will become the new replication process.

Other miscellaneous rules

1. A database environment may not be shared between a Replication Manager application
process and a Base API application process.

2. It is not possible to run multiple Replication Manager processes during mixed-version live
upgrades from Berkeley DB versions prior to 4.8.

Running Replication using the db_replicate Utility

Replication Manager supports shared access to a database environment from multiple
processes. Berkeley DB provides a replication-aware utility, db_replicate, that enables you
to upgrade an existing Transactional Data Store application, as discussed in the Transactional
Data Store introduction (page 148) section, to an HA application with minor modifications.
While the db_replicate utility simplifies the use of replication with a TDS application, you
must still understand replication and its impact on the application.

One Replication Process and Multiple Subordinate Processes

Based on the terminology introduced in the Running Replication Manager in multiple
processes (page 207) section, application processes are "subordinate processes" and the
db_replicate utility is the "primary replication process".

You must consider the following items when planning to use the db_replicate utility in
combination with a TDS application.

• Memory regions
The db_replicate utility requires shared memory access among separate processes, and
therefore cannot be used with DB_PRIVATE.

• Multi-process implications
You must understand and accept all of the TDS implications of multi-process use as specified
in Architecting Transactional Data Store applications (page 150). Special attention should be
paid to the coordination needed for unrelated processes to start up correctly.

• Replication configuration
Several configuration settings are required for replication. You must set the DB_INIT_REP
and DB_THREAD flags for the DB_ENV->open() method. Another required configuration
item is the local address. You identify this by creating a DB_SITE handle and then setting
the DB_LOCAL_SITE parameter using the DB_SITE->set_config() method. You also tell sites
how to contact other sites by creating DB_SITE handles for those sites. Most replication
configuration options start with reasonable defaults, but applications have to customize
at least some of them. You can set all replication related configuration options either
programmatically or in the DB_CONFIG file.

• Starting the application and replication
The db_replicate utility assumes that an environment exists and that the application has
run recovery, if necessary, and created and configured the environment. The startup flow

../api_reference/C/repmgrstart.html
../api_reference/C/repmgrstart.html
../api_reference/C/db_replicate.html
../api_reference/C/db_replicate.html
../api_reference/C/db_replicate.html
../api_reference/C/db_replicate.html
../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html#envopen_DB_INIT_REP
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/envopen.html
../api_reference/C/db_site.html
../api_reference/C/dbsite_set_config.html
../api_reference/C/db_site.html
../api_reference/C/configuration_reference.html
../api_reference/C/db_replicate.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 210

of a typical TDS application may not be the best flow for a replication application and you
must understand the issues involved. For instance, if an application starts, runs recovery,
and performs update operations before starting the db_replicate utility, then if that site
becomes a client when replication starts, those update operations will be rolled back.

• Handling events
Almost all of the replication-specific events are handled by the db_replicate utility process,
and therefore the application process does not see them. If the application needs to know
the information from those replication-specific events, such as role changes, the application
must call the rep_stat() method method. The one replication-specific event the application
can now receive is the DB_EVENT_REP_PERM_FAILED event. See Choosing a Replication
Manager Ack Policy (page 212) for additional information about this event.

• Handling errors
There are some error return values that relate only to replication. Specifically, the
DB_REP_HANDLE_DEAD error should now be handled by the application. Also, if master leases
are in use, then the application also needs to consider the DB_REP_LEASE_EXPIRED error.

• Flexibility tradeoff
You are giving up flexibility for the ease of use of the utility. Application complexity or
requirements may eventually dictate integrating HA calls into the application over using the
db_replicate utility.

• Read-only client application
The application requires additional changes to manage the read-only status when the
application takes on the role of a client.

Common Use Case

This section lists the steps needed to get replication running for a common use case of the
db_replicate utility. The use case presented is an existing TDS application that already has its
environment and databases created and is up and running. At some point, HA is considered
because failover protection or balancing the read load may now be desired.

1. To understand the issues involved in a replication/HA application, see the db_replicate
utility section in the API Reference Guide, the Replication Chapter in the Programmer's
Reference Guide, and the source code of the ex_rep_mgr example program.

2. Make a local hot backup of the current application environment to a new location to use
as a testing area.

3. Add the DB_INIT_REP and DB_THREAD flags (if not already being used) to the application
or the DB_CONFIG file.

4. Modify the DB_CONFIG file to add the necessary replication configuration values. At
a minimum, the local host and port information must be added using the repmgr_site
method parameter. As more sites are added to the group, remote host and port
information can optionally also be added by adding more repmgr_site method parameters
to the DB_CONFIG file file.

5. Rebuild the application and restart it in the current testing directory.

../api_reference/C/db_replicate.html
../api_reference/C/db_replicate.html
../api_reference/C/repstat.html
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_PERM_FAILED
../api_reference/C/db_replicate.html
../api_reference/C/db_replicate.html
../api_reference/C/db_replicate.html
../api_reference/C/rep.html
../api_reference/C/envopen.html#envopen_DB_INIT_REP
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/configuration_reference.html
../api_reference/C/configuration_reference.html
../api_reference/C/repmgr_site_parameter.html
../api_reference/C/repmgr_site_parameter.html
../api_reference/C/configuration_reference.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 211

6. Start the db_replicate utility on the master site with the -M option and any other options
needed such as -h for the home directory. At this point you have a lone master site
running in an environment with no other replicated sites in the group.

7. Optionally, prepare to start a client site by performing a manual hot backup of the
running master environment to initialize a client target directory. While replication can
make its own copy, the hot backup will expedite the synchronization process. Also, if the
application assumes the existence of a database and the client site is started without
data, the application may have errors or incorrectly attempt to create the database.

8. Copy the application to the client target.

9. Modify the client environment's DB_CONFIG file to set the client's local host and port
values and to add remote site information for the master site and any other replication
configuration choices necessary.

10. Start the application on the client. The client application should not update data at this
point, as explained previously.

11. Start the db_replicate utility specifying the client environment's home directory using the
-h option. Omit the -M option in this case, because the utility defaults to starting in the
client role.

Once the initial replication group is established, do not use the -M option with the
db_replicate utility. After the initial start, db_replicate utility assumes the use of elections. If
a site crashes, it should rejoin the group as a client so that it can synchronize with the rest of
the group.

Avoiding Rollback

Depending on how an application is structured, transactional rollback can occur. If this is
possible, then you must make application changes or be prepared for successful transactions
to disappear. Consider a common program flow where the application first creates and opens
the environment with recovery. Then, immediately after that, the application opens up the
databases it expects to use. Often an application will use the DB_CREATE flag so that if the
database does not exist it is created, otherwise the existing one is used automatically. Then
the application begins servicing transactions to write and read data.

When replication is introduced, particularly via the db_replicate utility, the possibility of
rollback exists unless the application takes steps to prevent it. In the situation described
above, if all of the above steps occur before the db_replicate utility process starts, and the
site is started as a client, then all the operations will be rolled back when the site finds the
master. The client site will synchronize with the log and operations on the master site, so
any operations that occurred in the client application before it knew it was a client will be
discarded.

One way to reduce the possibility of rollback is to modify the application so that it only
performs update operations (including creation of a database) if it is the master site. If the
application refrains from updating until it is the master, then it will not perform operations
when it is in the undefined state before replication has been started. The event indicating a
site is master will be delivered to the db_replicate utility process, so the application process
must look for that information via the rep_stat() method. A site that is expecting to perform

../api_reference/C/db_replicate.html
../api_reference/C/configuration_reference.html
../api_reference/C/db_replicate.html
../api_reference/C/db_replicate.html
../api_reference/C/db_replicate.html
../api_reference/C/dbopen.html#open_DB_CREATE
../api_reference/C/db_replicate.html
../api_reference/C/db_replicate.html
../api_reference/C/db_replicate.html
../api_reference/C/repstat.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 212

updates may need to poll via the rep_stat() method to see the state change from an undefined
role to either the master or client role. Similarly, since a client site cannot create a database,
it may need to poll for the database's existence while the client synchronizes with the master
until the database is created at the client site.

When to Consider an Integrated HA Application

The db_replicate utility provides the means to achieve a replicated application quickly.
However, the trade-off for this rapid implementation is that the full flexibility of replication
is not available. Some applications may eventually need to consider integrating directly with
replication rather than using the db_replicate utility if greater flexibility is desired.

One likely reason for considering integration would be the convenience of receiving all
replication-related events in the application process and gaining direct knowledge of such
things as role changes. Using the event callback is cleaner and easier than polling for state
changes via the rep_stat() method.

A second likely reason for integrating replication directly into the application is the multi-
process aspect of the utility program. The developer may find it easier to insert the start of
replication directly into the code once the environment is created, recovered, or opened, and
avoid the scenario where the application is running in the undefined state. Also it may simply
be easier to start the application once than to coordinate different processes and their startup
order in the system.

Choosing a Replication Manager Ack Policy
Replication Manager allows the user to choose from a variety of acknowledgement policies.
There are two characteristics that should be considered when choosing the policy: consistency
and durability. Consistency means making sure some number of clients have applied all
available master transactions. Durability, in this context, means only indicating success
only if enough clients have applied a transaction. The issue of how many is enough depends
on the application's requirements and varies per acknowledgement policy. For example,
DB_REPMGR_ACKS_QUORUM means the data will survive a change in master or a network
partition. In most cases, the number of sites for consistency is equal to the number of sites for
durability. Replication Manager uses the consistency value to decide whether or not to wait
for acknowledgements. Replication manager uses the durability value to decide either the
transaction was successfully processed or that a DB_EVENT_REP_PERM_FAILED event should be
generated.

Replication Manager also strives to give the application the answer and return to the
application as quickly as possible. Therefore, if it knows that the number of sites
connected is insufficient to meet the consistency value, then it does not wait for any
acknowledgements and if it knows that the durability value cannot be met, it returns
DB_EVENT_REP_PERM_FAILED immediately to the user.

With one exception, discussed below, all acknowledgement policies combine the consistency
and durability values. For most policies the primary purpose is the durability of the data. For
example, the DB_REPMGR_ACKS_QUORUM policy ensures that, if successful, the transaction's
data is safe in the event of a network partition so that a majority of the sites in the group
have the data. The DB_REPMGR_ACKS_NONE policy does not consider either consistency
or durability, and it is very fast because it does not wait for any acknowledgements

../api_reference/C/repstat.html
../api_reference/C/db_replicate.html
../api_reference/C/db_replicate.html
../api_reference/C/repstat.html
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_QUORUM
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_PERM_FAILED
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_PERM_FAILED
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_QUORUM
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_NONE

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 213

and it does not ever trigger the DB_EVENT_REP_PERM_FAILED event. Other policies,
DB_REPMGR_ACKS_ALL and DB_REPMGR_ACKS_ALL_PEERS, have a primary purpose of
consistency. These two policies wait for acknowledgements from all (or all electable) sites in
the group.

In the face of failure, however, the DB_REPMGR_ACKS_ALL and DB_REPMGR_ACKS_ALL_PEERS
policies can result in a surprising lack of consistency due to the fact that Replication Manager
strives to give the answer back to the application as fast as it can. So, for example, with
DB_REPMGR_ACKS_ALL, and one site down, Replication Manager knows that disconnected
site can never acknowledge, so it immediately triggers DB_EVENT_REP_PERM_FAILED. An
unfortunate side effect of this policy is that existing, running sites may fall further and further
behind the master if the master site is sending a fast, busy stream of transactions and never
waiting for any site to send an acknowledgement. The master does not wait because the
consistency value cannot be met, and it does trigger the DB_EVENT_REP_PERM_FAILED event
because the durability value cannot be met, but those actions now affect the consistency of
the other running sites.

In order to counteract this unfortunate side effect, the DB_REPMGR_ACKS_ALL_AVAILABLE
acknowledgement policy focuses on the consistency aspect, but also considers durability. This
policy uses all sites for consistency, and a quorum of sites for its decision about durability. As
long as there is a non-zero number of client replicas to send to, the master will wait for all
available sites to acknowledge the transaction. As long as any client site is connected, this
policy will prevent the master from racing ahead if one or more sites is down. On the master,
this policy will then consider the transaction durable if the number of acknowledgements
meets quorum for the group.

The following acknowledgement policies determine durability using acknowledgements
from electable peers only: DB_REPMGR_ACKS_QUORUM, DB_REPMGR_ACKS_ONE_PEER,
DB_REPMGR_ACKS_ALL_PEERS. An electable peer is a site where the priority value is greater
than zero. In replication groups using these policies, an unelectable site does not send
acknowledgements and cannot contribute to transaction durability.

Elections

Replication Manager automatically conducts elections when necessary, based on configuration
information supplied to the DB_ENV->rep_set_priority() method, unless the application turns
off automatic elections using the DB_ENV->rep_set_config() method.

It is the responsibility of a Base API application to initiate elections if desired. It is never
dangerous to hold an election, as the Berkeley DB election process ensures there is never
more than a single master database environment. Clients should initiate an election
whenever they lose contact with the master environment, whenever they see a return of
DB_REP_HOLDELECTION from the DB_ENV->rep_process_message() method, or when, for
whatever reason, they do not know who the master is. It is not necessary for applications to
immediately hold elections when they start, as any existing master will be discovered after
calling DB_ENV->rep_start(). If no master has been found after a short wait period, then the
application should call for an election.

For a client to win an election, the replication group must currently have no master, and the
client must have the most recent log records. In the case of clients having equivalent log

../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_PERM_FAILED
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_ALL
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_ALL_PEERS
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_ALL
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_ALL_PEERS
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_ALL
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_PERM_FAILED
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_PERM_FAILED
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_ALL_AVAILABLE
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_QUORUM
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_ONE_PEER
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_ALL_PEERS
../api_reference/C/reppriority.html
../api_reference/C/repconfig.html
../api_reference/C/repmessage.html#repmsg_DB_REP_HOLDELECTION
../api_reference/C/repmessage.html
../api_reference/C/repstart.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 214

records, the priority of the database environments participating in the election will determine
the winner. The application specifies the minimum number of replication group members that
must participate in an election for a winner to be declared. We recommend at least ((N/2) +
1) members. If fewer than the simple majority are specified, a warning will be given.

If an application's policy for what site should win an election can be parameterized in
terms of the database environment's information (that is, the number of sites, available
log records and a relative priority are all that matter), then Berkeley DB can handle all
elections transparently. However, there are cases where the application has more complete
knowledge and needs to affect the outcome of elections. For example, applications may
choose to handle master selection, explicitly designating master and client sites. Applications
in these cases may never need to call for an election. Alternatively, applications may choose
to use DB_ENV->rep_elect()'s arguments to force the correct outcome to an election. That
is, if an application has three sites, A, B, and C, and after a failure of C determines that A
must become the winner, the application can guarantee an election's outcome by specifying
priorities appropriately after an election:

on A: priority 100, nsites 2
on B: priority 0, nsites 2

It is dangerous to configure more than one master environment using the DB_ENV->rep_start()
method, and applications should be careful not to do so. Applications should only configure
themselves as the master environment if they are the only possible master, or if they
have won an election. An application knows it has won an election when it receives the
DB_EVENT_REP_ELECTED event.

Normally, when a master failure is detected it is desired that an election finish quickly so
the application can continue to service updates. Also, participating sites are already up and
can participate. However, in the case of restarting a whole group after an administrative
shutdown, it is possible that a slower booting site had later logs than any other site. To cover
that case, an application would like to give the election more time to ensure all sites have a
chance to participate. Since it is intractable for a starting site to determine which case the
whole group is in, the use of a long timeout gives all sites a reasonable chance to participate.
If an application wanting full participation sets the DB_ENV->rep_elect() method's nvotes
argument to the number of sites in the group and one site does not reboot, a master can
never be elected without manual intervention.

In those cases, the desired action at a group level is to hold a full election if all sites crashed
and a majority election if a subset of sites crashed or rebooted. Since an individual site
cannot know which number of votes to require, a mechanism is available to accomplish
this using timeouts. By setting a long timeout (perhaps on the order of minutes) using the
DB_REP_FULL_ELECTION_TIMEOUT flag to the DB_ENV->rep_set_timeout() method, an
application can allow Berkeley DB to elect a master even without full participation. Sites
may also want to set a normal election timeout for majority based elections using the
DB_REP_ELECTION_TIMEOUT flag to the DB_ENV->rep_set_timeout() method.

Consider 3 sites, A, B, and C where A is the master. In the case where all three sites crash and
all reboot, all sites will set a timeout for a full election, say 10 minutes, but only require a
majority for nvotes to the DB_ENV->rep_elect() method. Once all three sites are booted the
election will complete immediately if they reboot within 10 minutes of each other. Consider
if all three sites crash and only two reboot. The two sites will enter the election, but after

../api_reference/C/repelect.html
../api_reference/C/repstart.html
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_ELECTED
../api_reference/C/repelect.html
../api_reference/C/repset_timeout.html
../api_reference/C/repset_timeout.html
../api_reference/C/repelect.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 215

the 10 minute timeout they will elect with the majority of two sites. Using the full election
timeout sets a threshold for allowing a site to reboot and rejoin the group.

To add a database environment to the replication group with the intent of it becoming the
master, first add it as a client. Since it may be out-of-date with respect to the current master,
allow it to update itself from the current master. Then, shut the current master down.
Presumably, the added client will win the subsequent election. If the client does not win the
election, it is likely that it was not given sufficient time to update itself with respect to the
current master.

If a client is unable to find a master or win an election, it means that the network has been
partitioned and there are not enough environments participating in the election for one of the
participants to win. In this case, the application should repeatedly call DB_ENV->rep_start()
and DB_ENV->rep_elect(), alternating between attempting to discover an existing master, and
holding an election to declare a new one. In desperate circumstances, an application could
simply declare itself the master by calling DB_ENV->rep_start(), or by reducing the number of
participants required to win an election until the election is won. Neither of these solutions
is recommended: in the case of a network partition, either of these choices can result in
there being two masters in one replication group, and the databases in the environment might
irretrievably diverge as they are modified in different ways by the masters.

Note that this presents a special problem for a replication group consisting of only two
environments. If a master site fails, the remaining client can never comprise a majority of
sites in the group. If the client application can reach a remote network site, or some other
external tie-breaker, it may be able to determine whether it is safe to declare itself master.
Otherwise it must choose between providing availability of a writable master (at the risk
of duplicate masters), or strict protection against duplicate masters (but no master when
a failure occurs). Replication Manager offers this choice via the DB_ENV->rep_set_config()
method DB_REPMGR_CONF_2SITE_STRICT flag. Base API applications can accomplish this by
judicious setting of the nvotes and nsites parameters to the DB_ENV->rep_elect() method.

It is possible for a less-preferred database environment to win an election if a number of
systems crash at the same time. Because an election winner is declared as soon as enough
environments participate in the election, the environment on a slow booting but well-
connected machine might lose to an environment on a badly connected but faster booting
machine. In the case of a number of environments crashing at the same time (for example,
a set of replicated servers in a single machine room), applications should bring the database
environments on line as clients initially (which will allow them to process read queries
immediately), and then hold an election after sufficient time has passed for the slower
booting machines to catch up.

If, for any reason, a less-preferred database environment becomes the master, it is possible
to switch masters in a replicated environment. For example, the preferred master crashes,
and one of the replication group clients becomes the group master. In order to restore the
preferred master to master status, take the following steps:

1. The preferred master should reboot and re-join the replication group as a client.

2. Once the preferred master has caught up with the replication group, the application on
the current master should complete all active transactions and reconfigure itself as a
client using the DB_ENV->rep_start() method.

../api_reference/C/repstart.html
../api_reference/C/repelect.html
../api_reference/C/repstart.html
../api_reference/C/repconfig.html
../api_reference/C/repconfig.html#config_DB_REPMGR_CONF_2SITE_STRICT
../api_reference/C/repelect.html
../api_reference/C/repstart.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 216

3. Then, the current or preferred master should call for an election using the DB_ENV-
>rep_elect() method.

Synchronizing with a master

When a client detects a new replication group master, the client must synchronize with
the new master before the client can process new database changes. Synchronizing is a
heavyweight operation which can place a burden on both the client and the master. There are
several controls an application can use to reduce the synchronization burden.

Delaying client synchronization

When a replication group has a new master, either as specified by the application or as
a result of winning an election, all clients in the replication group must synchronize with
the new master. This can strain the resources of the new master since a large number of
clients may be attempting to communicate with and transfer records from the master. Client
applications wanting to delay client synchronization should call the DB_ENV->rep_set_config()
method with the DB_REP_CONF_DELAYCLIENT flag. The application will be notified of the
establishment of the new master as usual, but the client will not proceed to synchronize with
the new master.

Applications learn of a new master via the DB_EVENT_REP_NEWMASTER event.

Client applications choosing to delay synchronization in this manner are responsible for
synchronizing the client environment at some future time using the DB_ENV->rep_sync()
method.

Client-to-client synchronization

Instead of synchronizing with the new master, it is sometimes possible for a client to
synchronize with another client. Berkeley DB initiates synchronization at the client by sending
a request message via the transport call-back function of the communication infrastructure.
The message is destined for the master site, but is also marked with a DB_REP_ANYWHERE
flag. The application may choose to send such a request to another client, or to ignore the
flag, sending it to its indicated destination.

Furthermore, when the other client receives such a request it may be unable to satisfy it.
In this case it will reply to the requesting client, telling it that it is unable to provide the
requested information. The requesting client will then re-issue the request. Additionally, if
the original request never reaches the other client, the requesting client will again re-issue
the request. In either of these cases the message will be marked with the DB_REP_REREQUEST
flag. The application may continue trying to find another client to service the request, or it
may give up and simply send it to the master (that is, the environment ID explicitly specified
to the transport function).

Replication Manager allows an application to designate one or more remote sites (called
its "peers") to receive client-to-client requests. You do this by setting the DB_REPMGR_PEER
parameter using the DB_SITE->set_config() method. Replication Manager always tries to send
requests marked with the DB_REP_ANYWHERE flag to a peer, if available. However, it always
sends a DB_REP_REREQUEST to the master site.

../api_reference/C/repelect.html
../api_reference/C/repelect.html
../api_reference/C/repconfig.html
../api_reference/C/repconfig.html#config_DB_REP_CONF_DELAYCLIENT
../api_reference/C/envevent_notify.html#event_notify_DB_EVENT_REP_NEWMASTER
../api_reference/C/repsync.html
../api_reference/C/reptransport.html#transport_DB_REP_ANYWHERE
../api_reference/C/reptransport.html#transport_DB_REP_REREQUEST
../api_reference/C/dbsite_set_config.html
../api_reference/C/reptransport.html#transport_DB_REP_ANYWHERE
../api_reference/C/reptransport.html#transport_DB_REP_REREQUEST

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 217

Base API applications have complete freedom in choosing where to send these
DB_REP_ANYWHERE requests, and in deciding how to handle DB_REP_REREQUEST.

The delayed synchronization and client-to-client synchronization features allow applications
to do load balancing within replication groups. For example, consider a replication group
with 5 sites, A, B, C, D and E. Site E just crashed, and site A was elected master. Sites C
and D have been configured for delayed synchronization. When site B is notified that site
A is a new master, it immediately synchronizes. When B finishes synchronizing with the
master, the application calls the DB_ENV->rep_sync() method on sites C and D to cause
them to synchronize as well. Sites C and D (and E, when it has finished rebooting) can send
their requests to site B, and B then bears the brunt of the work and network traffic for
synchronization, making master site A available to handle the normal application load and any
write requests paused by the election.

Blocked client operations

Clients in the process of synchronizing with the master block access to Berkeley DB operations
during some parts of that process. By default, most Berkeley DB methods will block until client
synchronization is complete, and then the method call proceeds.

Client applications which cannot wait and would prefer an immediate error return instead of
blocking, should call the DB_ENV->rep_set_config() method with the DB_REP_CONF_NOWAIT
flag. This configuration causes DB method calls to immediately return a DB_REP_LOCKOUT
error instead of blocking, if the client is currently synchronizing with the master.

Clients too far out-of-date to synchronize

Clients attempting to synchronize with the master may discover that synchronization is not
possible because the client no longer has any overlapping information with the master site.
By default, the master and client automatically detect this state and perform an internal
initialization of the client. Because internal initialization requires transfer of entire databases
to the client, it can take a relatively long period of time and may require database handles to
be reopened in the client applications.

Client applications which cannot wait or would prefer to do a hot backup instead of
performing internal initialization, should call the DB_ENV->rep_set_config() method to turn
off the DB_REP_CONF_AUTOINIT flag. Turning off this configuration flag causes Berkeley DB to
return DB_REP_JOIN_FAILURE to the application instead of performing internal initialization.

Initializing a new site

By default, adding a new site to a replication group only requires the client to join. Berkeley
DB will automatically perform internal initialization from the master to the client, bringing
the client into sync with the master.

However, depending on the network and infrastructure, it can be advantageous in a few
instances to use a "hot backup" to initialize a client into a replication group. Clients
not wanting to automatically perform internal initialization should call the DB_ENV-
>rep_set_config() method to turn off the DB_REP_CONF_AUTOINIT flag. Turning off this
configuration flag causes Berkeley DB to return DB_REP_JOIN_FAILURE to the application's
DB_ENV->rep_process_message() method instead of performing internal initialization.

../api_reference/C/reptransport.html#transport_DB_REP_ANYWHERE
../api_reference/C/reptransport.html#transport_DB_REP_REREQUEST
../api_reference/C/repsync.html
../api_reference/C/repconfig.html
../api_reference/C/repconfig.html#config_DB_REP_CONF_NOWAIT
../api_reference/C/db.html
../api_reference/C/dbput.html#dbput_DB_REP_LOCKOUT
../api_reference/C/repconfig.html
../api_reference/C/repconfig.html#config_DB_REP_CONF_AUTOINIT
../api_reference/C/repmessage.html#repmsg_DB_REP_JOIN_FAILURE
../api_reference/C/repconfig.html
../api_reference/C/repconfig.html
../api_reference/C/repconfig.html#config_DB_REP_CONF_AUTOINIT
../api_reference/C/repmessage.html#repmsg_DB_REP_JOIN_FAILURE
../api_reference/C/repmessage.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 218

To use a hot backup to initialize a client into a replication group, perform the following steps:

1. Do an archival backup of the master's environment, as described in Database and log file
archival (page 177). The backup can either be a conventional backup or a hot backup.

2. Copy the archival backup into a clean environment directory on the client.

3. Run catastrophic recovery on the client's new environment, as described in Recovery
procedures (page 181).

4. Reconfigure and reopen the environment as a client member of the replication group.

If copying the backup to the client takes a long time relative to the frequency with which log
files are reclaimed using the db_archive utility or the DB_ENV->log_archive() method, it may
be necessary to suppress log reclamation until the newly restarted client has "caught up" and
applied all log records generated during its downtime.

As with any Berkeley DB application, the database environment must be in a consistent state
at application startup. This is most easily assured by running recovery at startup time in one
thread or process; it is harmless to do this on both clients and masters even when not strictly
necessary.

Bulk transfer

Sites in a replication group may be configured to use bulk transfer by calling the DB_ENV-
>rep_set_config() method with the DB_REP_CONF_BULK flag. When configured for bulk
transfer, sites will accumulate records in a buffer and transfer them to another site in a
single network transfer. Configuring bulk transfer makes sense for master sites, of course.
Additionally, applications using client-to-client synchronization may find it helpful to configure
bulk transfer for client sites as well.

When a master is generating new log records, or any information request is made of a master,
and bulk transfer has been configured, records will accumulate in a bulk buffer. The bulk
buffer will be sent to the client if either the buffer is full or if a permanent record (for
example, a transaction commit or checkpoint record) is queued for the client.

When a client is responding to another client's request for information, and bulk transfer has
been configured, records will accumulate in a bulk buffer. The bulk buffer will be sent to the
client when the buffer is full or when the client's request has been satisfied; no particular
type of record will cause the buffer to be sent.

The size of the bulk buffer itself is internally determined and cannot be configured. However,
the overall size of a transfer may be limited using the DB_ENV->rep_set_limit() method.

Transactional guarantees

It is important to consider replication in the context of the overall database environment's
transactional guarantees. To briefly review, transactional guarantees in a non-replicated
application are based on the writing of log file records to "stable storage", usually a disk
drive. If the application or system then fails, the Berkeley DB logging information is reviewed
during recovery, and the databases are updated so that all changes made as part of committed

../api_reference/C/db_archive.html
../api_reference/C/logarchive.html
../api_reference/C/repconfig.html
../api_reference/C/repconfig.html
../api_reference/C/repconfig.html#config_DB_REP_CONF_BULK
../api_reference/C/repset_limit.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 219

transactions appear, and all changes made as part of uncommitted transactions do not appear.
In this case, no information will have been lost.

If a database environment does not require the log be flushed to stable storage on transaction
commit (using the DB_TXN_NOSYNC flag to increase performance at the cost of sacrificing
transactional durability), Berkeley DB recovery will only be able to restore the system to the
state of the last commit found on stable storage. In this case, information may have been
lost (for example, the changes made by some committed transactions may not appear in the
databases after recovery).

Further, if there is database or log file loss or corruption (for example, if a disk drive fails),
then catastrophic recovery is necessary, and Berkeley DB recovery will only be able to restore
the system to the state of the last archived log file. In this case, information may also have
been lost.

Replicating the database environment extends this model, by adding a new component to
"stable storage": the client's replicated information. If a database environment is replicated,
there is no lost information in the case of database or log file loss, because the replicated
system can be configured to contain a complete set of databases and log records up to the
point of failure. A database environment that loses a disk drive can have the drive replaced,
and it can then rejoin the replication group.

Because of this new component of stable storage, specifying DB_TXN_NOSYNC in a replicated
environment no longer sacrifices durability, as long as one or more clients have acknowledged
receipt of the messages sent by the master. Since network connections are often faster than
local synchronous disk writes, replication becomes a way for applications to significantly
improve their performance as well as their reliability.

The return status from the application's send function must be set by the application to
ensure the transactional guarantees the application wants to provide. Whenever the send
function returns failure, the local database environment's log is flushed as necessary to
ensure that any information critical to database integrity is not lost. Because this flush is an
expensive operation in terms of database performance, applications should avoid returning an
error from the send function, if at all possible.

The only interesting message type for replication transactional guarantees is when the
application's send function was called with the DB_REP_PERMANENT flag specified. There is
no reason for the send function to ever return failure unless the DB_REP_PERMANENT flag was
specified -- messages without the DB_REP_PERMANENT flag do not make visible changes to
databases, and the send function can return success to Berkeley DB as soon as the message
has been sent to the client(s) or even just copied to local application memory in preparation
for being sent.

When a client receives a DB_REP_PERMANENT message, the client will flush its log to
stable storage before returning (unless the client environment has been configured with
the DB_TXN_NOSYNC option). If the client is unable to flush a complete transactional
record to disk for any reason (for example, there is a missing log record before the flagged
message), the call to the DB_ENV->rep_process_message() method on the client will return
DB_REP_NOTPERM and return the LSN of this record to the application in the ret_lsnp
parameter. The application's client or master message handling loops should take proper
action to ensure the correct transactional guarantees in this case. When missing records arrive

../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/reptransport.html#transport_DB_REP_PERMANENT
../api_reference/C/reptransport.html#transport_DB_REP_PERMANENT
../api_reference/C/reptransport.html#transport_DB_REP_PERMANENT
../api_reference/C/reptransport.html#transport_DB_REP_PERMANENT
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_NOTPERM

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 220

and allow subsequent processing of previously stored permanent records, the call to the
DB_ENV->rep_process_message() method on the client will return DB_REP_ISPERM and return
the largest LSN of the permanent records that were flushed to disk. Client applications can
use these LSNs to know definitively if any particular LSN is permanently stored or not.

An application relying on a client's ability to become a master and guarantee that no data
has been lost will need to write the send function to return an error whenever it cannot
guarantee the site that will win the next election has the record. Applications not requiring
this level of transactional guarantees need not have the send function return failure (unless
the master's database environment has been configured with DB_TXN_NOSYNC), as any
information critical to database integrity has already been flushed to the local log before send
was called.

To sum up, the only reason for the send function to return failure is when the master database
environment has been configured to not synchronously flush the log on transaction commit
(that is, DB_TXN_NOSYNC was configured on the master), the DB_REP_PERMANENT flag
is specified for the message, and the send function was unable to determine that some
number of clients have received the current message (and all messages preceding the current
message). How many clients need to receive the message before the send function can return
success is an application choice (and may not depend as much on a specific number of clients
reporting success as one or more geographically distributed clients).

If, however, the application does require on-disk durability on the master, the master should
be configured to synchronously flush the log on commit. If clients are not configured to
synchronously flush the log, that is, if a client is running with DB_TXN_NOSYNC configured,
then it is up to the application to reconfigure that client appropriately when it becomes
a master. That is, the application must explicitly call DB_ENV->set_flags() to disable
asynchronous log flushing as part of re-configuring the client as the new master.

Of course, it is important to ensure that the replicated master and client environments are
truly independent of each other. For example, it does not help matters that a client has
acknowledged receipt of a message if both master and clients are on the same power supply,
as the failure of the power supply will still potentially lose information.

Configuring your replication-based application to achieve the proper mix of performance and
transactional guarantees can be complex. In brief, there are a few controls an application
can set to configure the guarantees it makes: specification of DB_TXN_NOSYNC for the master
environment, specification of DB_TXN_NOSYNC for the client environment, the priorities
of different sites participating in an election, and the behavior of the application's send
function.

Applications using Replication Manager are free to use DB_TXN_NOSYNC at the master and/or
clients as they see fit. The behavior of the send function that Replication Manager provides
on the application's behalf is determined by an "acknowledgement policy", which is configured
by the DB_ENV->repmgr_set_ack_policy() method. Clients always send acknowledgements
for DB_REP_PERMANENT messages (unless the acknowledgement policy in effect indicates
that the master doesn't care about them). For a DB_REP_PERMANENT message, the master
blocks the sending thread until either it receives the proper number of acknowledgements,
or the DB_REP_ACK_TIMEOUT expires. In the case of timeout, Replication Manager returns an
error code from the send function, causing Berkeley DB to flush the transaction log before
returning to the application, as previously described. The default acknowledgement policy

../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_ISPERM
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/reptransport.html#transport_DB_REP_PERMANENT
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/repmgrset_ack_policy.html
../api_reference/C/reptransport.html#transport_DB_REP_PERMANENT
../api_reference/C/reptransport.html#transport_DB_REP_PERMANENT
../api_reference/C/repset_timeout.html#set_timeout_DB_REP_ACK_TIMEOUT

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 221

is DB_REPMGR_ACKS_QUORUM, which ensures that the effect of a permanent record remains
durable following an election.

First, it is rarely useful to write and synchronously flush the log when a transaction commits
on a replication client. It may be useful where systems share resources and multiple systems
commonly fail at the same time. By default, all Berkeley DB database environments,
whether master or client, synchronously flush the log on transaction commit or prepare.
Generally, replication masters and clients turn log flush off for transaction commit using the
DB_TXN_NOSYNC flag.

Consider two systems connected by a network interface. One acts as the master, the other
as a read-only client. The client takes over as master if the master crashes and the master
rejoins the replication group after such a failure. Both master and client are configured to not
synchronously flush the log on transaction commit (that is, DB_TXN_NOSYNC was configured on
both systems). The application's send function never returns failure to the Berkeley DB library,
simply forwarding messages to the client (perhaps over a broadcast mechanism), and always
returning success. On the client, any DB_REP_NOTPERM returns from the client's DB_ENV-
>rep_process_message() method are ignored, as well. This system configuration has excellent
performance, but may lose data in some failure modes.

If both the master and the client crash at once, it is possible to lose committed transactions,
that is, transactional durability is not being maintained. Reliability can be increased by
providing separate power supplies for the systems and placing them in separate physical
locations.

If the connection between the two machines fails (or just some number of messages are lost),
and subsequently the master crashes, it is possible to lose committed transactions. Again,
transactional durability is not being maintained. Reliability can be improved in a couple of
ways:

1. Use a reliable network protocol (for example, TCP/IP instead of UDP).

2. Increase the number of clients and network paths to make it less likely that a message
will be lost. In this case, it is important to also make sure a client that did receive the
message wins any subsequent election. If a client that did not receive the message wins a
subsequent election, data can still be lost.

Further, systems may want to guarantee message delivery to the client(s) (for example, to
prevent a network connection from simply discarding messages). Some systems may want
to ensure clients never return out-of-date information, that is, once a transaction commit
returns success on the master, no client will return old information to a read-only query. Some
of the following changes to a Base API application may be used to address these issues:

1. Write the application's send function to not return to Berkeley DB until one or more
clients have acknowledged receipt of the message. The number of clients chosen will be
dependent on the application: you will want to consider likely network partitions (ensure
that a client at each physical site receives the message) and geographical diversity
(ensure that a client on each coast receives the message).

2. Write the client's message processing loop to not acknowledge receipt of the
message until a call to the DB_ENV->rep_process_message() method has returned

../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_QUORUM
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/repmessage.html#repmsg_DB_REP_NOTPERM
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 222

success. Messages resulting in a return of DB_REP_NOTPERM from the DB_ENV-
>rep_process_message() method mean the message could not be flushed to the client's
disk. If the client does not acknowledge receipt of such messages to the master until a
subsequent call to the DB_ENV->rep_process_message() method returns DB_REP_ISPERM
and the LSN returned is at least as large as this message's LSN, then the master's send
function will not return success to the Berkeley DB library. This means the thread
committing the transaction on the master will not be allowed to proceed based on the
transaction having committed until the selected set of clients have received the message
and consider it complete.

Alternatively, the client's message processing loop could acknowledge the message to the
master, but with an error code indicating that the application's send function should not
return to the Berkeley DB library until a subsequent acknowledgement from the same
client indicates success.

The application send callback function invoked by Berkeley DB contains an LSN of the
record being sent (if appropriate for that record). When DB_ENV->rep_process_message()
method returns indicators that a permanent record has been written then it also returns
the maximum LSN of the permanent record written.

There is one final pair of failure scenarios to consider. First, it is not possible to abort
transactions after the application's send function has been called, as the master may have
already written the commit log records to disk, and so abort is no longer an option. Second, a
related problem is that even though the master will attempt to flush the local log if the send
function returns failure, that flush may fail (for example, when the local disk is full). Again,
the transaction cannot be aborted as one or more clients may have committed the transaction
even if send returns failure. Rare applications may not be able to tolerate these unlikely
failure modes. In that case the application may want to:

1. Configure the master to do always local synchronous commits (turning off the
DB_TXN_NOSYNC configuration). This will decrease performance significantly, of course
(one of the reasons to use replication is to avoid local disk writes.) In this configuration,
failure to write the local log will cause the transaction to abort in all cases.

2. Do not return from the application's send function under any conditions, until the
selected set of clients has acknowledged the message. Until the send function returns
to the Berkeley DB library, the thread committing the transaction on the master will
wait, and so no application will be able to act on the knowledge that the transaction has
committed.

Master Leases

Some applications have strict requirements about the consistency of data read on a master
site. Berkeley DB provides a mechanism called master leases to provide such consistency.
Without master leases, it is sometimes possible for Berkeley DB to return old data to an
application when newer data is available due to unfortunate scheduling as illustrated below:

1. Application on master site: Read data item foo via Berkeley DB DB->get() or DBC->get()
call.

2. Application on master site: sleep, get descheduled, etc.

../api_reference/C/repmessage.html#repmsg_DB_REP_NOTPERM
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html#repmsg_DB_REP_ISPERM
../api_reference/C/repmessage.html
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/dbget.html
../api_reference/C/dbcget.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 223

3. System: Master changes role, becomes a client.

4. System: New site is elected master.

5. System: New master modifies data item foo.

6. Application: Berkeley DB returns old data for foo to application.

By using master leases, Berkeley DB can provide guarantees about the consistency of data
read on a master site. The master site can be considered a recognized authority for the data
and consequently can provide authoritative reads. Clients grant master leases to a master
site. By doing so, clients acknowledge the right of that site to retain the role of master for a
period of time. During that period of time, clients cannot elect a new master, become master,
nor grant their lease to another site.

By holding a collection of granted leases, a master site can guarantee to the application that
the data returned is the current, authoritative value. As a master performs operations, it
continually requests updated grants from the clients. When a read operation is required, the
master guarantees that it holds a valid collection of lease grants from clients before returning
data to the application. By holding leases, Berkeley DB provides several guarantees to the
application:

1. Authoritative reads: A guarantee that the data being read by the application is the
current value.

2. Durability from rollback: A guarantee that the data being written or read by the
application is permanent across a majority of client sites and will never be rolled back.

The rollback guarantee also depends on the DB_TXN_NOSYNC flag. The guarantee is
effective as long as there isn't total replication group failure while clients have granted
leases but are holding the updates in their cache. The application must weigh the
performance impact of synchronous transactions against the risk of total replication group
failure. If clients grant a lease while holding updated data in cache, and total failure
occurs, then the data is no longer present on the clients and rollback can occur if the
master also crashes.

The guarantee that data will not be rolled back applies only to data successfully
committed on a master. Data read on a client, or read while ignoring leases can be rolled
back.

3. Freshness: A guarantee that the data being read by the application on the master is up-
to-date and has not been modified or removed during the read.

The read authority is only on the master. Read operations on a client always ignore leases
and consequently, these operations can return stale data.

4. Master viability: A guarantee that a current master with valid leases cannot encounter a
duplicate master situation.

Leases remove the possibility of a duplicate master situation that forces the current
master to downgrade to a client. However, it is still possible that old masters with expired
leases can discover a later master and return DB_REP_DUPMASTER to the application.

../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/repmessage.html#repmsg_DB_REP_DUPMASTER

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 224

There are several requirements of the application using leases:

1. Replication Manager applications must configure a majority (or larger) acknowledgement
policy via the DB_ENV->repmgr_set_ack_policy() method. Base API applications must
implement and enforce such a policy on their own.

2. Base API applications must return an error from the send callback function when the
majority acknowledgement policy is not met for permanent records marked with
DB_REP_PERMANENT. Note that the Replication Manager automatically fulfills this
requirement.

3. Base API applications must set the number of sites in the group using the DB_ENV-
>rep_set_nsites() method before starting replication and cannot change it during
operation.

4. Using leases in a replication group is all or none. Behavior is undefined when some sites
configure leases and others do not. Use the DB_ENV->rep_set_config() method to turn on
leases.

5. The configured lease timeout value must be the same on all sites in a replication group,
set via the DB_ENV->rep_set_timeout() method.

6. The configured clock_scale_factor value must be the same on all sites in a
replication group. This value defaults to no skew, but can be set via the DB_ENV-
>rep_set_clockskew() method.

7. Applications that care about read guarantees must perform all read operations on the
master. Reading on a client does not guarantee freshness.

8. The application must use elections to choose a master site. It must never simply declare a
master without having won an election (as is allowed without Master Leases).

Master leases are based on timeouts. Berkeley DB assumes that time always runs forward.
Users who change the system clock on either client or master sites when leases are in use void
all guarantees and can get undefined behavior. See the DB_ENV->rep_set_timeout() method
for more information.

Applications using master leases should be prepared to handle DB_REP_LEASE_EXPIRED errors
from read operations on a master and from the DB_TXN->commit() method.

Read operations on a master that should not be subject to leases can use the
DB_IGNORE_LEASE flag to the DB->get() method. Read operations on a client always imply
leases are ignored.

Master lease checks cannot succeed until a majority of sites have completed client
synchronization. Read operations on a master performed before this condition is met can use
the DB_IGNORE_LEASE flag to avoid errors.

Clients are forbidden from participating in elections while they have an outstanding lease
granted to a master. Therefore, if the DB_ENV->rep_elect() method is called, then Berkeley
DB will block, waiting until its lease grant expires before participating in any election. While it

../api_reference/C/repmgrset_ack_policy.html
../api_reference/C/reptransport.html#transport_DB_REP_PERMANENT
../api_reference/C/repnsites.html
../api_reference/C/repnsites.html
../api_reference/C/repconfig.html
../api_reference/C/repset_timeout.html
../api_reference/C/repclockskew.html
../api_reference/C/repclockskew.html
../api_reference/C/repset_timeout.html
../api_reference/C/txncommit.html
../api_reference/C/dbget.html#get_DB_IGNORE_LEASE
../api_reference/C/dbget.html
../api_reference/C/dbget.html#get_DB_IGNORE_LEASE
../api_reference/C/repelect.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 225

waits, the client attempts to contact the current master. If the client finds a current master,
then it returns from the DB_ENV->rep_elect() method. When leases are configured and the
lease has never yet been granted (on start-up), clients must wait a full lease timeout before
participating in an election.

Changing Group Size

If you are using master leases and you change the size of your replication group, there is a
remote possibility that you can lose some data previously thought to be durable. This is only
true for users of the Base API.

The problem can arise if you are removing sites from your replication group. (You might be
increasing the size of your site overall, but if you remove all of the wrong sites you can lose
data.)

Suppose you have a replication group with five sites; A, B, C, D and E; and you are using a
quorum acknowledgement policy. Then:

1. Master A replicates a transaction to replicas B and C. Those sites acknowledge the write
activity.

2. Sites D and E do not receive the transaction. However, B and C have acknowledged the
transaction, which means the acknowledgement policy is met and so the transaction is
considered durable.

3. You shutdown sites B and C. Now only A has the transaction.

4. You increase the size of your replication group to 3 using DB_ENV->rep_set_nsites().

5. You shutdown or otherwise lose site A.

6. Sites D and E hold an election. Because the size of the replication group is 3, they have
enough sites to successfully hold an election. However, neither site has the transaction in
question. In this way, the transaction can become lost.

An alternative scenario exists where you do not change the size of your replication group,
or you actually increase the size of your replication group, but in the process you happen to
remove the exact wrong sites:

1. Master A replicates a transaction to replicas B and C. Those sites acknowledge the write
activity.

2. Sites D and E do not receive the transaction. However, B and C have acknowledged the
transaction, which means the acknowledgement policy is met and so the transaction is
considered durable.

3. You shutdown sites B and C. Now only A has the transaction.

4. You add three new sites to your replication group: F, G and H, increasing the size of your
replication group to 6 using DB_ENV->rep_set_nsites().

5. You shutdown or otherwise lose site A before F, G and H can be fully populated with data.

../api_reference/C/repelect.html
../api_reference/C/repnsites.html
../api_reference/C/repnsites.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 226

6. Sites D, E, F, G and H hold an election. Because the size of the replication group is 6, they
have enough sites to successfully hold an election. However, none of these sites has the
transaction in question. In this way, the transaction can become lost.

This scenario represents a race condition that would be highly unlikely to be seen outside of
a lab environment. To minimize the chance of this race condition occurring to the absolute
minimum, do one or more of the following when using master leases with the Base API:

1. Require all sites to acknowledge transaction commits.

2. Never change the size of your replication group unless all sites in the group are running
and communicating normally with one another.

3. Don't remove (or replace) a large percentage of your sites from your replication group
unless all sites in the group are running and communicating normally with one another. If
you are going to remove a large percentage of your sites from your replication group, try
removing just one site at a time, pausing in between each removal to give the replication
group a chance to fully distribute all writes before removing the next site.

Read your writes consistency

Some applications require the ability to read replicated data at a client site, and determine
whether it is consistent with data that has been written previously at the master site.

For example, a web application may be backed by multiple database environments, linked to
form a replication group, in order to share the workload. Web requests that update data must
be served by the replication master, but any site in the group may serve a read-only request.
Consider a work flow of a series of web requests from one specific user at a web browser: the
first request generates a database update, but the second request merely reads data. If the
read-only request is served by a replication client database environment, it may be important
to make sure that the updated data has been replicated to the client before performing the
read (or to wait until it has been replicated) in order to show this user a consistent view of
the data.

Berkeley DB supports this requirement through the use of transaction "tokens". A token is
a form of identification for a transaction within the scope of the replication group. The
application may request a copy of the transaction's token at the master site during the
execution of the transaction. Later, the application running on a client site can use a copy of
the token to determine whether the transaction has been applied at that site.

It is the application's responsibility to keep track of the token during the interim. In the web
example, the token might be sent to the browser as a "cookie", or stored on the application
server in the user's session context.

The operations described here are supported both for Replication Manager applications and for
applications that use the replication Base API.

Getting a token

In order to get a token, the application must supply a small memory buffer, using the DB_TXN-
>set_commit_token() method.

../api_reference/C/txnset_commit_token.html
../api_reference/C/txnset_commit_token.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 227

Note that a token is generated only upon a successful commit operation, and therefore the
token buffer content is valid only after a successful commit. Also, if a transaction does not
perform any update operations it does not generate a useful token.

In the Berkeley DB Java and C# API, getting a token is simpler. The application need only
invoke the Transaction.getCommitToken() method, after the transaction has committed.

Token handling

The application should not try to interpret the content of the token buffer, but may store
and/or transmit it freely between systems. However, since the buffer contains binary data it
may be necessary to apply some encoding for transmission (e.g., base 64).

The data is resilient to differences in byte order between different systems. It does not
expire: it may be retained indefinitely for later use, even across Berkeley DB version
upgrades.

Using a token to check or wait for a transaction

The DB_ENV->txn_applied() method takes a copy of a token, and determines whether the
corresponding transaction is currently applied at the local site. The timeout argument allows
the application to block for a bounded amount of time for cases where the transaction has not
yet been applied.

Depending on the transaction durability levels implemented or configured by the application,
it is sometimes possible for a transaction to disappear from a replication group if an original
master site fails and a different site becomes the new master without having received
the transaction. When the DB_ENV->txn_applied() method discovers this, it produces the
DB_NOTFOUND return code.

This means that the results of DB_ENV->txn_applied() are not guaranteed forever. Even after
a successful call to DB_ENV->txn_applied(), it is possible that by the time the application tries
to read the data, the transaction and its data could have disappeared.

To avoid this problem the application should do the read operations in the context of a
transaction, and hold the transaction handle open during the DB_ENV->txn_applied() call.
The DB_ENV->txn_applied() method itself does not actually execute in the context of
the transaction; but no rollbacks due to new master synchronization ever occur while a
transaction is active, even a read-only transaction at a client site.

Note that the DB_ENV->txn_applied() method can return DB_LOCK_DEADLOCK. The application
should respond to this situation just as it does for any other normal operation: abort any
existing transaction, and then pause briefly before retrying.

Clock Skew

Since master leases take into account a timeout that is used across all sites in a replication
group, leases must also take into account any known skew (or drift) between the clocks on
different machines in the group. The guarantees provided by master leases take clock skew

../java/com/sleepycat/db/Transaction.html#getCommitToken()
../api_reference/C/envtxn_applied.html
../api_reference/C/envtxn_applied.html
../api_reference/C/envtxn_applied.html
../api_reference/C/envtxn_applied.html
../api_reference/C/envtxn_applied.html
../api_reference/C/envtxn_applied.html
../api_reference/C/envtxn_applied.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 228

into account. Consider a replication group where a client's clock is running faster than the
master's clock and the group has a lease timeout of 5 seconds. If clock skew is not taken into
account, eventually, the client will believe that 5 seconds have passed faster than the master
and that client may then grant its lease to another site. Meanwhile, the master site does not
believe 5 seconds have passed because its clock is slower, and it believes it still holds a valid
lease grant. For this reason, Berkeley DB compensates for clock skew.

The master of a group using leases must account for skew in case that site has the slowest
clock in the group. This computation avoids the problem of a master site believing a lease
grant is valid too long. Clients in a group must account for skew in case they have the fastest
clock in the group. This computation avoids the problem of a client site expiring its grant
too soon and potentially granting a lease to a different site. Berkeley DB uses a conservative
computation and accounts for clock skew on both sides, yielding a double compensation.

The DB_ENV->rep_set_clockskew() method takes the values for both the fastest and slowest
clocks in the entire replication group as parameters. The values passed in must be the same
for all sites in the group. If the user knows the maximum clock drift of their sites, then those
values can be expressed as a relative percentage. Or, if the user runs an experiment then the
actual values can be used.

For example, suppose the user knows that there is a maximum drift rate of 2% among sites in
the group. The user should pass in 102 and 100 for the fast and slow clock values respectively.
That is an unusually large value, so suppose, for example, the rate is 0.03% among sites in
the group. The user should pass in 10003 and 10000 for the fast and slow clock values. Those
values can be used to express the level of precision the user needs.

An example of an experiment a user can run to help determine skew would be to write a
program that started simultaneously on all sites in the group. Suppose, after 1 day (86400
seconds), one site shows 86400 seconds and the other site shows it ran faster and it indicates
86460 seconds has passed. The user can use 86460 and 86400 for their parameters for the fast
and slow clock values.

Since Berkeley DB is using those fast and slow clock values to compute a ratio internally, if the
user cannot detect or measure any clock skew, then the same value should be passed in for
both parameters, such as 1 and 1.

Using Replication Manager message channels

The various sites comprising a replication group frequently need to communicate with one
another. Mostly, these messages are handled for you internally by the Replication Manager.
However, your application may have a requirement to pass messages beyond what the
Replication Manager requires in order to satisfy its own internal workings.

For this reason, you can access and use the Replication Manager's internal message channels.
You do this by using the DB_CHANNEL class, and by implementing a message handling function
on each of your sites.

Note that an example of using Replication Manager message channels is available in the
distribution. See Ex_rep_chan: a Replication Manager channel example (page 238) for more
information.

../api_reference/C/repclockskew.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 229

DB_CHANNEL

The DB_CHANNEL class provides a series of methods which allow you to send messages
to the other sites in your replication group. You create a DB_CHANNEL handle using the
DB_ENV->repmgr_channel() method. When you are done with the handle, close it using the
DB_CHANNEL->close() method. A closed handle must never be accessed again. Note that all
channel handles should be closed before the associated environment handle is closed. Also,
allow all message operations to complete on the channel before closing the handle.

When you create a DB_CHANNEL handle, you indicate what channel you want to use.
Possibilities are:

• The numerical env ID of a remote site in the replication group.

• DB_EID_MASTER

Messages sent on this channel are sent only to the master site. Note that messages are
always sent to the current master, even if the master has changed since the channel was
opened.

If the local site is the master, then sending messages on this channel will result in the local
site receiving those messages echoed back to itself.

Sending messages over a message channel

You can send any message you want over a message channel. The message can be as simple
as a character string and as complex as a large data structure. However, before you can send
the message, you must encapsulate it within one or more DBTs. This means marshaling the
message if it is contained within a complex data structure.

The methods that you use to send messages all accept an array of DBTs. This means that in
most circumstances it is perfectly acceptable to send multi-part messages.

Messages may be sent either asynchronously or synchronously. To send a message
asynchronously, use the DB_CHANNEL->send_msg() method. This method sends its message and
then immediately returns without waiting for any sort of a response.

To send a message synchronously, use the DB_CHANNEL->send_request() method. This method
blocks until it receives a response from the site to which it sent the message (or until a
timeout threshold is reached).

Message Responses

Message responses are required if a message is sent on a channel using the DB_CHANNEL-
>send_request() method. That method accepts the address of a single DBT which is used to
receive the response from the remote site.

Message responses are encapsulated in a single DBT. The response can be anything from a
complex data structure, to a string, to a simple type, to no information at all. In the latter
case, receipt of the DBT is sufficient to indicate that the request was received at the remote
site.

../api_reference/C/repmgr_channel.html
../api_reference/C/dbchannel_close.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbchannel_send_msg.html
../api_reference/C/dbchannel_send_request.html
../api_reference/C/dbchannel_send_request.html
../api_reference/C/dbchannel_send_request.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 230

Responses are sent back from the remote system using its message handling function. Usually
that function calls DB_CHANNEL->send_msg() to send a single response.

The response must be contained in a single DBT. If a multi-part response is required by
the application, you can configure the response DBT that you provide to DB_CHANNEL-
>send_request() for bulk operations.

Receiving messages

Messages received at a remote site are handled using a callback function. This function is
configured for the local environment using the DB_ENV->repmgr_msg_dispatch() method. For
best results, the message dispatch function should be configured for the local environment
before replication is started. In this way, you do not run the risk of missing messages sent
after replication has started but before the message dispatch function is configured for the
environment.

The callback configured by DB_ENV->repmgr_msg_dispatch() accepts four parameters of note:

• A response channel. This is the channel the function will use to response to the message,
if a response is required. To respond to the message, the function uses the DB_CHANNEL-
>send_msg() method.

• An array of DBTs. These hold the message that this function must handle.

• A numerical value that indicates how many elements the previously described array holds.

• A flag that indicates whether the message requires a response. If the flag is set to
DB_REPMGR_NEED_RESPONSE, then the function should send a single DBT in response using
the channel provided to this function, and the DB_CHANNEL->send_msg() method.

For an example of using this callback, see the operation_dispatch() function, which is
available with the ex_rep_chan example in your product distribution.

Special considerations for two-site replication groups

One of the benefits of replication is that it helps your application remain available for
writes even when a site crashes. Another benefit is the added durability achieved by storing
multiple copies of your application data at different sites. However, if your replication group
contains only two sites, you must prioritize which of these benefits is more important to your
application.

A two-site replication group is particularly vulnerable to duplicate masters if there is a loss of
communication between the sites. The original master continues to accept new transactions.
If the original client detects the loss of the master and elects itself master, it also starts
accepting new transactions. When communications are restored, there are duplicate masters
and one site's new transactions will be rolled back.

If it is unacceptable to your application for any new transactions to be rolled back, the
alternative in a two-site replication group is to require both sites to be present in order to
elect a master. This stops a client from electing itself master when it loses contact with the

../api_reference/C/dbchannel_send_msg.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbchannel_send_request.html
../api_reference/C/dbchannel_send_request.html
../api_reference/C/repmgr_msg_dispatch.html
../api_reference/C/repmgr_msg_dispatch.html
../api_reference/C/dbchannel_send_msg.html
../api_reference/C/dbchannel_send_msg.html
../api_reference/C/dbt.html
../api_reference/C/dbt.html
../api_reference/C/dbchannel_send_msg.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 231

master and prevents creation of parallel sets of transactions, one of which must be rolled
back.

However, requiring both sites to be present to elect a master results in a loss of write
availability when the master crashes. The client cannot take over as master and the
replication group exists in a read-only state until the original master site rejoins the
replication group.

Replication Manager applications use the DB_ENV->rep_set_config() method
DB_REPMGR_CONF_2SITE_STRICT flag to make this tradeoff between write availability and
transaction durability. When this flag is turned on, Replication Manager favors transaction
durability. When it is turned off, Replication Manager favors write availability.

A two-site Replication Manager application that uses heartbeats in an environment
with frequent communications disruptions generally should operate with the
DB_REPMGR_CONF_2SITE_STRICT flag turned on. Otherwise, frequent heartbeat failures will
cause frequent duplicate masters and the resulting elections and client synchronizations will
make one or both sites unavailable for extended periods of time.

Base API applications use the values of the nvotes and nsites parameters in calls to the
DB_ENV->rep_elect() method to make this tradeoff. For more information, see Elections (page
213).

A replication group containing only two electable sites is subject to duplicate masters and
rollback of one site's new transactions even when it contains additional unelectable sites. The
DB_REPMGR_CONF_2SITE_STRICT does not apply in this case because the replication group is
larger than two sites.

If both write availability and transaction durability are important to your application, you
should strongly consider having three or more electable sites in your replication group. You
should also carefully choose an acknowledgement policy that requires at least a quorum of
sites. It is best to have an odd number of electable sites to provide a clear majority in the
event of a network partition.

Network partitions

The Berkeley DB replication implementation can be affected by network partitioning
problems.

For example, consider a replication group with N members. The network partitions with the
master on one side and more than N/2 of the sites on the other side. The sites on the side
with the master will continue forward, and the master will continue to accept write queries
for the databases. Unfortunately, the sites on the other side of the partition, realizing they no
longer have a master, will hold an election. The election will succeed as there are more than
N/2 of the total sites participating, and there will then be two masters for the replication
group. Since both masters are potentially accepting write queries, the databases could diverge
in incompatible ways.

If multiple masters are ever found to exist in a replication group, a master detecting the
problem will return DB_REP_DUPMASTER. If the application sees this return, it should

../api_reference/C/repconfig.html
../api_reference/C/repconfig.html#config_DB_REPMGR_CONF_2SITE_STRICT
../api_reference/C/repconfig.html#config_DB_REPMGR_CONF_2SITE_STRICT
../api_reference/C/repelect.html
../api_reference/C/repconfig.html#config_DB_REPMGR_CONF_2SITE_STRICT
../api_reference/C/repmessage.html#repmsg_DB_REP_DUPMASTER

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 232

reconfigure itself as a client (by calling DB_ENV->rep_start()), and then call for an election (by
calling DB_ENV->rep_elect()). The site that wins the election may be one of the two previous
masters, or it may be another site entirely. Regardless, the winning system will bring all of the
other systems into conformance.

As another example, consider a replication group with a master environment and two clients A
and B, where client A may upgrade to master status and client B cannot. Then, assume client
A is partitioned from the other two database environments, and it becomes out-of-date with
respect to the master. Then, assume the master crashes and does not come back on-line.
Subsequently, the network partition is restored, and clients A and B hold an election. As client
B cannot win the election, client A will win by default, and in order to get back into sync with
client B, possibly committed transactions on client B will be unrolled until the two sites can
once again move forward together.

In both of these examples, there is a phase where a newly elected master brings the
members of a replication group into conformance with itself so that it can start sending
new information to them. This can result in the loss of information as previously committed
transactions are unrolled.

In architectures where network partitions are an issue, applications may want to implement
a heart-beat protocol to minimize the consequences of a bad network partition. As long as
a master is able to contact at least half of the sites in the replication group, it is impossible
for there to be two masters. If the master can no longer contact a sufficient number of
systems, it should reconfigure itself as a client, and hold an election. Replication Manager
does not currently implement such a feature, so this technique is only available to Base API
applications.

There is another tool applications can use to minimize the damage in the case of a network
partition. By specifying an nsites argument to DB_ENV->rep_elect() that is larger than the
actual number of database environments in the replication group, Base API applications
can keep systems from declaring themselves the master unless they can talk to a large
percentage of the sites in the system. For example, if there are 20 database environments in
the replication group, and an argument of 30 is specified to the DB_ENV->rep_elect() method,
then a system will have to be able to talk to at least 16 of the sites to declare itself the
master.

Replication Manager uses the value of nsites (configured by the DB_ENV->rep_set_nsites()
method) for elections as well as in calculating how many acknowledgements to wait for
when sending a DB_REP_PERMANENT message. So this technique may be useful here as well,
unless the application uses the DB_REPMGR_ACKS_ALL or DB_REPMGR_ACKS_ALL_PEERS
acknowledgement policies.

Specifying a nsites argument to DB_ENV->rep_elect() that is smaller than the actual number
of database environments in the replication group has its uses as well. For example, consider
a replication group with 2 environments. If they are partitioned from each other, neither of
the sites could ever get enough votes to become the master. A reasonable alternative would
be to specify a nsites argument of 2 to one of the systems and a nsites argument of 1 to the
other. That way, one of the systems could win elections even when partitioned, while the
other one could not. This would allow one of the systems to continue accepting write queries
after the partition.

../api_reference/C/repstart.html
../api_reference/C/repelect.html
../api_reference/C/repelect.html
../api_reference/C/repelect.html
../api_reference/C/repnsites.html
../api_reference/C/reptransport.html#transport_DB_REP_PERMANENT
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_ALL
../api_reference/C/repmgrset_ack_policy.html#ackspolicy_DB_REPMGR_ACKS_ALL_PEERS
../api_reference/C/repelect.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 233

In a 2-site group, Replication Manager by default reacts to the loss of communication with
the master by observing a strict majority rule that prevents the survivor from taking over.
Thus it avoids multiple masters and the need to unroll some transactions if both sites are
running but cannot communicate. But it does leave the group in a read-only state until both
sites are available. If application availability while one site is down is a priority and it is
acceptable to risk unrolling some transactions, there is a configuration option to turn off
the strict majority rule and allow the surviving client to declare itself to be master. See the
DB_ENV->rep_set_config() method DB_REPMGR_CONF_2SITE_STRICT flag for more information.

These scenarios stress the importance of good network infrastructure in Berkeley DB
replicated environments. When replicating database environments over sufficiently lossy
networking, the best solution may well be to pick a single master, and only hold elections
when human intervention has determined the selected master is unable to recover at all.

Replication FAQ

1. Does Berkeley DB provide support for forwarding write queries from clients to
masters?

No, it does not. In general this protocol is left entirely to the application. Note, there is
no reason not to use the communications channels a Base API application establishes for
replication support to forward database update messages to the master, since Berkeley
DB does not require those channels to be used exclusively for replication messages.
Replication Manager does not currently offer this service to the application.

2. Can I use replication to partition my environment across multiple sites?

No, this is not possible. All replicated databases must be equally shared by all
environments in the replication group.

3. I'm running with replication but I don't see my databases on the client.

This problem may be the result of the application using absolute path names for its
databases, and the pathnames are not valid on the client system.

4. How can I distinguish Berkeley DB messages from application messages?

There is no way to distinguish Berkeley DB messages from application-specific messages,
nor does Berkeley DB offer any way to wrap application messages inside of Berkeley DB
messages. Distributed applications exchanging their own messages should either enclose
Berkeley DB messages in their own wrappers, or use separate network connections to
send and receive Berkeley DB messages. The one exception to this rule is connection
information for new sites; Berkeley DB offers a simple method for sites joining replication
groups to send connection information to the other database environments in the group
(see Connecting to a new site (page 202) for more information).

5. How should I build my send function?

This depends on the specifics of the application. One common way is to write the rec and
control arguments' sizes and data to a socket connected to each remote site. On a fast,

../api_reference/C/repconfig.html
../api_reference/C/repconfig.html#config_DB_REPMGR_CONF_2SITE_STRICT

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 234

local area net, the simplest method is likely to be to construct broadcast messages. Each
Berkeley DB message would be encapsulated inside an application specific message, with
header information specifying the intended recipient(s) for the message. This will likely
require a global numbering scheme, however, as the Berkeley DB library has to be able to
send specific log records to clients apart from the general broadcast of new log records
intended for all members of a replication group.

6. Does every one of my threads of control on the master have to set up its own
connection to every client? And, does every one of my threads of control on the client
have to set up its own connection to every master?

This is not always necessary. In the Berkeley DB replication model, any thread of control
which modifies a database in the master environment must be prepared to send a
message to the client environments, and any thread of control which delivers a message
to a client environment must be prepared to send a message to the master. There are
many ways in which these requirements can be satisfied.

The simplest case is probably a single, multithreaded process running on the master
and clients. The process running on the master would require a single write connection
to each client and a single read connection from each client. A process running on
each client would require a single read connection from the master and a single write
connection to the master. Threads running in these processes on the master and clients
would use the same network connections to pass messages back and forth.

A common complication is when there are multiple processes running on the master
and clients. A straight-forward solution is to increase the numbers of connections on
the master — each process running on the master has its own write connection to each
client. However, this requires only one additional connection for each possible client in
the master process. The master environment still requires only a single read connection
from each client (this can be done by allocating a separate thread of control which
does nothing other than receive client messages and forward them into the database).
Similarly, each client still only requires a single thread of control that receives master
messages and forwards them into the database, and which also takes database messages
and forwards them back to the master. This model requires the networking infrastructure
support many-to-one writers-to-readers, of course.

If the number of network connections is a problem in the multiprocess model, and
inter-process communication on the system is inexpensive enough, an alternative
is have a single process which communicates between the master and each client,
and whenever a process' send function is called, the process passes the message to
the communications process which is responsible for forwarding the message to the
appropriate client. Alternatively, a broadcast mechanism will simplify the entire
networking infrastructure, as processes will likely no longer have to maintain their own
specific network connections.

Ex_rep: a replication example

Ex_rep, found in the examples_c/ex_rep subdirectory of the Berkeley DB distribution, is a
simple but complete demonstration of a replicated application. The application is a mock
stock ticker. The master accepts a stock symbol and a numerical value as input, and stores this

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 235

information into a replicated database; either master or clients can display the contents of
the database, given an empty input line.

There are two versions of the application: ex_rep_mgr uses Replication Manager, while
ex_rep_base uses the replication Base API. This is intended to demonstrate that, while
the basic function of the application is the same in either case, the replication support
infrastructure differs markedly.

The communication infrastructure demonstrated with ex_rep_base has the same dependencies
on system networking and threading support as does the Replication Manager (see
the Replication introduction (page 195)). The Makefile created by the standard UNIX
configuration will build the ex_rep examples on most platforms. Enter "make ex_rep_mgr"
and/or "make ex_rep_base" to build them.

The synopsis for both programs is as follows:
ex_rep_xxx -h home -l host:port [-MC] [-r host:port] [-R host:port] [-a all|
quorum] [-b] [-n sites] [-p priority] [-v]

where "ex_rep_xxx" is either "ex_rep_mgr" or "ex_rep_base". The only difference is that:

• specifying -M or -C is optional for ex_rep_mgr, but one of these options must be specified
for ex_rep_base.

• The -n option is not supported supported by ex_rep_mgr. That option specifies the number
of nodes in the replication group. When you use the Replication Manager, this number is
automatically determined for you.

The options apply to either version of the program except where noted. They are as follows:

-h
Specify a home directory for the database environment.

-l
Listen on local host "host" at port "port" for incoming connections.

-M
Configure this process as a master.

-C
Configure this process as a client.

-r
Identifies the helper site used for joining the group.

-R
Identifies a remote peer to be used for joining the group. This peer is used for syncing
purposes. See Client-to-client synchronization (page 216) for more information.

-a
Specify repmgr acknowledgement policy of all or quorum. See DB_ENV-
>repmgr_set_ack_policy() for more information (ex_rep_mgr only.)

-b
Indicates that bulk transfer should be used. See Bulk transfer (page 218) for more
information.

../api_reference/C/repmgrset_ack_policy.html
../api_reference/C/repmgrset_ack_policy.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 236

-n
Specify the total number of sites in the replication group (ex_rep_base only).

-p
Set the election priority. See Elections (page 213) for more information.

-v
Indicates that additional informational and debugging output should be enabled.

A typical ex_rep_mgr session begins with a command such as the following, to start a master:

ex_rep_mgr -M -p 100 -h DIR1 -l localhost:30100

and several clients:

ex_rep_mgr -C -p 50 -h DIR2 -l localhost:30101 -r localhost:30100
ex_rep_mgr -C -p 10 -h DIR3 -l localhost:30102 -r localhost:30100
ex_rep_mgr -C -p 0 -h DIR4 -l localhost:30103 -r localhost:30100

In this example, the client with home directory DIR4 can never become a master (its priority
is 0). Both of the other clients can become masters, but the one with home directory DIR2
is preferred. Priorities are assigned by the application and should reflect the desirability of
having particular clients take over as master in the case that the master fails.

Ex_rep_base: a TCP/IP based communication infrastructure

Base API applications must implement a communication infrastructure. The communication
infrastructure consists of three parts: a way to map environment IDs to particular sites,
the functions to send and receive messages, and the application architecture that supports
the particular communication infrastructure used (for example, individual threads per
communicating site, a shared message handler for all sites, a hybrid solution). The
communication infrastructure for ex_rep_base is implemented in the file ex_rep/base/
rep_net.c, and each part of that infrastructure is described as follows.

Ex_rep_base maintains a table of environment ID to TCP/IP port mappings. A pointer to this
table is stored in a structure pointed to by the app_private field of the DB_ENV object so
it can be accessed by any function that has the database environment handle. The table
is represented by a machtab_t structure which contains a reference to a linked list of
member_t's, both of which are defined in ex_rep/base/rep_net.c. Each member_t contains
the host and port identification, the environment ID, and a file descriptor.

This design is particular to this application and communication infrastructure, but provides
an indication of the sort of functionality that is needed to maintain the application-specific
state for a TCP/IP-based infrastructure. The goal of the table and its interfaces is threefold:
First, it must guarantee that given an environment ID, the send function can send a message
to the appropriate place. Second, when given the special environment ID DB_EID_BROADCAST,
the send function can send messages to all the machines in the group. Third, upon receipt
of an incoming message, the receive function can correctly identify the sender and pass the
appropriate environment ID to the DB_ENV->rep_process_message() method.

Mapping a particular environment ID to a specific port is accomplished by looping through the
linked list until the desired environment ID is found. Broadcast communication is implemented
by looping through the linked list and sending to each member found. Since each port

../api_reference/C/env.html
../api_reference/C/reptransport.html#transport_DB_EID_BROADCAST
../api_reference/C/repmessage.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 237

communicates with only a single other environment, receipt of a message on a particular port
precisely identifies the sender.

This is implemented in the quote_send, quote_send_broadcast and quote_send_one functions,
which can be found in ex_rep/base/rep_net.c.

The example provided is merely one way to satisfy these requirements, and there are
alternative implementations as well. For instance, instead of associating separate socket
connections with each remote environment, an application might instead label each message
with a sender identifier; instead of looping through a table and sending a copy of a message
to each member of the replication group, the application could send a single message using a
broadcast protocol.

The quote_send function is passed as the callback to DB_ENV->rep_set_transport(); Berkeley
DB automatically sends messages as needed for replication. The receive function is a mirror to
the quote_send_one function. It is not a callback function (the application is responsible for
collecting messages and calling DB_ENV->rep_process_message() on them as is convenient). In
the sample application, all messages transmitted are Berkeley DB messages that get handled
by DB_ENV->rep_process_message(), however, this is not always going to be the case. The
application may want to pass its own messages across the same channels, distinguish between
its own messages and those of Berkeley DB, and then pass only the Berkeley DB ones to
DB_ENV->rep_process_message().

The final component of the communication infrastructure is the process model used to
communicate with all the sites in the replication group. Each site creates a thread of control
that listens on its designated socket (as specified by the -l command line argument) and then
creates a new channel for each site that contacts it. In addition, each site explicitly connects
to the sites specified in the -r and -R command line arguments. This is a fairly standard
TCP/IP process architecture and is implemented by the connect_thread, connect_all and
connect_site functions in ex_rep/base/rep_msg.c and supporting functions in ex_rep/base/
rep_net.c.

Ex_rep_base: putting it all together

Beyond simply initializing a replicated environment, a Base API application must set up its
communication infrastructure, and then make sure that incoming messages are received and
processed.

To initialize replication, ex_rep_base creates a Berkeley DB environment and calls DB_ENV-
>rep_set_transport() to establish a send function. (See the main function in ex_rep/base/
rep_base.c, including its calls to the create_env and env_init functions in ex_rep/common/
rep_common.c.)

ex_rep_base opens a listening socket for incoming connections and opens an outgoing
connection to every machine that it knows about (that is, all the sites listed in the -r and -
R command line arguments). Applications can structure the details of this in different ways,
but ex_rep_base creates a user-level thread to listen on its socket, plus a thread to loop
and handle messages on each socket, in addition to the threads needed to manage the user
interface, update the database on the master, and read from the database on the client (in
other words, in addition to the normal functionality of any database application).

../api_reference/C/reptransport.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/repmessage.html
../api_reference/C/reptransport.html
../api_reference/C/reptransport.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 238

Once the initial threads have all been started and the communications infrastructure is
initialized, the application signals that it is ready for replication and joins a replication group
by calling DB_ENV->rep_start(). (Again, see the main function in ex_rep/base/rep_base.c.)

Note the use of the optional second argument to DB_ENV->rep_start() in the client
initialization code. The argument "local" is a piece of data, opaque to Berkeley DB, that
will be broadcast to each member of a replication group; it allows new clients to join a
replication group, without knowing the location of all its members; the new client will be
contacted by the members it does not know about, who will receive the new client's contact
information that was specified in "myaddr." See Connecting to a new site (page 202) for more
information.

The final piece of a replicated application is the code that loops, receives, and processes
messages from a given remote environment. ex_rep_base runs one of these loops in a parallel
thread for each socket connection (see the hm_loop function in ex_rep/base/rep_msg.c).
Other applications may want to queue messages somehow and process them asynchronously,
or select() on a number of sockets and either look up the correct environment ID for each or
encapsulate the ID in the communications protocol.

Ex_rep_chan: a Replication Manager channel example

Ex_rep_chan, found in the examples/c/ex_rep_chan subdirectory of the Berkeley DB
distribution, is a simple but complete demonstration of a replicated application that uses
the Replication Manager feature of channels to perform write forwarding. The application
is a mock stock ticker. Although similar to the ex_rep_mgr example program, this example
differs in that it provides an example of using Replication Manager message channels. Any
site accepts a command to write data to the database. If the site is a client, then, using the
channels feature, the application forwards the request to the master site. If the site is a
master then the request is automatically handled locally. You can read and write stock values
at any site without needing to know what site is currently the master.

The set of supported commands can be viewed with either the help or the ? command.
Several commands work with key/data pairs where the key is a stock symbol and the data is
its value.

The command to retrieve and print the current site's database contents is print or simply an
empty input line. To read the contents of the master's database from any site use the get key
key ... command. That command will forward the read request to the master if necessary and
return the key/data pairs for all given keys.

There are two commands to put data into the database. Both commands take one or more
key/data pairs, all of which are written into the database in a single transaction at the
master site. The put command sends the data to the master site, and simply waits for a status
response. The put_sync command sends the data to the master site, and uses a transaction
token returned by the master to wait for the contents of that put to be available on the local
site. This serves as a demonstration of the read your writes consistency feature.

The Makefile created by the standard UNIX configuration will build the ex_rep_chan example
on most platforms. Enter "make ex_rep_chan" to build it.

The synopsis for the program is as follows:

../api_reference/C/repstart.html
../api_reference/C/repstart.html

Library Version 11.2.5.3 Berkeley DB Replication

9/9/2013 DB Reference Guide Page 239

ex_rep_chan -h home -l host:port [-MC] [-r host:port] [-R host:port] [-p
priority] [-v]

The options are as follows:

-h
Specify a home directory for the database environment.

-l
Listen on local host "host" at port "port" for incoming connections.

-M
Configure this process as a master.

-C
Configure this process as a client.

-r
Identifies the helper site used for joining the group.

-R
Identifies a remote peer to be used for joining the group. This peer is used for syncing
purposes. See Client-to-client synchronization (page 216) for more information.

-p
Set the election priority. See Elections (page 213) for more information.

-v
Indicates that additional informational and debugging output should be enabled.

A typical ex_rep_chan session begins with a command such as the following, to start a master:

ex_rep_chan -M -h DIR1 -l localhost:30100

and several clients:

ex_rep_chan -C -h DIR2 -l localhost:30101 -r localhost:30100
ex_rep_chan -C -h DIR3 -l localhost:30102 -r localhost:30100
ex_rep_chan -C -h DIR4 -l localhost:30103 -r localhost:30100

9/9/2013 DB Reference Guide Page 240

Chapter 13. Distributed Transactions

Introduction

An application must use distributed transactions whenever it wants transactional semantics
either across operations in multiple Berkeley DB environments (even if they are on the
same machine) or across operations in Berkeley DB and some other database systems (for
example, Oracle server). Berkeley DB provides support for distributed transactions using a
two-phase commit protocol. In order to use the two-phase commit feature of Berkeley DB, an
application must either implement its own global transaction manager or use an XA-compliant
transaction manager such as Oracle Tuxedo (as Berkeley DB can act as an XA-compliant
resource manager).

This chapter explains Berkeley DB's XA-compliant resource manager, which can be used in
any X/Open distributed transaction processing system, and explains how to configure Oracle
Tuxedo to use the Berkeley DB resource manager.

Berkeley DB XA Implementation

Berkeley DB provides support for distributed transactions using the two-phase commit protocol
via its DB_TXN->prepare() interfaces. The DB_TXN->prepare() method performs the first
phase of a two-phase commit, flushing the log to disk, and associating a global transaction ID
with the underlying Berkeley DB transaction. This global transaction ID is used by the global
transaction manager to identify the Berkeley DB transaction, and will be returned by the
DB_ENV->txn_recover() method when it is called during recovery.

However, Berkeley DB does not perform distributed deadlock detection. Instead, when being
used as an XA resource manager, Berkeley DB acquires all locks in a non-blocking mode. This
results in pre-emptive abort of transactions that have the potential to deadlock. While this
can lead to more transactions being aborted than is strictly necessary, it avoids system-wide
hanging due to distributed deadlocks.

When using distributed transactions, there is no way to perform hot backups of multiple
environments and guarantee that the backups are globally transaction-consistent across
these multiple environments. If backups are desired, then all write transactions should
be suspended; that is, active write transactions must be allowed to complete and no new
write transactions should be begun. Once there are no active write transactions, the logs
may be copied for backup purposes and the backup will be consistent across the multiple
environments.

Building a Global Transaction Manager

Managing distributed transactions and using the two-phase commit protocol of Berkeley
DB from an application requires the application to provide the functionality of a global
transaction manager (GTM). The GTM is responsible for the following:

• Communicating with the multiple environments (potentially on separate systems).

• Managing the global transaction ID name space.

../api_reference/C/txnprepare.html
../api_reference/C/txnprepare.html
../api_reference/C/txnrecover.html

Library Version 11.2.5.3 Distributed Transactions

9/9/2013 DB Reference Guide Page 241

• Maintaining state information about each distributed transaction.

• Recovering from failures of individual environments.

• Recovering the global transaction state after failure of the global transaction manager.

Communicating with multiple Berkeley DB environments

Two-phase commit is required if a transaction spans operations in multiple Berkeley DB
environments or across operations in Berkeley DB and some other database systems. If the
environments reside on the same machine, the application can communicate with each
environment through its own address space with no additional complexity. If the environments
reside on separate machines, the application may use its own messaging capability, translating
messages on the remote machine into calls into the Berkeley DB library (including the
recovery calls).

Recovering from GTM failure

If the GTM fails, it must first recover its local state. Assuming the GTM uses Berkeley DB
tables to maintain state, it should run the db_recover utility (or the DB_RECOVER option to
DB_ENV->open()) upon startup. Once the GTM is back up and running, it needs to review all
its outstanding global transactions, that is, all transactions that are recorded but not yet
completed.

The global transactions that have not yet reached the prepare phase should be aborted. For
each global transaction that has not yet prepared, the GTM should send a message to each
participant telling it to abort its transaction.

Next the GTM should review its log to identify all participating environments that have
transactions in the preparing, aborting, or committing states. For each such participant,
the GTM should issue a DB_ENV->txn_recover() call. Upon receiving responses from each
participant, the GTM must decide the fate of each transaction and issue appropriate calls. The
correct behavior is defined as follows:
preparing

if all participating environments return the transaction in the list of prepared but
not yet completed transactions, then the GTM should commit the transaction. If any
participating environment fails to return the transaction in this list, then the GTM
must issue an abort to all environments participating in that global transaction.

committing
the GTM should send a commit to any environment that returned this transaction in its
list of prepared but not yet completed transactions.

aborting
the GTM should send an abort to any environment that returned this transaction in its
list of prepared but not yet completed transactions.

Managing the Global Transaction ID (GID) name space

A global transaction is a transaction that spans multiple environments. Each global transaction
must have a unique transaction ID. This unique ID is the global transaction ID (GID). In
Berkeley DB, global transaction IDs must be represented by the character array, DB_GID_SIZE

../api_reference/C/db_recover.html
../api_reference/C/envopen.html
../api_reference/C/txnrecover.html

Library Version 11.2.5.3 Distributed Transactions

9/9/2013 DB Reference Guide Page 242

(currently 128 bytes). It is the responsibility of the global transaction manager to assign GIDs,
guarantee their uniqueness, and manage the mapping of local transactions to GID. That is, for
each GID, the GTM should know which local transaction managers participated. The Berkeley
DB logging system or a Berkeley DB table could be used to record this information.

Maintaining state for each distributed transaction.

In addition to knowing which local environments participate in each global transaction, the
GTM must also know the state of each active global transaction. As soon as a transaction
becomes distributed (that is, a second environment participates), the GTM must record the
existence of the global transaction and all participants (whether this must reside on stable
storage or not depends on the exact configuration of the system). As new environments
participate, the GTM must keep this information up to date.

When the GTM is ready to begin commit processing, it should issue DB_TXN->prepare() calls
to each participating environment, indicating the GID of the global transaction. Once all the
participants have successfully prepared, then the GTM must record that the global transaction
will be committed. This record should go to stable storage. Once written to stable storage,
the GTM can send DB_TXN->commit() requests to each participating environment. Once
all environments have successfully completed the commit, the GTM can either record the
successful commit or can somehow "forget" the global transaction.

If an application uses nested transactions (that is, the parent parameter is non-NULL in a call
to DB_ENV->txn_begin()) then, only the parent transaction should call DB_TXN->prepare(), not
any of the child transactions.

Should any participant fail to prepare, then the GTM must abort the global transaction. The
fact that the transaction is going to be aborted should be written to stable storage. Once
written, the GTM can then issue DB_TXN->abort() requests to each environment. When all
aborts have returned successfully, the GTM can either record the successful abort or "forget"
the global transaction.

In summary, for each transaction, the GTM must maintain the following:

• A list of participating environments

• The current state of each transaction (pre-prepare, preparing, committing, aborting, done)

Recovering from the failure of a single environment

If a single environment fails, there is no need to bring down or recover other environments
(the only exception to this is if all environments are managed in the same application address
space and there is a risk that the failure of the environment corrupted other environments).
Instead, once the failing environment comes back up, it should be recovered (that is,
conventional recovery, via the db_recover utility or by specifying the DB_RECOVER flag to
DB_ENV->open() should be run). If the db_recover utility is used, then the -e option must be
specified. In this case, the application will almost certainly want to specify environmental
parameters via a DB_CONFIG configuration file (page 132) in the environment's home
directory, so that the db_recover utility can create an appropriately configured environment.
If the db_recover utility is not used, then the GTM should call DB_ENV->open() specifying
the DB_RECOVER flag. It should then call DB_ENV->txn_recover(), which will return an

../api_reference/C/txnprepare.html
../api_reference/C/txncommit.html
../api_reference/C/txnbegin.html
../api_reference/C/txnprepare.html
../api_reference/C/txnabort.html
../api_reference/C/db_recover.html
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/envopen.html
../api_reference/C/db_recover.html
../api_reference/C/db_recover.html
../api_reference/C/db_recover.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_RECOVER
../api_reference/C/txnrecover.html

Library Version 11.2.5.3 Distributed Transactions

9/9/2013 DB Reference Guide Page 243

array of DB_TXN handles for the set of prepared, but not yet completed transactions. For
each transaction, the GTM should combine this knowledge with its transaction state table
and call either DB_TXN->commit() or DB_TXN->abort(). After that process is complete, the
environment is ready to participate in new transactions.

If the GTM is running in a system with multiple GTMs, it is possible that some of the
transactions returned via DB_ENV->txn_recover() do not belong to the current environment.
The GTM should detect this and call DB_TXN->discard() on each such transaction handle.
Furthermore, it is important to note the environment does not retain information about which
GTM has issued DB_ENV->txn_recover() operations. Therefore, each GTM should issue all its
DB_ENV->txn_recover() calls before another GTM issues its calls. If the calls are interleaved,
each GTM may not get a complete and consistent set of transactions. The simplest way to
enforce this is for each GTM to make sure it can receive all its outstanding transactions in a
single DB_ENV->txn_recover() call. The maximum number of possible outstanding transactions
is roughly the maximum number of active transactions in the environment (whose value can
be obtained using the db_stat utility). To simplify this procedure, the caller should allocate
an array large enough to hold the list of transactions (for example, allocate an array able to
hold three times the maximum number of transactions). If that is not possible, callers should
check that the array was not completely filled in when DB_ENV->txn_recover() returns. If the
array was completely filled in, each transaction should be explicitly discarded, and the call
repeated with a larger array.

The newly recovered environment will forbid any new transactions from being started
until the prepared but not yet completed transactions have been resolved. In the multiple
GTM case, this means that all GTMs must recover before any GTM can begin issuing new
transactions.

The GTM must determine how long it needs to retain global transaction commit and abort
records. If the participating environments are following a DB_TXN_SYNC policy, that is,
they are forcing commit and abort records to disk before replying to the GTM, then once
the GTM has heard from all participants, it need not retain its persistent log records.
However, if participating environments are running at weaker durability levels, such as
DB_TXN_WRITE_NOSYNC or DB_TXN_NOSYNC, then the GTM must retain all commit and abort
records until all participants have completed a checkpoint following the completion of a
transaction.

Recovering from GTM failure

If the GTM fails, it must first recover its local state. Assuming the GTM uses Berkeley DB
tables to maintain state, it should run the db_recover utility (or the DB_RECOVER option to
DB_ENV->open()) upon startup. Once the GTM is back up and running, it needs to review all
its outstanding global transactions, that is, all transactions that are recorded but not yet
completed.

The global transactions that have not yet reached the prepare phase should be aborted. For
each global transaction that has not yet prepared, the GTM should send a message to each
participant telling it to abort its transaction.

Next the GTM should review its log to identify all participating environments that have
transactions in the preparing, aborting, or committing states. For each such participant,

../api_reference/C/txncommit.html
../api_reference/C/txnabort.html
../api_reference/C/txnrecover.html
../api_reference/C/txndiscard.html
../api_reference/C/txnrecover.html
../api_reference/C/txnrecover.html
../api_reference/C/txnrecover.html
../api_reference/C/db_stat.html
../api_reference/C/txnrecover.html
../api_reference/C/envset_flags.html#set_flags_DB_TXN_WRITE_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/db_recover.html
../api_reference/C/envopen.html

Library Version 11.2.5.3 Distributed Transactions

9/9/2013 DB Reference Guide Page 244

the GTM should issue a DB_ENV->txn_recover() call. Upon receiving responses from each
participant, the GTM must decide the fate of each transaction and issue appropriate calls. The
correct behavior is defined as follows:

preparing
if all participating environments return the transaction in the list of prepared but
not yet completed transactions, then the GTM should commit the transaction. If any
participating environment fails to return the transaction in this list, then the GTM
must issue an abort to all environments participating in that global transaction.

committing
the GTM should send a commit to any environment that returned this transaction in its
list of prepared but not yet completed transactions.

aborting
the GTM should send an abort to any environment that returned this transaction in its
list of prepared but not yet completed transactions.

XA Introduction

Berkeley DB can be used as an XA-compliant resource manager. The XA implementation is
known to work with the Tuxedo transaction manager.

The XA support is encapsulated in the resource manager switch db_xa_switch, which defines
the following functions:

• __db_xa_close. Close the resource manager.

• __db_xa_commit. Commit the specified transaction.

• __db_xa_complete. Wait for asynchronous operations to complete.

• __db_xa_end. Disassociate the application from a transaction.

• __db_xa_forget. Forget about a transaction that was heuristically completed. (Berkeley DB
does not support heuristic completion.)

• __db_xa_open. Open the resource manager.

• __db_xa_prepare. Prepare the specified transaction.

• __db_xa_recover. Return a list of prepared, but not yet committed transactions.

• __db_xa_rollback. Abort the specified transaction.

• __db_xa_start. Associate the application with a transaction.

The Berkeley DB resource manager does not support the following optional XA features:

• Asynchronous operations

• Transaction migration

The Tuxedo System is available from Oracle BEA Systems.

../api_reference/C/txnrecover.html
http://www.oracle.com/us/bea/index.html

Library Version 11.2.5.3 Distributed Transactions

9/9/2013 DB Reference Guide Page 245

Configuring Berkeley DB with the Tuxedo System

To configure the Tuxedo system to use Berkeley DB resource managers, do the following:

Update the Resource Manager File in Tuxedo

For the purposes of this discussion, assume that the Tuxedo home directory is in

/home/tuxedo

In that case, the resource manager file will be located in

/home/tuxedo/udataobj/RM

Edit the resource manager file to identify the Berkeley DB resource manager, the name of the
resource manager switch, and the name of the library for the resource manager.

For example, on a RedHat Linux Enterprise (64-bit) installation of Oracle Tuxedo 11gR1, you
can update the resource manager file by adding the following line:

BERKELEY-DB:db_xa_switch:-L${DB_INSTALL}/lib -ldb

where ${DB_INSTALL} is the directory into which you installed the Berkeley DB library.

Note that the load options may differ depending on the platform of your system.

Build the Transaction Manager Server

To do this, use the Tuxedo buildtms(1) utility. The buildtms command will create the
Berkeley-DB resource manager in the directory from which it was run. The parameters to the
buildtms command should be:

buildtms -v -o DBRM -r BERKELEY-DB

This will create an executable transaction manager server, DBRM, which is called by Tuxedo to
process begins, commits, and aborts.

Update the UBBCONFIG File

You must make sure that your TUXCONFIG environment variable identifies an UBBCONFIG file
that properly identifies your resource managers. In the GROUPS section of the UBBCONFIG
file, you should identify the group's LMID and GRPNO, as well as the transaction manager
server name "TMSNAME=DBRM." You must also specify the OPENINFO parameter, setting it
equal to the string

rm_name:dir

where rm_name is the resource name specified in the RM file (that is, BERKELEY-DB) and dir is
the directory for the Berkeley DB home environment (see DB_ENV->open() for a discussion of
Berkeley DB environments).

Because Tuxedo resource manager startup accepts only a single string for configuration, any
environment customization that might have been done via the config parameter to DB_ENV-
>open() must instead be done by placing a DB_CONFIG configuration file (page 132) in the
Berkeley DB environment directory. See File naming (page 132) for further information.

../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html

Library Version 11.2.5.3 Distributed Transactions

9/9/2013 DB Reference Guide Page 246

Consider the following configuration. We have built a transaction manager server, as described
previously. We want the Berkeley DB environment to be /home/dbhome, our database files
to be maintained in /home/datafiles, our log files to be maintained in /home/log, and we
want a duplexed server.

The GROUPS section of the ubb file might look like the following:

group_tm LMID=myname GRPNO=1 TMSNAME=DBRM TMSCOUNT=2 \
 OPENINFO="BERKELEY-DB:/home/dbhome"

There would be a DB_CONFIG configuration file (page 132) in the directory /home/dbhome that
contained the following two lines:

set_data_dir /home/datafiles
set_lg_dir /home/log

Finally, the UBBCONFIG file must be translated into a binary version using Tuxedo's
tmloadcf(1) utility, and then the pathname of that binary file must be specified as your
TUXCONFIG environment variable.

At this point, your system is properly initialized to use the Berkeley DB resource manager.

See DB class for further information on accessing data files using XA.

Restrictions on XA Transactions

When you are using Berkeley DB for XA transactions, there are a few restrictions you should be
aware of:

• Configure environment using the DB_CONFIG file

For most options, you must configure your environment via the DB_CONFIG file because an
XA application or server cannot control the environment creation.

• Snapshot isolation must be configured for the entire environment.

Transactions managed by the Berkeley DB X/open compliant XA resource manager can be
configured for transaction snapshots using either database open flags or the DB_CONFIG file
file. To configure using database open flags, open the XA managed database with the flag
DB_MULTIVERSION. When using DB_CONFIG, include both of the following lines:

set_flags DB_MULTIVERSION
set_flags DB_TXN_SNAPSHOT

Note that both methods will results in all transactions using transaction snapshots, there is
no way to enable transaction snapshots in just a subset of XA managed transactions.

• No in-memory logging

Upon return from xa_open, Berkeley DB checks to ensure there is no in-memory logging. If
in-memory logging is detected, a FAILURE message is returned to the application.

• No application-level child transactions

../api_reference/C/db.html
../api_reference/C/configuration_reference.html
../api_reference/C/configuration_reference.html
../api_reference/C/configuration_reference.html
../api_reference/C/dbopen.html#dbopen_DB_MULTIVERSION

Library Version 11.2.5.3 Distributed Transactions

9/9/2013 DB Reference Guide Page 247

Berkeley DB verifies in the xa_start and xa_end calls that no XA transaction has a parent.
If application-level child transactions are detected, a FAILURE message is returned to the
application.

• All database-level operations, such as create, rename, and remove, must be performed in
local BDB transactions, not distributed XA transactions

Berkeley DB checks that there is no XA transaction currently active during these operations,
and if detected, a FAILURE message is returned to the application.

• Close cursors before a service invocation returns

Berkeley DB checks in the xa_end call that the DB_TXN has no active cursors open and and if
detected, a FAILURE message is returned to the application.

XA: Frequently Asked Questions

1. Is it possible to mix XA and non-XA transactions?

Yes. It is also possible for XA and non-XA transactions to coexist in the same Berkeley DB
environment. To do this, specify the same environment to the non-XA DB_ENV->open()
calls as was specified in the Tuxedo configuration file.

2. Does converting an application to run within XA change any of the already existing C/C
++ API calls it does?

When converting an application to run under XA, the application's Berkeley DB calls are
unchanged, with three exceptions:

a. The application must specify the DB_XA_CREATE flag to the db_create() function.

b. Unless the application is performing an operation for a non-XA transaction, the
application should never explicitly call DB_TXN->commit(), DB_TXN->abort(), and
DB_ENV->txn_begin(), and those calls should be replaced by calls into the Tuxedo
transaction manager.

c. Unless the application is performing an operation for a non-XA transaction, the
application should specify a transaction argument of NULL to Berkeley DB methods
taking transaction arguments (for example, DB->put() or DB->cursor()).

Otherwise, the application should be unchanged.

3. How does Berkeley DB recovery interact with recovery by the Tuxedo transaction
manager?

Recovery is completed in two steps. First, each resource manager should recover its
environment(s). This can be done via a program that calls DB_ENV->open() or by calling
the db_recover utility. If using the db_recover utility, then the option should be specified
so that the regions that are recovered persist after the utility exits. Any transactions
that were prepared, but neither completed nor aborted, are restored to their prepared

../api_reference/C/envopen.html
../api_reference/C/dbcreate.html#dbcreate_DB_XA_CREATE
../api_reference/C/dbcreate.html
../api_reference/C/txncommit.html
../api_reference/C/txnabort.html
../api_reference/C/txnbegin.html
../api_reference/C/dbput.html
../api_reference/C/dbcursor.html
../api_reference/C/envopen.html
../api_reference/C/db_recover.html
../api_reference/C/db_recover.html

Library Version 11.2.5.3 Distributed Transactions

9/9/2013 DB Reference Guide Page 248

state so that they may be aborted or committed via the Tuxedo recovery mechanisms.
After each resource manager has recovered, then Tuxedo recovery may begin. Tuxedo will
interact with each resource manager via the __db_xa_recover function which returns the
list of prepared, but not yet completed transactions. It should issue a commit or abort
for each one, and only after having completed each transaction will normal processing
resume.

Finally, standard log file archival and catastrophic recovery procedures should occur
independently of XA operation.

4. Does Berkeley DB provide multi-threaded support for XA transactions?

Yes. For information on how to build multi-threaded servers for XA transactions, see
http://download.oracle.com/docs/cd/E13161_01/tuxedo/docs10gr3/pgc/pgthr.html. All
databases used by servers should be opened with handles created with the DB_XA_CREATE
flag in the db_create() method and must be opened in the tpsvrinit routine. Note that
the environment parameter of the db_create() method must be assigned NULL. For
more information on the tpsvrinit routine, see http://download.oracle.com/docs/cd/
E13161_01/tuxedo/docs10gr3/pgc/pgthr.html.

http://download.oracle.com/docs/cd/E13161_01/tuxedo/docs10gr3/pgc/pgthr.html
../api_reference/C/dbcreate.html#dbcreate_DB_XA_CREATE
../api_reference/C/dbcreate.html
../api_reference/C/dbcreate.html
http://download.oracle.com/docs/cd/E13161_01/tuxedo/docs10gr3/pgc/pgthr.html
http://download.oracle.com/docs/cd/E13161_01/tuxedo/docs10gr3/pgc/pgthr.html

9/9/2013 DB Reference Guide Page 249

Chapter 14. Application Specific Logging and
Recovery
Introduction to application specific logging and recovery

It is possible to use the Locking, Logging and Transaction subsystems of Berkeley DB to provide
transaction semantics on objects other than those described by the Berkeley DB access
methods. In these cases, the application will need application-specific logging and recovery
functions.

For example, consider an application that provides transaction semantics on data stored in
plain text files accessed using the POSIX read and write system calls. The read and write
operations for which transaction protection is desired will be bracketed by calls to the
standard Berkeley DB transactional interfaces, DB_ENV->txn_begin() and DB_TXN->commit(),
and the transaction's locker ID will be used to acquire relevant read and write locks.

Before data is accessed, the application must make a call to the lock manager, DB_ENV-
>lock_get(), for a lock of the appropriate type (for example, read) on the object being locked.
The object might be a page in the file, a byte, a range of bytes, or some key. It is up to the
application to ensure that appropriate locks are acquired. Before a write is performed, the
application should acquire a write lock on the object by making an appropriate call to the lock
manager, DB_ENV->lock_get(). Then, the application should make a call to the log manager,
via the automatically-generated log-writing function described as follows. This record should
contain enough information to redo the operation in case of failure after commit and to undo
the operation in case of abort.

When designing applications that will use the log subsystem, it is important to remember
that the application is responsible for providing any necessary structure to the log record. For
example, the application must understand what part of the log record is an operation code,
what part identifies the file being modified, what part is redo information, and what part is
undo information.

After the log message is written, the application may issue the write system call. After all
requests are issued, the application may call DB_TXN->commit(). When DB_TXN->commit()
returns, the caller is guaranteed that all necessary log writes have been written to disk.

At any time before issuing a DB_TXN->commit(), the application may call DB_TXN->abort(),
which will result in restoration of the database to a consistent pretransaction state. (The
application may specify its own recovery function for this purpose using the DB_ENV-
>set_app_dispatch() method. The recovery function must be able to either reapply or undo
the update depending on the context, for each different type of log record. The recovery
functions must not use Berkeley DB methods to access data in the environment as there is no
way to coordinate these accesses with either the aborting transaction or the updates done by
recovery or replication.)

If the application crashes, the recovery process uses the log to restore the database to a
consistent state.

Berkeley DB includes tools to assist in the development of application-specific logging and
recovery. Specifically, given a description of information to be logged in a family of log

../api_reference/C/txnbegin.html
../api_reference/C/txncommit.html
../api_reference/C/lockget.html
../api_reference/C/lockget.html
../api_reference/C/lockget.html
../api_reference/C/txncommit.html
../api_reference/C/txncommit.html
../api_reference/C/txncommit.html
../api_reference/C/txnabort.html
../api_reference/C/envset_app_dispatch.html
../api_reference/C/envset_app_dispatch.html

Library Version 11.2.5.3 Application Specific Logging and Recovery

9/9/2013 DB Reference Guide Page 250

records, these tools will automatically create log-writing functions (functions that marshall
their arguments into a single log record), log-reading functions (functions that read a log
record and unmarshall it into a structure containing fields that map into the arguments
written to the log), log-printing functions (functions that print the contents of a log record
for debugging), and templates for recovery functions (functions that review log records
during transaction abort or recovery). The tools and generated code are C-language and
POSIX-system based, but the generated code should be usable on any system, not just POSIX
systems.

A sample application that does application-specific recovery is included in the Berkeley DB
distribution, in the directory examples_c/ex_apprec.

Defining application-specific log records

By convention, log records are described in files named XXX.src, where "XXX" is typically
a descriptive name for a subsystem or other logical group of logging functions. These files
contain interface definition language descriptions for each type of log record that is used by
the subsystem.

All blank lines and lines beginning with a hash ("#") character in the XXX.src files are ignored.

The first non-comment line in the file should begin with the keyword PREFIX, followed by a
string that will be prepended to every generated function name. Frequently, the PREFIX is
either identical or similar to the name of the XXX.src file. For example, the Berkeley DB
application-specific recovery example uses the file ex_apprec.src, which begins with the
following PREFIX line:

PREFIX ex_apprec

Following the PREFIX line are the include files required by the automatically generated
functions. The include files should be listed in order, prefixed by the keyword INCLUDE. For
example, the Berkeley DB application-specific recovery example lists the following include
files:

INCLUDE #include "ex_apprec.h"

The rest of the XXX.src file consists of log record descriptions. Each log record description
begins with one of the following lines:

BEGIN RECORD_NAME DB_VERSION_NUMBER RECORD_NUMBER

BEGIN_COMPAT RECORD_NAME DB_VERSION_NUMBER RECORD_NUMBER

and ends with the line:

END

The BEGIN line should be used for most record types.

The BEGIN_COMPAT is used for log record compatibility to facilitate online upgrades of
replication groups. Records created with this keyword will produce reading and printing
routines, but no logging routines. The recovery routines are retrieved from older releases, so
no recovery templates will be generated for these records.

Library Version 11.2.5.3 Application Specific Logging and Recovery

9/9/2013 DB Reference Guide Page 251

The DB_VERSION_NUMBER variable should be replaced with the current major and minor
version of Berkeley DB, with all punctuation removed. For example, Berkeley DB version 4.2
should be 42, version 4.5 should be 45.

The RECORD_NAME variable should be replaced with a record name for this log record. The
RECORD_NUMBER variable should be replaced with a record number.

The combination of PREFIX name and RECORD_NAME, and the RECORD_NUMBER must be
unique for the application, that is, values for application-specific and Berkeley DB log records
may not overlap. Further, because record numbers are stored in log files, which are usually
portable across application and Berkeley DB releases, any change to the record numbers or log
record format or should be handled as described in the section on log format changes in the
Upgrading Berkeley DB installations chapter of the Berkeley DB Installation and Build Guide.
The record number space below 10,000 is reserved for Berkeley DB itself; applications should
choose record number values equal to or greater than 10,000.

Between the BEGIN and END keywords there should be one optional DUPLICATE line and one
line for each data item logged as part of this log record.

The DUPLICATE line is of the form:

DUPLICATE RECORD_NAME DB_VERSION_NUMBER RECORD_NUMBER

The DUPLICATE specifier should be used when creating a record that requires its own record
number but can use the argument structure, reading and printing routines from another
record. In this case, we will create a new log record type, but use the enclosing log record
type for the argument structure and the log reading and printing routines.

The format of lines for each data item logged is as follows:

ARG | DBT | POINTER variable_name variable_type printf_format

The keyword ARG indicates that the argument is a simple parameter of the type specified. For
example, a file ID might be logged as:

ARG fileID int d

The keyword DBT indicates that the argument is a Berkeley DB DBT structure, containing a
length and pointer to a byte string. The keyword POINTER indicates that the argument is a
pointer to the data type specified (of course the data type, not the pointer, is what is logged).

The variable_name is the field name within the structure that will be used to refer to this
item. The variable_type is the C-language type of the variable, and the printf format is the
C-language format string, without the leading percent ("%") character, that should be used to
display the contents of the field (for example, "s" for string, "d" for signed integral type, "u"
for unsigned integral type, "ld" for signed long integral type, "lu" for long unsigned integral
type, and so on).

For example, ex_apprec.src defines a single log record type, used to log a directory name that
has been stored in a DBT:

BEGIN mkdir 10000
DBT dirname DBT s

../upgrading/upgrade_process.html

Library Version 11.2.5.3 Application Specific Logging and Recovery

9/9/2013 DB Reference Guide Page 252

END

As the name suggests, this example of an application-defined log record will be used to log
the creation of a directory. There are many more examples of XXX.src files in the Berkeley DB
distribution. For example, the file btree/btree.src contains the definitions for the log records
supported by the Berkeley DB Btree access method.

Automatically generated functions

The XXX.src file is processed using the gen_rec.awk script included in the dist directory of
the Berkeley DB distribution. This is an awk script that is executed from with the following
command line:

awk -f gen_rec.awk \
 -v source_file=C_FILE \
 -v header_file=H_FILE \
 -v print_file=P_FILE \
 -v template_file=TMP_FILE < XXX.src

where C_FILE is the name of the file into which to place the automatically generated C code,
H_FILE is the name of the file into which to place the automatically generated data structures
and declarations, P_FILE is the name of the file into which to place the automatically
generated C code that prints log records, and TMP_FILE is the name of the file into which to
place a template for the recovery routines.

Because the gen_rec.awk script uses sources files located relative to the Berkeley DB dist
directory, it must be run from the dist directory. For example, in building the Berkeley DB
logging and recovery routines for ex_apprec, the following script is used to rebuild the
automatically generated files:

E=../examples_c/ex_apprec

cd ../../dist
awk -f gen_rec.awk \
 -v source_file=$E/ex_apprec_auto.c \
 -v header_file=$E/ex_apprec_auto.h \
 -v print_file=$E/ex_apprec_autop.c \
 -v template_file=$E/ex_apprec_template < $E/ex_apprec.src

For each log record description found in the XXX.src file, the following structure declarations
and #defines will be created in the file header_file:

#define DB_PREFIX_RECORD_TYPE /* Integer ID number */

typedef struct _PREFIX_RECORD_TYPE_args {
 /*
 * These three fields are generated for every record.
 */
 u_int32_t type; /* Record type used for dispatch. */

 /*

Library Version 11.2.5.3 Application Specific Logging and Recovery

9/9/2013 DB Reference Guide Page 253

 * Transaction handle that identifies the transaction on whose
 * behalf the record is being logged.
 */
 DB_TXN *txnid;

 /*
 * The log sequence number returned by the previous call to log_put
 * for this transaction.
 */
 DB_LSN *prev_lsn;

 /*
 * The rest of the structure contains one field for each of
 * the entries in the record statement.
 */
};

Thus, the auto-generated ex_apprec_mkdir_args structure looks as follows:

typedef struct _ex_apprec_mkdir_args {
 u_int32_t type;
 DB_TXN *txnid;
 DB_LSN prev_lsn;
 DBT dirname;
} ex_apprec_mkdir_args;

The template_file will contain a template for a recovery function. The recovery function
is called on each record read from the log during system recovery, transaction abort, or
the application of log records on a replication client, and is expected to redo or undo the
operations described by that record. The details of the recovery function will be specific to
the record being logged and need to be written manually, but the template provides a good
starting point. (See ex_apprec_template and ex_apprec_rec.c for an example of both the
template produced and the resulting recovery function.)

The template file should be copied to a source file in the application (but not the
automatically generated source_file, as that will get overwritten each time gen_rec.awk is
run) and fully developed there. The recovery function takes the following parameters:

dbenv
The environment in which recovery is running.

rec
The record being recovered.

lsn
The log sequence number of the record being recovered. The prev_lsn
field, automatically included in every auto-generated log record,
should be returned through this argument. The prev_lsn field is used
to chain log records together to allow transaction aborts; because the
recovery function is the only place that a log record gets parsed, the
responsibility for returning this value lies with the recovery function
writer.

Library Version 11.2.5.3 Application Specific Logging and Recovery

9/9/2013 DB Reference Guide Page 254

op
A parameter of type db_recops, which indicates what operation is
being run (DB_TXN_ABORT, DB_TXN_APPLY, DB_TXN_BACKWARD_ROLL,
DB_TXN_FORWARD_ROLL or DB_TXN_PRINT).

In addition to the header_file and template_file, a source_file is created, containing a log,
read, recovery, and print function for each record type.

The log function marshalls the parameters into a buffer, and calls DB_ENV->log_put() on that
buffer returning 0 on success and non-zero on failure. The log function takes the following
parameters:

dbenv
The environment in which recovery is running.

txnid
The transaction identifier for the transaction handle returned by
DB_ENV->txn_begin().

lsnp
A pointer to storage for a log sequence number into which the log
sequence number of the new log record will be returned.

syncflag
A flag indicating whether the record must be written synchronously.
Valid values are 0 and DB_FLUSH.

args
The remaining parameters to the log message are the fields described
in the XXX.src file, in order.

The read function takes a buffer and unmarshalls its contents into a structure of the
appropriate type. It returns 0 on success and non-zero on error. After the fields of the
structure have been used, the pointer returned from the read function should be freed. The
read function takes the following parameters:

dbenv
The environment in which recovery is running.

recbuf
A buffer.

argp
A pointer to a structure of the appropriate type.

The print function displays the contents of the record. The print function takes the same
parameters as the recovery function described previously. Although some of the parameters
are unused by the print function, taking the same parameters allows a single dispatch loop to
dispatch to a variety of functions. The print function takes the following parameters:

dbenv
The environment in which recovery is running.

rec
The record being recovered.

../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_ABORT
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_APPLY
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_BACKWARD_ROLL
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_FORWARD_ROLL
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_PRINT
../api_reference/C/logput.html
../api_reference/C/txnbegin.html
../api_reference/C/logput.html#put_DB_FLUSH

Library Version 11.2.5.3 Application Specific Logging and Recovery

9/9/2013 DB Reference Guide Page 255

lsn
The log sequence number of the record being recovered.

op
Unused.

Finally, the source file will contain a function (named XXX_init_print, where XXX is replaced
by the prefix) which should be added to the initialization part of the standalone db_printlog
utility code so that utility can be used to display application-specific log records.

Application configuration

The application should include a dispatch function that dispatches to appropriate printing
and/or recovery functions based on the log record type and the operation code. The dispatch
function should take the same arguments as the recovery function, and should call the
appropriate recovery and/or printing functions based on the log record type and the operation
code. For example, the ex_apprec dispatch function is as follows:

int
apprec_dispatch(dbenv, dbt, lsn, op)
 DB_ENV *dbenv;
 DBT *dbt;
 DB_LSN *lsn;
 db_recops op;
{
 u_int32_t rectype;
 /* Pull the record type out of the log record. */
 memcpy(&rectype, dbt->data, sizeof(rectype));
 switch (rectype) {
 case DB_ex_apprec_mkdir:
 return (ex_apprec_mkdir_recover(dbenv, dbt, lsn, op));
 default:
 /*
 * We've hit an unexpected, allegedly user-defined record
 * type.
 */
 dbenv->errx(dbenv, "Unexpected log record type encountered");
 return (EINVAL);
 }
}

Applications use this dispatch function and the automatically generated functions as follows:

1. When the application starts, call the DB_ENV->set_app_dispatch() with your dispatch
function.

2. Issue a DB_ENV->txn_begin() call before any operations you want to be transaction-
protected.

3. Before accessing any data, issue the appropriate lock call to lock the data (either for
reading or writing).

../api_reference/C/db_printlog.html
../api_reference/C/envset_app_dispatch.html
../api_reference/C/txnbegin.html

Library Version 11.2.5.3 Application Specific Logging and Recovery

9/9/2013 DB Reference Guide Page 256

4. Before modifying any data that is transaction-protected, issue a call to the appropriate
log function.

5. Call DB_TXN->commit() to cancel all of the modifications.

The recovery functions are called in the three following cases:

1. During recovery after application or system failure, with op set to
DB_TXN_FORWARD_ROLL or DB_TXN_BACKWARD_ROLL.

2. During transaction abort, with op set to DB_TXN_ABORT.

3. On a replicated client to apply updates from the master, with op set to DB_TXN_APPLY.

For each log record type you declare, you must write the appropriate function to undo and
redo the modifications. The shell of these functions will be generated for you automatically,
but you must fill in the details.

Your code must be able to detect whether the described modifications have been applied
to the data. The function will be called with the "op" parameter set to DB_TXN_ABORT
when a transaction that wrote the log record aborts, with DB_TXN_FORWARD_ROLL and
DB_TXN_BACKWARD_ROLL during recovery, and with DB_TXN_APPLY on a replicated client.

The actions for DB_TXN_ABORT and DB_TXN_BACKWARD_ROLL should generally be the same,
and the actions for DB_TXN_FORWARD_ROLL and DB_TXN_APPLY should generally be the same.
However, if the application is using Berkeley DB replication and another thread of control
may be performing read operations while log records are applied on a replication client, the
recovery function should perform appropriate locking during DB_TXN_APPLY operations. In
this case, the recovery function may encounter deadlocks when issuing locking calls. The
application should run with the deadlock detector, and the recovery function should simply
return DB_LOCK_DEADLOCK (page 259) if a deadlock is detected and a locking operation fails
with that error.

The DB_TXN_PRINT operation should print the log record, typically using the auto-generated
print function; it is not used in the Berkeley DB library, but may be useful for debugging, as in
the db_printlog utility. Applications may safely ignore this operation code, they may handle
printing from the recovery function, or they may dispatch directly to the auto-generated print
function.

One common way to determine whether operations need to be undone or redone is the use
of log sequence numbers (LSNs). For example, each access method database page contains
the LSN of the most recent log record that describes a modification to the page. When the
access method changes a page, it writes a log record describing the change and including the
LSN that was on the page before the change. This LSN is referred to as the previous LSN. The
recovery functions read the page described by a log record, and compare the LSN on the page
to the LSN they were passed.

If the page LSN is less than the passed LSN and the operation is an undo, no action is necessary
(because the modifications have not been written to the page). If the page LSN is the same
as the previous LSN and the operation is a redo, the actions described are reapplied to the
page. If the page LSN is equal to the passed LSN and the operation is an undo, the actions are

../api_reference/C/txncommit.html
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_FORWARD_ROLL
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_BACKWARD_ROLL
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_ABORT
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_APPLY
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_ABORT
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_FORWARD_ROLL
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_BACKWARD_ROLL
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_APPLY
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_ABORT
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_BACKWARD_ROLL
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_FORWARD_ROLL
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_APPLY
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_APPLY
../api_reference/C/envset_app_dispatch.html#set_app_dispatch_DB_TXN_PRINT
../api_reference/C/db_printlog.html

Library Version 11.2.5.3 Application Specific Logging and Recovery

9/9/2013 DB Reference Guide Page 257

removed from the page; if the page LSN is greater than the passed LSN and the operation is a
redo, no further action is necessary. If the action is a redo and the LSN on the page is less than
the previous LSN in the log record, it is an error because it could happen only if some previous
log record was not processed.

Examples of other recovery functions can be found in the Berkeley DB library recovery
functions (found in files named XXX_rec.c) and in the application-specific recovery example
(specifically, ex_apprec_rec.c).

Finally, applications need to ensure that any data modifications they have made, that were
part of a committed transaction, must be written to stable storage before calling the DB_ENV-
>txn_checkpoint() method. This is to allow the periodic removal of database environment log
files.

../api_reference/C/txncheckpoint.html
../api_reference/C/txncheckpoint.html

9/9/2013 DB Reference Guide Page 258

Chapter 15. Programmer Notes
Signal handling

When applications using Berkeley DB receive signals, it is important that they exit gracefully,
discarding any Berkeley DB locks that they may hold. This is normally done by setting a flag
when a signal arrives and then checking for that flag periodically within the application.
Because Berkeley DB is not re-entrant, the signal handler should not attempt to release locks
and/or close the database handles itself. Re-entering Berkeley DB is not guaranteed to work
correctly, and the results are undefined.

If an application exits holding a lock, the situation is no different than if the application
crashed, and all applications participating in the database environment must be shut down,
and then recovery must be performed. If this is not done, databases may be left in an
inconsistent state, or locks the application held may cause unresolvable deadlocks inside the
environment, causing applications to hang.

Berkeley DB restarts all system calls interrupted by signals, that is, any underlying system calls
that return failure with errno set to EINTR will be restarted rather than failing.

Error returns to applications

Except for the historic dbm, ndbm and hsearch interfaces, Berkeley DB does not use the global
variable errno to return error values. The return values for all Berkeley DB functions are
grouped into the following three categories:
0

A return value of 0 indicates that the operation was successful.
> 0

A return value that is greater than 0 indicates that there was a system error. The
errno value returned by the system is returned by the function; for example, when a
Berkeley DB function is unable to allocate memory, the return value from the function
will be ENOMEM.

< 0
A return value that is less than 0 indicates a condition that was not a system failure,
but was not an unqualified success, either. For example, a routine to retrieve a key/
data pair from the database may return DB_NOTFOUND when the key/data pair does
not appear in the database; as opposed to the value of 0, which would be returned if
the key/data pair were found in the database.
All values returned by Berkeley DB functions are less than 0 in order to avoid conflict
with possible values of errno. Specifically, Berkeley DB reserves all values from
-30,800 to -30,999 to itself as possible error values. There are a few Berkeley DB
interfaces where it is possible for an application function to be called by a Berkeley
DB function and subsequently fail with an application-specific return. Such failure
returns will be passed back to the function that originally called a Berkeley DB
interface. To avoid ambiguity about the cause of the error, error values separate from
the Berkeley DB error name space should be used.

Although possible error returns are specified by each individual function's manual page, there
are a few error returns that deserve general mention:

../api_reference/C/dbm.html
../api_reference/C/dbm.html
../api_reference/C/hsearch.html

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 259

DB_NOTFOUND and DB_KEYEMPTY

There are two special return values that are similar in meaning and that are returned in
similar situations, and therefore might be confused: DB_NOTFOUND and DB_KEYEMPTY.

The DB_NOTFOUND error return indicates that the requested key/data pair did not exist in the
database or that start-of- or end-of-file has been reached by a cursor.

The DB_KEYEMPTY error return indicates that the requested key/data pair logically exists
but was never explicitly created by the application (the Recno and Queue access methods
will automatically create key/data pairs under some circumstances; see DB->open() for more
information), or that the requested key/data pair was deleted and never re-created. In
addition, the Queue access method will return DB_KEYEMPTY for records that were created as
part of a transaction that was later aborted and never re-created.

DB_KEYEXIST

The DB_KEYEXIST error return indicates the DB_NOOVERWRITE option was specified when
inserting a key/data pair into the database and the key already exists in the database, or the
DB_NODUPDATA option was specified and the key/data pair already exists in the data.

DB_LOCK_DEADLOCK

When multiple threads of control are modifying the database, there is normally the potential
for deadlock. In Berkeley DB, deadlock is signified by an error return from the Berkeley
DB function of the value DB_LOCK_DEADLOCK. Whenever a Berkeley DB function returns
DB_LOCK_DEADLOCK, the enclosing transaction should be aborted.

Any Berkeley DB function that attempts to acquire locks can potentially return
DB_LOCK_DEADLOCK. Practically speaking, the safest way to deal with applications that can
deadlock is to anticipate a DB_LOCK_DEADLOCK return from any DB or DBC handle method
call, or any DB_ENV handle method call that references a database, including the database's
backing physical file.

DB_LOCK_NOTGRANTED

If a lock is requested from the DB_ENV->lock_get() or DB_ENV->lock_vec() methods with the
DB_LOCK_NOWAIT flag specified, the method will return DB_LOCK_NOTGRANTED if the lock is
not immediately available.

If the DB_TIME_NOTGRANTED flag is specified to the DB_ENV->set_flags() method,
database calls timing out based on lock or transaction timeout values will return
DB_LOCK_NOTGRANTED instead of DB_LOCK_DEADLOCK.

DB_RUNRECOVERY

There exists a class of errors that Berkeley DB considers fatal to an entire Berkeley DB
environment. An example of this type of error is a corrupted database page. The only way to
recover from these failures is to have all threads of control exit the Berkeley DB environment,
run recovery of the environment, and re-enter Berkeley DB. (It is not strictly necessary that
the processes exit, although that is the only way to recover system resources, such as file
descriptors and memory, allocated by Berkeley DB.)

../api_reference/C/dbopen.html
../api_reference/C/dbput.html#put_DB_NOOVERWRITE
../api_reference/C/dbput.html#put_DB_NODUPDATA
../api_reference/C/db.html
../api_reference/C/dbc.html
../api_reference/C/env.html
../api_reference/C/lockget.html
../api_reference/C/lockvec.html
../api_reference/C/lockvec.html#vec_DB_LOCK_NOWAIT
../api_reference/C/envset_flags.html#envset_flags_DB_TIME_NOTGRANTED
../api_reference/C/envset_flags.html

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 260

When this type of error is encountered, the error value DB_RUNRECOVERY is returned. This
error can be returned by any Berkeley DB interface. Once DB_RUNRECOVERY is returned by
any interface, it will be returned from all subsequent Berkeley DB calls made by any threads
of control participating in the environment.

Applications can handle such fatal errors in one of two ways: first, by checking for
DB_RUNRECOVERY as part of their normal Berkeley DB error return checking, similarly to
DB_LOCK_DEADLOCK or any other error. Alternatively, applications can specify a fatal-error
callback function using the DB_ENV->set_event_notify() method. Applications with no cleanup
processing of their own should simply exit from the callback function.

DB_SECONDARY_BAD

The DB_SECONDARY_BAD error is returned if a secondary index has been corrupted. This may
be the result of an application operating on related databases without first associating them.

Environment variables

The Berkeley DB library uses the following environment variables:

DB_HOME
If the environment variable DB_HOME is set, it is used as part of File naming (page
132). Note: For the DB_HOME variable to take effect, either the DB_USE_ENVIRON or
DB_USE_ENVIRON_ROOT flags must be specified to DB_ENV->open().

TMPDIR, TEMP, TMP, TempFolder
The TMPDIR, TEMP, TMP, and TempFolder environment variables are all checked as
locations in which to create temporary files. See DB_ENV->set_tmp_dir() for more
information.

Multithreaded applications

Berkeley DB fully supports multithreaded applications. The Berkeley DB library is not itself
multithreaded, and was deliberately architected to not use threads internally because of
the portability problems that would introduce. Database environment and database object
handles returned from Berkeley DB library functions are free-threaded. No other object
handles returned from the Berkeley DB library are free-threaded. The following rules should
be observed when using threads to access the Berkeley DB library:

1. The DB_THREAD flag must be specified to the DB_ENV->open() and DB->open() methods
if the Berkeley DB handles returned by those interfaces will be used in the context of
more than one thread. Setting the DB_THREAD flag inconsistently may result in database
corruption.

Threading is assumed in the Java API, so no special flags are required; and Berkeley DB
functions will always behave as if the DB_THREAD flag was specified.

Only a single thread may call the DB_ENV->close() or DB->close() methods for a returned
environment or database handle.

No other Berkeley DB handles are free-threaded.

../api_reference/C/envevent_notify.html
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON
../api_reference/C/envopen.html#envopen_DB_USE_ENVIRON_ROOT
../api_reference/C/envopen.html
../api_reference/C/envset_tmp_dir.html
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/envopen.html
../api_reference/C/dbopen.html
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/envclose.html
../api_reference/C/dbclose.html

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 261

2. When using the non-cursor Berkeley DB calls to retrieve key/data items (for example,
DB->get()), the memory to which the pointer stored into the Dbt refers is valid only until
the next call using the DB handle returned by DB->open(). This includes any use of the
returned DB handle, including by another thread within the process.

For this reason, if the DB_THREAD handle was specified to the DB->open() method, either
DB_DBT_MALLOC, DB_DBT_REALLOC or DB_DBT_USERMEM must be specified in the DBT
when performing any non-cursor key or data retrieval.

3. Cursors may not span transactions. Each cursor must be allocated and deallocated within
the same transaction.

Transactions and cursors may span threads, but only serially, that is, the application must
serialize access to the TXN and DBC handles. In the case of nested transactions, since all
child transactions are part of the same parent transaction, they must observe the same
constraints. That is, children may execute in different threads only if each child executes
serially.

4. User-level synchronization mutexes must have been implemented for the compiler/
architecture combination. Attempting to specify the DB_THREAD flag will fail if fast
mutexes are not available.

If blocking mutexes are available (for example POSIX pthreads), they will be used.
Otherwise, the Berkeley DB library will make a system call to pause for some amount
of time when it is necessary to wait on a lock. This may not be optimal, especially in
a thread-only environment, in which it is usually more efficient to explicitly yield the
processor to another thread.

It is possible to specify a yield function on an per-application basis. See
db_env_set_func_yield for more information.

It is possible to specify the number of attempts that will be made to acquire the mutex
before waiting. See DB_ENV->mutex_set_tas_spins() for more information.

When creating multiple databases in a single physical file, multithreaded programs may have
additional requirements. For more information, see Opening multiple databases in a single
file (page 43)

Berkeley DB handles
The Berkeley DB library has a number of object handles. The following table lists those
handles, their scope, and whether they are free-threaded (that is, whether multiple threads
within a process can share them).
DB_ENV

The DB_ENV handle, created by the db_env_create() method, refers to a Berkeley
DB database environment — a collection of Berkeley DB subsystems, log files and
databases. DB_ENV handles are free-threaded if the DB_THREAD flag is specified to
the DB_ENV->open() method when the environment is opened. The handle should
not be closed while any other handle remains open that is using it as a reference (for
example, DB, TXN). Once either the DB_ENV->close() or DB_ENV->remove() methods
are called, the handle may not be accessed again, regardless of the method's return.

../api_reference/C/dbget.html
../api_reference/C/db.html
../api_reference/C/dbopen.html
../api_reference/C/db.html
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/dbopen.html
../api_reference/C/dbt.html#dbt_DB_DBT_MALLOC
../api_reference/C/dbt.html#dbt_DB_DBT_REALLOC
../api_reference/C/dbt.html#dbt_DB_DBT_USERMEM
../api_reference/C/dbt.html
../api_reference/C/txn.html
../api_reference/C/dbc.html
../api_reference/C/db_env_set_func_yield.html
../api_reference/C/mutexset_tas_spins.html
../api_reference/C/env.html
../api_reference/C/env.html
../api_reference/C/envcreate.html
../api_reference/C/env.html
../api_reference/C/envopen.html#envopen_DB_THREAD
../api_reference/C/envopen.html
../api_reference/C/db.html
../api_reference/C/txn.html
../api_reference/C/envclose.html
../api_reference/C/envremove.html

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 262

TXN
The TXN handle, created by the DB_ENV->txn_begin() method, refers to a single
transaction. The handle is not free-threaded. Transactions may span threads, but
only serially, that is, the application must serialize access to the TXN handles. In the
case of nested transactions, since all child transactions are part of the same parent
transaction, they must observe the same constraints. That is, children may execute in
different threads only if each child executes serially.

Once the DB_TXN->abort() or DB_TXN->commit() methods are called, the handle
may not be accessed again, regardless of the method's return. In addition, parent
transactions may not issue any Berkeley DB operations while they have active child
transactions (child transactions that have not yet been committed or aborted) except
for DB_ENV->txn_begin(), DB_TXN->abort() and DB_TXN->commit().

DB_LOGC
The DB_LOGC handle refers to a cursor into the log files. The handle is not free-
threaded. Once the DB_LOGC->close() method is called, the handle may not be
accessed again, regardless of the method's return.

DB_MPOOLFILE
The DB_MPOOLFILE handle refers to an open file in the shared memory buffer pool of
the database environment. The handle is not free-threaded. Once the DB_MPOOLFILE-
>close() method is called, the handle may not be accessed again, regardless of the
method's return.

DB
The DB handle, created by the db_create() method, refers to a single Berkeley DB
database, which may or may not be part of a database environment. DB handles are
free-threaded if the DB_THREAD flag is specified to the DB->open() method when the
database is opened or if the database environment in which the database is opened
is free-threaded. The handle should not be closed while any other handle that refers
to the database is in use; for example, database handles should be left open while
cursor handles into the database remain open, or transactions that include operations
on the database have not yet been committed or aborted. Once the DB->close(),
DB->remove() or DB->rename() methods are called, the handle may not be accessed
again, regardless of the method's return.

DBC
The DBC handle refers to a cursor into a Berkeley DB database. The handle is not free-
threaded. Cursors may span threads, but only serially, that is, the application must
serialize access to the DBC handles. If the cursor is to be used to perform operations
on behalf of a transaction, the cursor must be opened and closed within the context
of that single transaction. Once DBC->close() has been called, the handle may not be
accessed again, regardless of the method's return.

Name spaces

C Language Name Space

The Berkeley DB library is careful to avoid C language programmer name spaces, but there
are a few potential areas for concern, mostly in the Berkeley DB include file db.h. The db.h

../api_reference/C/txn.html
../api_reference/C/txn.html
../api_reference/C/txnbegin.html
../api_reference/C/txn.html
../api_reference/C/txnabort.html
../api_reference/C/txncommit.html
../api_reference/C/txnbegin.html
../api_reference/C/txnabort.html
../api_reference/C/txncommit.html
../api_reference/C/logc.html
../api_reference/C/logc.html
../api_reference/C/logcclose.html
../api_reference/C/memp.html
../api_reference/C/memp.html
../api_reference/C/mempfclose.html
../api_reference/C/mempfclose.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbcreate.html
../api_reference/C/db.html
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/dbopen.html
../api_reference/C/dbclose.html
../api_reference/C/dbremove.html
../api_reference/C/dbrename.html
../api_reference/C/dbc.html
../api_reference/C/dbc.html
../api_reference/C/dbc.html
../api_reference/C/dbcclose.html

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 263

include file defines a number of types and strings. Where possible, all of these types and
strings are prefixed with "DB_" or "db_". There are a few notable exceptions.

The Berkeley DB library uses a macro named "__P" to configure for systems that do not provide
ANSI C function prototypes. This could potentially collide with other systems using a "__P"
macro for similar or different purposes.

The Berkeley DB library needs information about specifically sized types for each architecture.
If they are not provided by the system, they are typedef'd in the db.h include file. The types
that may be typedef'd by db.h include the following: u_int8_t, int16_t, u_int16_t, int32_t,
u_int32_t, u_char, u_short, u_int, and u_long.

The Berkeley DB library declares a few external routines. All these routines are prefixed with
the strings "db_". All internal Berkeley DB routines are prefixed with the strings "__XXX_",
where "XXX" is the subsystem prefix (for example, "__db_XXX_" and "__txn_XXX_").

Filesystem Name Space

Berkeley DB environments create or use some number of files in environment home
directories. These files are named DB_CONFIG, "log.NNNNN" (for example, log.0000000003,
where the number of digits following the dot is unspecified), or with the string prefix
"__db" (for example, __db.001). Applications should never create files or databases in
database environment home directories with names beginning with the characters "log" or
"__db".

In some cases, applications may choose to remove Berkeley DB files as part of their cleanup
procedures, using system utilities instead of Berkeley DB interfaces (for example, using the
UNIX rm utility instead of the DB_ENV->remove() method). This is not a problem, as long as
applications limit themselves to removing only files named "__db.###", where "###" are the
digits 0 through 9. Applications should never remove any files named with the prefix "__db" or
"log", other than "__db.###" files.

Memory-only or Flash configurations

Berkeley DB supports a variety of memory-based configurations for systems where filesystem
space is either limited in availability or entirely replaced by some combination of memory and
Flash. In addition, Berkeley DB can be configured to minimize writes to the filesystem when
the filesystem is backed by Flash memory.

There are four parts of the Berkeley DB database environment normally written to the
filesystem: the database environment region files, the database files, the database
environment log files and the replication internal files. Each of these items can be configured
to live in memory rather than in the filesystem:

The database environment region files:
Each of the Berkeley DB subsystems in a database environment is described by one
or more regions, or chunks of memory. The regions contain all of the per-process
and per-thread shared information (including mutexes), that comprise a Berkeley DB
environment. By default, these regions are backed by the filesystem. In situations
where filesystem backed regions aren't optimal, applications can create memory-only

../api_reference/C/envremove.html

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 264

database environments in two different types of memory: either in the application's
heap memory or in system shared memory.

To create the database environment in heap memory, specify the DB_PRIVATE flag
to the DB_ENV->open() method. Note that database environments created in heap
memory are only accessible to the threads of a single process, however.

To create the database environment in system shared memory, specify the
DB_SYSTEM_MEM flag to the DB_ENV->open() method. Database environments created
in system memory are accessible to multiple processes, but note that database
environments created in system shared memory do create a small (roughly 8 byte)
file in the filesystem, read by the processes to identify which system shared memory
segments to use.

For more information, see Shared memory regions (page 135).
The database files:

By default, databases are periodically flushed from the Berkeley DB memory cache
to backing physical files in the filesystem. To keep databases from being written
to backing physical files, pass the DB_MPOOL_NOFILE flag to the DB_MPOOLFILE-
>set_flags() method. This flag implies the application's databases must fit entirely in
the Berkeley DB cache, of course. To avoid a database file growing to consume the
entire cache, applications can limit the size of individual databases in the cache by
calling the DB_MPOOLFILE->set_maxsize() method.

The database environment log files:
If a database environment is not intended to be transactionally recoverable after
application or system failure (that is, if it will not exhibit the transactional attribute
of "durability"), applications should not configure the database environment for
logging or transactions, in which case no log files will be created. If the database
environment is intended to be durable, log files must either be written to stable
storage and recovered after application or system failure, or they must be replicated
to other systems.

In applications running on systems without any form of stable storage, durability must
be accomplished through replication. In this case, database environments should be
configured to maintain database logs in memory, rather than in the filesystem, by
specifying the DB_LOG_IN_MEMORY flag to the DB_ENV->log_set_config() method.

The replication internal files:
By default, Berkeley DB replication stores a small amount of internal data in the
filesystem. To store this replication internal data in memory only and not in the
filesystem, specify the DB_REP_CONF_INMEM flag to the DB_ENV->rep_set_config()
method before opening the database environment.

In systems where the filesystem is backed by Flash memory, the number of times the Flash
memory is written may be a concern. Each of the four parts of the Berkeley DB database
environment normally written to the filesystem can be configured to minimize the number of
times the filesystem is written:
The database environment region files:

On a Flash-based filesystem, the database environment should be placed in heap or
system memory, as described previously.

../api_reference/C/envopen.html#envopen_DB_PRIVATE
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_SYSTEM_MEM
../api_reference/C/envopen.html
../api_reference/C/mempset_flags.html#mpool_set_flags_DB_MPOOL_NOFILE
../api_reference/C/mempset_flags.html
../api_reference/C/mempset_flags.html
../api_reference/C/mempset_maxsize.html
../api_reference/C/envlog_set_config.html#log_set_config_DB_LOG_IN_MEMORY
../api_reference/C/envlog_set_config.html
../api_reference/C/repconfig.html#config_DB_REP_CONF_INMEM
../api_reference/C/repconfig.html

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 265

The database files:
The Berkeley DB library maintains a cache of database pages. The database pages are
only written to backing physical files when the application checkpoints the database
environment with the DB_ENV->txn_checkpoint() method, when database handles are
closed with the DB->close() method, or when the application explicitly flushes the
cache with the DB->sync() or DB_ENV->memp_sync() methods.

To avoid unnecessary writes of Flash memory due to checkpoints, applications
should decrease the frequency of their checkpoints. This is especially important in
applications which repeatedly modify a specific database page, as repeatedly writing
a database page to the backing physical file will repeatedly update the same blocks of
the filesystem.

To avoid unnecessary writes of the filesystem due to closing a database handle,
applications should specify the DB_NOSYNC flag to the DB->close() method.

To avoid unnecessary writes of the filesystem due to flushing the cache, applications
should not explicitly flush the cache under normal conditions – flushing the cache is
rarely if ever needed in a normally-running application.

The database environment log files:
The Berkeley DB log files do not repeatedly overwrite the same blocks of the
filesystem as the Berkeley DB log files are not implemented as a circular buffer and
log files are not re-used. For this reason, the Berkeley DB log files should not cause
any difficulties for Flash memory configurations.

However, as Berkeley DB does not write log records in filesystem block sized pieces, it
is probable that sequential transaction commits (each of which flush the log file to the
backing filesystem), will write a block of Flash memory twice, as the last log record
from the first commit will write the same block of Flash memory as the first log record
from the second commit. Applications not requiring absolute durability should specify
the DB_TXN_WRITE_NOSYNC or DB_TXN_NOSYNC flags to the DB_ENV->set_flags()
method to avoid this overwrite of a block of Flash memory.

The replication internal files:
On a Flash-based filesystem, the replication internal data should be stored in memory
only, as described previously.

Disk drive caches

Many disk drives contain onboard caches. Some of these drives include battery-backup or
other functionality that guarantees that all cached data will be completely written if the
power fails. These drives can offer substantial performance improvements over drives without
caching support. However, some caching drives rely on capacitors or other mechanisms that
guarantee only that the write of the current sector will complete. These drives can endanger
your database and potentially cause corruption of your data.

To avoid losing your data, make sure the caching on your disk drives is properly configured
so the drive will never report that data has been written unless the data is guaranteed to be
written in the face of a power failure. Many times, this means that write-caching on the disk
drive must be disabled.

../api_reference/C/txncheckpoint.html
../api_reference/C/dbclose.html
../api_reference/C/dbsync.html
../api_reference/C/mempsync.html
../api_reference/C/dbclose.html#dbclose_DB_NOSYNC
../api_reference/C/dbclose.html
../api_reference/C/envset_flags.html#set_flags_DB_TXN_WRITE_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 266

Copying or moving databases

There are two issues with copying or moving databases: database page log sequence numbers
(LSNs), and database file identification strings.

Because database pages contain references to the database environment log records (LSNs),
databases cannot be copied or moved from one transactional database environment to
another without first clearing the LSNs. Note that this is not a concern for non-transactional
database environments and applications, and can be ignored if the database is not being used
transactionally. Specifically, databases created and written non-transactionally (for example,
as part of a bulk load procedure), can be copied or moved into a transactional database
environment without resetting the LSNs. The database's LSNs may be reset in one of three
ways: the application can call the DB_ENV->lsn_reset() method to reset the LSNs in place, or a
system administrator can reset the LSNs in place using the -r option to the db_load utility, or
by dumping and reloading the database (using the db_dump utility and the db_load utility).

Because system file identification information (for example, filenames, device and inode
numbers, volume and file IDs, and so on) are not necessarily unique or maintained across
system reboots, each Berkeley DB database file contains a unique 20-byte file identification
bytestring. When multiple processes or threads open the same database file in Berkeley DB, it
is this bytestring that is used to ensure the same underlying pages are updated in the database
environment cache, no matter which Berkeley DB handle is used for the operation.

The database file identification string is not a concern when moving databases, and databases
may be moved or renamed without resetting the identification string. However, when copying
a database, you must ensure there are never two databases with the same file identification
bytestring in the same cache at the same time. Copying databases is further complicated
because Berkeley DB caches do not discard cached database pages when database handles are
closed. Cached pages are only discarded when the database is removed by calling the DB_ENV-
>remove() or DB->remove() methods.

Before physically copying a database file, first ensure that all modified pages have been
written from the cache to the backing database file. This is done using the DB->sync() or DB-
>close() methods.

Before using a copy of a database file in a database environment, you must ensure that
all pages from any other database with the same bytestring have been removed from the
memory pool cache. If the environment in which you will open the copy of the database has
pages from files with identical bytestrings to the copied database, there are a few possible
solutions:

1. Remove the environment, either using system utilities or by calling the DB_ENV->remove()
method. Obviously, this will not allow you to access both the original database and the
copy of the database at the same time.

2. Create a new file that will have a new bytestring. The simplest way to create a new file
that will have a new bytestring is to call the db_dump utility to dump out the contents of
the database and then use the db_load utility to load the dumped output into a new file.
This allows you to access both the original and copy of the database at the same time.

../api_reference/C/envlsn_reset.html
../api_reference/C/db_load.html
../api_reference/C/db_dump.html
../api_reference/C/db_load.html
../api_reference/C/envremove.html
../api_reference/C/envremove.html
../api_reference/C/dbremove.html
../api_reference/C/dbsync.html
../api_reference/C/dbclose.html
../api_reference/C/dbclose.html
../api_reference/C/envremove.html
../api_reference/C/db_dump.html
../api_reference/C/db_load.html

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 267

3. If your database is too large to be dumped and reloaded, you can copy the database by
other means, and then reset the bytestring in the copied database to a new bytestring.
There are two ways to reset the bytestring in the copy: the application can call the
DB_ENV->fileid_reset() method, or a system administrator can use the -r option to the
db_load utility. This allows you to access both the original and copy of the database at the
same time.

Compatibility with historic UNIX interfaces

The Berkeley DB version 2 library provides backward-compatible interfaces for the historic
UNIX dbm, ndbm and hsearch interfaces. It also provides a backward-compatible interface for
the historic Berkeley DB 1.85 release.

Berkeley DB version 2 does not provide database compatibility for any of the previous
interfaces, and existing databases must be converted manually. To convert existing
databases from the Berkeley DB 1.85 format to the Berkeley DB version 2 format, review the
db_dump185 utility and the db_load utility information. No utilities are provided to convert
UNIX dbm, ndbm or hsearch databases.

Run-time configuration

It is possible for applications to configure Berkeley DB at run-time to redirect Berkeley DB
library and system calls to alternate interfaces. For example, an application might want
Berkeley DB to call debugging memory allocation routines rather than the standard C library
interfaces. The following interfaces support this functionality:

• db_env_set_func_close

• db_env_set_func_dirfree

• db_env_set_func_dirlist

• db_env_set_func_exists

• db_env_set_func_file_map

• db_env_set_func_free

• db_env_set_func_fsync

• db_env_set_func_ftruncate

• db_env_set_func_ioinfo

• db_env_set_func_malloc

• db_env_set_func_open

• db_env_set_func_pread

• db_env_set_func_pwrite

• db_env_set_func_read

../api_reference/C/envfileid_reset.html
../api_reference/C/db_load.html
../api_reference/C/dbm.html
../api_reference/C/dbm.html
../api_reference/C/hsearch.html
../api_reference/C/db_dump.html
../api_reference/C/db_load.html
../api_reference/C/dbm.html
../api_reference/C/dbm.html
../api_reference/C/hsearch.html
../api_reference/C/db_env_set_func_close.html
../api_reference/C/db_env_set_func_dirfree.html
../api_reference/C/db_env_set_func_dirlist.html
../api_reference/C/db_env_set_func_exists.html
../api_reference/C/db_env_set_func_file_map.html
../api_reference/C/db_env_set_func_free.html
../api_reference/C/db_env_set_func_fsync.html
../api_reference/C/db_env_set_func_ftruncate.html
../api_reference/C/db_env_set_func_ioinfo.html
../api_reference/C/db_env_set_func_malloc.html
../api_reference/C/db_env_set_func_open.html
../api_reference/C/db_env_set_func_pread.html
../api_reference/C/db_env_set_func_pwrite.html
../api_reference/C/db_env_set_func_read.html

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 268

• db_env_set_func_realloc

• db_env_set_func_region_map

• db_env_set_func_rename

• db_env_set_func_seek

• db_env_set_func_unlink

• db_env_set_func_write

• db_env_set_func_yield

These interfaces are available only on POSIX platforms and from the Berkeley DB C language
API.

A not-uncommon problem for applications is the new API in Solaris 2.6 for manipulating large
files. Because this API was not part of Solaris 2.5, it is difficult to create a single binary that
takes advantage of the large file functionality in Solaris 2.6, but still runs on Solaris 2.5.
Example code that supports this is included in the Berkeley DB distribution, however, the
example code was written using previous versions of the Berkeley DB APIs, and is only useful
as an example.

Performance Event Monitoring

The Performance Event Monitoring feature uses Solaris DTrace or Linux SystemTap to "publish"
interesting events as they occur inside of Berkeley DB. The operating system utilities dtrace
or stap run scripts which select, analyze, and display events. There is no need to modify the
application. Any application which uses that Berkeley DB library can be monitored. For more
information about these instrumentation tools refer to the following pages:
DTrace

http://www.oracle.com/technetwork/systems/dtrace/dtrace/index-jsp-137532.html
SystemTap

http://sourceware.org/systemtap/

Performance Event Monitoring is available for operating systems where DTrace or SystemTap
supports static probe points in user applications, such as Solaris 10 and OpenSolaris,
some versions of Linux, and Mac OS X 10.6 and later. By including --enable-dtrace to the
configuration options, the resulting libraries will include probe points for these event
categories:

• database operations: opening a database or cursor, get, put, delete.

• internal operations regarding disk allocation, transactions, concurrency control, and
caching.

• the beginning and ending of waiting periods due to conflicting transactional consistency
locks (for example, page locks), mutexes, or shared latches.

• timing dependent code paths which are expected to be infrequent. These could raise
concerns if they were to happen too often.

../api_reference/C/db_env_set_func_realloc.html
../api_reference/C/db_env_set_func_region_map.html
../api_reference/C/db_env_set_func_rename.html
../api_reference/C/db_env_set_func_seek.html
../api_reference/C/db_env_set_func_unlink.html
../api_reference/C/db_env_set_func_write.html
../api_reference/C/db_env_set_func_yield.html
solaris.txt
http://www.oracle.com/technetwork/systems/dtrace/dtrace/index-jsp-137532.html
http://sourceware.org/systemtap/

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 269

These probe points are implemented as user-level statically defined traces (USDT's) for
DTrace, and static userspace markers for SystemTap.

To monitor the statistics values as they are updated include the --enable-perfmon-statistics
configuration option. This option generates probe points for updates to many of the counters
whose values are displayed by the db_stat utility or returned by the various statistics
functions. The "cache" example script uses a few of these probe points.

Performance Event Monitoring is intended to be suitable for production applications. Running
Berkeley DB with DTrace or SystemTap support built in has little effect on execution speed
until probes are enabled at runtime by the dtrace or stap programs.

The list of available events may be displayed by running 'make listprobes' after building the
libdb-5.3 shared library.

Using the DTrace Provider

The DTrace probe provider for Berkeley DB is named 'bdb'. A simple dtrace command to
monitor all dtrace-enabled Berkeley DB activity in the system is:

dtrace -Zn 'bdb*::: { printf("%s", probename); }'

DTrace requires elevated privileges in order to run. On Solaris you can avoid running as root
by giving any users who need to run dtrace the dtrace_proc or dtrace_user privilege in /etc/
user_attr.

DTrace works on both 32 and 64 bit applications. However, when tracing a 32-bit application
on a 64-bit processor it might be necessary to pass a "32 bit" option to dtrace. Without this
option the D language might use a pointer size of 8 bytes, which could cause pointer values
(and structures containing them) to be processed incorrectly. Use the -32 option on Solaris; on
Mac OS X use -arch i386.

Using SystemTap

SystemTap looks up its static userspace markers in the library name specified in the stap
script. A simple stap command to list the probes of the default Berkeley DB installation is:

stap -l 'process("/usr/local/BerkeleyDB.5.3/lib/libdb-5.3.so").mark("*")'

Berkeley DB supports SystemTap version 1.1 or later. Building with userspace marker support
requires sys/sdt.h, which is often available in the package systemtap-sdt-devel. Running
stap with userspace markers requires that the kernel have "utrace" support; see http://
sourceware.org/systemtap/wiki/utrace for more information.

SystemTap needs elevated privileges in order to run. You can avoid running as root by adding
the users who need to run stap to the group stapdev.

Example Scripts

Berkeley DB includes several example scripts, in both DTrace and SystemTap versions. The
DTrace examples end with a .d suffix and are located in util/dtrace. The SystemTap

http://sourceware.org/systemtap/wiki/utrace
http://sourceware.org/systemtap/wiki/utrace

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 270

examples have a .stp suffix and can found be in util/systemtap. The Berkeley DB shared
library name, including any necessary path, is expected as the first parameter to the
SystemTap examples.

apicalls
This script graphs the count of the main API calls. The result is grouped by thread of
the target process.

apitimes
This script graphs the time spent in the main API calls, grouped by thread.

apitrace
This script displays the entry to and return from each of the main API calls.

cache
This script displays overall and per-file buffer cache statistics every N (default: 1)
seconds for M (default: 60) intervals. It prints the number of cache hits, misses, and
evictions for each file with any activity during the interval.

dbdefs
This contains DTrace-compatible declarations of Berkeley DB data structures
returned from probe points. There is no Linux equivalent; SystemTap can obtain type
information directly from the debugging symbols compiled into the libdb*-5.3.so
shared library.

locktimes
This script graphs the time spent waiting for DB page locks. The result times in
nanoseconds are grouped by filename, pgno, and lock_mode. The optional integer
maxcount parameter directs the script to exit once that many page lock waits have
been measured.

locktimesid
This is similar to the locktimes script above, except that it displays the 20 byte
file identifier rather than the file name. This can be useful when there are several
environments involved, or when database files are recreated during the monitoring
period.

mutex
This script measures mutex wait periods, summarizing the results two ways.

• The first grouping is by mutex, mode (exclusive or shared), and thread id.

• The second grouping is by the mutex category and mode (exclusive or shared). The
mutex categories are the MTX_XXX definitions in dbinc/mutex.h.

showerror
This script displays the application stack when the basic error routines are called.
It provides additional information about an error, beyond the string sent to the
diagnostic output.

These examples are designed to trace a single process. They run until interrupted, or the
monitored process exits, or the limit as given in an optional 'maximum count' argument has
been reached.

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 271

Performance Events Reference

The events are described below as if they were functions with ANSI C-style signatures. The
values each event provides to DTrace or SystemTap are the arguments to the functions.

alloc
The alloc class covers the allocation of "on disk" database pages.

alloc-new (char *file, char *db, unsigned pgno, unsigned type, struct _db_page
*pg, int ret);

An attempt to allocate a database page of type 'type' for database 'db'
returned 'ret'. If the allocation succeeded then ret is 0, pgno is the location of
the new page, and pg is the address of the new page. Details of the page can
be extracted from the pg pointer.

alloc-free (char *file, char *db, unsigned pgno, unsigned ret);
An attempt to free the page 'pgno' of 'db' returned 'ret'. When successful the
page is returned to the free list or the file is truncated.

alloc-btree_split (char *file, char *db, unsigned pgno, unsigned parent, unsigned
level);

A btree split of pgno in db is being attempted. The parent page number and
the level in the btree are also provided.

db
These DB API calls provide the name of the file and database being accessed. In-
memory databases will have a NULL (0) file name address. The db name will be null
unless subdatabases are in use.

db-open (char *file, char *db, unsigned flags, uint8_t *fileid);
The database or file name was opened. The 20 byte unique fileid can be used
to keep track of databases as they are created and destroyed.

db-close (char *file, char *db, unsigned flags, uint8_t *fileid);
The database or file name was closed.

db-cursor (char *file, char *db, unsigned txnid, unsigned flags, uint8_t *fileid);
An attempt is being made to open a cursor on the database or file.

db-get (char *file, char *db, unsigned txnid, DBT *key, DBT *data, unsigned flags);
An attempt is being made to get data from a db.

db-put (char *file, char *db, unsigned txnid, DBT *key, DBT *data, unsigned flags);
An attempt is being made to put data to a db.

db-del (char *file, char *db, unsigned txnid, DBT *key, unsigned flags);
An attempt is being made to delete data from a db.

lock
The lock class monitors the transactional consistency locks: page, record, and
database. It also monitors the non-transactional file handle locks.

lock-suspend (DBT *lock, db_lockmode_t lock_mode);
The thread is about to suspend itself because another locker already has a
conflicting lock on object 'lock'. The lock DBT's data points to a __db_ilock

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 272

structure, except for the atypical program which uses application specific
locking.

lock-resume (DBT *lock, db_lockmode_t lock_mode);
The thread is awakening from a suspend.

lock-put (struct __sh_dbt *lock, unsigned flags);
The lock is being freed.

lock-put_reduce_count (struct __sh_dbt *lock, unsigned flags);
The lock would have been freed except that its refcount was greater than 1.

These lock counters are included by --enable-perfmon-statistics.

lock-deadlock (unsigned st_ndeadlocks, unsigned locker_id, struct __sh_dbt
*lock_obj);

The locker_id's lock request in lock_obj is about to be aborted in order to
resolve a deadlock. The lock region's st_ndeadlocks has been incremented.

lock-nowait_notgranted (unsigned count, DBT *lock, unsigned locker_id);
A DB_LOCK_NOWAIT lock request by locker_id would have had to wait. The
lock regions's st_lock_nowait has been incremented and the request returns
DB_LOCK_NOTGRANTED.

lock-steal (unsigned st_locksteals, unsigned from, unsigned to);
A lock is being stolen from one partition for another one. The 'from' lock
partition's st_locksteals has been incremented.

lock-object_steal (unsigned st_objectsteals, unsigned from, unsigned to);
A lock object is being stolen from one partition for another one. The 'from'
lock partition's st_objectsteals has been incremented.

lock-locktimeout (unsigned st_nlocktimeouts, const DBT *lock);
A lock wait expired due to the lock request timeout.

lock-txntimeout (unsigned st_ntxntimeouts, const DBT *lock);
A lock wait expired due to the transaction's timeout.

lock-nlockers (unsigned active, unsigned locker_id);
The allocation or deallocation of the locker id changed the number of active
locker identifiers.

lock-maxnlockers (unsigned new_max_active, unsigned locker_id);
The allocation of the locker id set a new maximum number of active locker
identifiers.

mpool
The mpool class monitors the allocation and management of memory, including the
cache.

mpool-read (char *file, unsigned pgno, struct __bh *buf);
Read a page from file into buf.

mpool-write (char *file, unsigned pgno, struct __bh *buf);
Write a page from buf to file.

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 273

mpool-env_alloc (unsigned size, unsigned region_id, unsigned reg_type);
This is an attempt to allocate size bytes from region_id. The reg_type is one
of the reg_type_t enum values.

mpool-evict (char *file, unsigned pgno, struct __bh *buf);
The page is about to be removed from the cache.

mpool-alloc_wrap (unsigned alloc_len, int region_id, int wrap_count, int
put_counter);

The memory allocator has incremented wrap_count after searching through
the entire region without being able to fulfill the request for alloc_len bytes.
As wrap_count increases the library makes more effort to allocate space.

These mpool counters are included by --enable-perfmon-statistics.

mpool-clean_eviction (unsigned st_ro_evict, unsigned region_id);
The eviction of a clean page from a cache incremented st_ro_evict.

mpool-dirty_eviction (unsigned st_rw_evict, unsigned region_id);
The eviction of a dirty page from a cache incremented st_rw_evict. The page
has already been written out.

mpool-fail (unsigned failure_count, unsigned alloc_len, unsigned region_id);
An attempt to allocate memory from region_id failed.

mpool-hash_search (unsigned st_hash_searches, char *file, unsigned pgno);
A search for pgno of file incremented st_hash_searches.

mpool-hash_examined (unsigned st_hash_examined, char *file, unsigned pgno);
A search for pgno of file increased st_hash_examined by the number of hash
buckets examined.

mpool-hash_longest (unsigned st_hash_longest, char *file, unsigned pgno);
A search for pgno of file set a new maximum st_hash_longest value.

mpool-map (unsigned st_map, char *file, unsigned pgno);
A file's st_map count was incremented after a page was mapped into memory.
The mapping might have caused disk I/O.

mpool-hit (unsigned st_cache_hit, char *file, unsigned pgno);
The hit count was incremented because pgno from file was found in the
cache.

mpool-miss (unsigned st_cache_miss, char *file, unsigned pgno);
The miss count was incremented because pgno from file was not already
present in the cache.

mpool-page_create (unsigned st_page_create, char *file, unsigned pgno);
The st_page_create field was incremented because the pgno of file was
created in the cache.

mpool-page_in (unsigned st_page_in, char *file, unsigned pgno);
The st_page_in field was incremented because the pgno from file was read
into the cache.

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 274

mpool-page_out (unsigned st_page_out, char *file, unsigned pgno);
The st_page_out field was incremented because the pgno from file was
written out.

mutex
The mutex category monitors includes shared latches. The alloc_id value is one of the
MTX_XXX definitions from dbinc/mutex.h

mutex-suspend (unsigned mutex, unsigned excl, unsigned alloc_id, struct
__db_mutex_t *mutexp);

This thread is about to suspend itself because a thread has the mutex or
shared latch locked in a mode which conflicts with the this request.

mutex-resume (unsigned mutex, unsigned excl, unsigned alloc_id, struct
__db_mutex_t *mutexp);

The thread is returning from a suspend and will attempt to obtain the mutex
or shared latch again. It might need to suspend again.

These mutex counters are included by --enable-perfmon-statistics.

mutex-set_nowait (unsigned mutex_set_nowait, unsigned mutex);
Increment the count of times that the mutex was free when trying to lock it.

mutex-set_wait (unsigned mutex_set_wait, unsigned mutex);
Increment the count of times that the mutex was busy when trying to lock it.

mutex-set_rd_nowait (unsigned mutex_set_rd_nowait, unsigned mutex);
Increment the count of times that the shared latch was free when trying to
get a shared lock on it.

mutex-set_rd_wait (unsigned mutex_set_rd_wait, unsigned mutex);
Increment the count of times that the shared latch was already exclusively
latched when trying to get a shared lock on it.

mutex-hybrid_wait (unsigned hybrid_wait, unsigned mutex);
Increment the count of times that a hybrid mutex had to block on its
condition variable. n a busy system this might happen several times before the
corresponding hybrid_wakeup.

mutex-hybrid_wakeup (unsigned hybrid_wakeup, unsigned mutex);
Increment the count of times that a hybrid mutex finished one or more waits
for its condition variable.

txn
The txn category covers the basic transaction operations.

txn-begin (unsigned txnid, unsigned flags);
A transaction was successfully begun.

txn-commit (unsigned txnid, unsigned flags);
A transaction is starting to commit.

txn-prepare (unsigned txnid, uint8_t *gid);
The transaction is starting to prepare, flushing the log so that a future commit
can be guaranteed to succeed. The global identifier field is 128 bytes long.

Library Version 11.2.5.3 Programmer Notes

9/9/2013 DB Reference Guide Page 275

txn-abort (unsigned txnid);
The transaction is about to abort.

These txn counters are included by --enable-perfmon-statistics.

txn-nbegins (unsigned st_nbegins, unsigned txnid);
Beginning the transaction incremented st_nbegins.

txn-naborts (unsigned st_nbegins, unsigned txnid);
Aborting the transaction incremented st_naborts.

txn-ncommits (unsigned st_ncommits, unsigned txnid);
Committing the transaction incremented st_ncommits.

txn-nactive (unsigned st_nactive, unsigned txnid);
Beginning or ending the transaction updated the number of active
transactions.

txn-maxnactive (unsigned st_maxnactive, unsigned txnid);
The creation of the transaction set a new maximum number of active
transactions.

Programmer notes FAQ

1. What priorities should threads/tasks executing Berkeley DB functions be given?

Tasks executing Berkeley DB functions should have the same, or roughly equivalent,
system priorities. For example, it can be dangerous to give tasks of control performing
checkpoints a lower priority than tasks of control doing database lookups, and starvation
can sometimes result.

2. Why isn't the C++ API exception safe?

The Berkeley DB C++ API is a thin wrapper around the C API that maps most return values
to exceptions, and gives the C++ handles the same lifecycles as their C counterparts. One
consequence is that if an exception occurs while a cursor or transaction handle is open,
the application must explicitly close the cursor or abort the transaction.

Applications can be simplified and bugs avoided by creating wrapper classes around
DBC and TXN that call the appropriate cleanup method in the wrapper's destructor. By
creating an instance of the wrappers on the stack, C++ scoping rules will ensure that the
destructor is called before exception handling unrolls the block that contains the wrapper
object.

3. How do I handle a "pass 4" error when trying to run one of the example Performance
Event Monitoring scripts on my Linux system? The library configured with --enable-
dtrace and built without error.

A Linux installation can have SystemTap support for kernel probe points without including
the kernel "utrace" module needed to use userspace probes. Pass 4 errors can occur when
this required userspace support is not present.

../api_reference/C/dbc.html
../api_reference/C/txn.html

9/9/2013 DB Reference Guide Page 276

Chapter 16. The Locking Subsystem

Introduction to the locking subsystem

The locking subsystem provides interprocess and intraprocess concurrency control
mechanisms. Although the lock system is used extensively by the Berkeley DB access methods
and transaction system, it may also be used as a standalone subsystem to provide concurrency
control to any set of designated resources.

The Lock subsystem is created, initialized, and opened by calls to DB_ENV->open() with the
DB_INIT_LOCK or DB_INIT_CDB flags specified.

The DB_ENV->lock_vec() method is used to acquire and release locks. The DB_ENV->lock_vec()
method performs any number of lock operations atomically. It also provides the capability to
release all locks held by a particular locker and release all the locks on a particular object.
(Performing multiple lock operations atomically is useful in performing Btree traversals --
you want to acquire a lock on a child page and once acquired, immediately release the lock
on its parent. This is traditionally referred to as lock-coupling). Two additional methods,
DB_ENV->lock_get() and DB_ENV->lock_put(), are provided. These methods are simpler
front-ends to the DB_ENV->lock_vec() functionality, where DB_ENV->lock_get() acquires a
lock, and DB_ENV->lock_put() releases a lock that was acquired using DB_ENV->lock_get()
or DB_ENV->lock_vec(). All locks explicitly requested by an application should be released
via calls to DB_ENV->lock_put() or DB_ENV->lock_vec(). Using DB_ENV->lock_vec() instead of
separate calls to DB_ENV->lock_put() and DB_ENV->lock_get() also reduces the synchronization
overhead between multiple threads or processes. The three methods are fully compatible, and
may be used interchangeably.

Applications must specify lockers and lock objects appropriately. When used with the Berkeley
DB access methods, lockers and objects are handled completely internally, but an application
using the lock manager directly must either use the same conventions as the access methods
or define its own convention to which it adheres. If an application is using the access methods
with locking at the same time that it is calling the lock manager directly, the application
must follow a convention that is compatible with the access methods' use of the locking
subsystem. See Berkeley DB Transactional Data Store locking conventions (page 287) for more
information.

The DB_ENV->lock_id() function returns a unique ID that may safely be used as the locker
parameter to the DB_ENV->lock_vec() method. The access methods use DB_ENV->lock_id() to
generate unique lockers for the cursors associated with a database.

The DB_ENV->lock_detect() function provides the programmatic interface to the Berkeley
DB deadlock detector. Whenever two threads of control issue lock requests concurrently, the
possibility for deadlock arises. A deadlock occurs when two or more threads of control are
blocked, waiting for actions that another one of the blocked threads must take. For example,
assume that threads A and B have each obtained read locks on object X. Now suppose that
both threads want to obtain write locks on object X. Neither thread can be granted its write
lock (because of the other thread's read lock). Both threads block and will never unblock
because the event for which they are waiting can never happen.

../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_CDB
../api_reference/C/lockvec.html
../api_reference/C/lockvec.html
../api_reference/C/lockget.html
../api_reference/C/lockput.html
../api_reference/C/lockvec.html
../api_reference/C/lockget.html
../api_reference/C/lockput.html
../api_reference/C/lockget.html
../api_reference/C/lockvec.html
../api_reference/C/lockput.html
../api_reference/C/lockvec.html
../api_reference/C/lockvec.html
../api_reference/C/lockput.html
../api_reference/C/lockget.html
../api_reference/C/lockid.html
../api_reference/C/lockvec.html
../api_reference/C/lockid.html
../api_reference/C/lockdetect.html

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 277

The deadlock detector examines all the locks held in the environment, and identifies
situations where no thread can make forward progress. It then selects one of the participants
in the deadlock (according to the argument that was specified to DB_ENV->set_lk_detect()),
and forces it to return the value DB_LOCK_DEADLOCK (page 259), which indicates that a
deadlock occurred. The thread receiving such an error must release all of its locks and undo
any incomplete modifications to the locked resource. Locks are typically released, and
modifications undone, by closing any cursors involved in the operation and aborting any
transaction enclosing the operation. The operation may optionally be retried.

The DB_ENV->lock_stat() function returns information about the status of the lock subsystem.
It is the programmatic interface used by the db_stat utility.

The locking subsystem is closed by the call to DB_ENV->close().

Finally, the entire locking subsystem may be discarded using the DB_ENV->remove() method.

For more information on the locking subsystem methods, see the Locking Subsystem and
Related Methods section in the Berkeley DB C API Reference Guide.

Configuring locking

The DB_ENV->set_lk_detect() method specifies that the deadlock detector should be run
whenever a lock is about to block. This option provides for rapid detection of deadlocks at
the expense of potentially frequent invocations of the deadlock detector. On a fast processor
with a highly contentious application where response time is critical, this is a good choice. An
option argument to the DB_ENV->set_lk_detect() method indicates which lock requests should
be rejected.

The application can limit how long it blocks on a contested resource. The DB_ENV-
>set_timeout() method specifies the length of the timeout. This value is checked whenever
deadlock detection is performed, so the accuracy of the timeout depends upon the frequency
of deadlock detection.

In general, when applications are not specifying lock and transaction timeout values, the
DB_LOCK_DEFAULT option is probably the correct first choice, and other options should only
be selected based on evidence that they improve transaction throughput. If an application has
long-running transactions, DB_LOCK_YOUNGEST will guarantee that transactions eventually
complete, but it may do so at the expense of a large number of lock request rejections (and
therefore, transaction aborts).

The alternative to using the DB_ENV->set_lk_detect() method is to explicitly perform deadlock
detection using the Berkeley DB DB_ENV->lock_detect() method.

The DB_ENV->set_lk_conflicts() method allows you to specify your own locking conflicts
matrix. This is an advanced configuration option, and is almost never necessary.

Configuring locking: sizing the system

The amount of memory available to the locking system is specified using the DB_ENV-
>set_memory_max() method. Sizing of the enviroment using the DB_ENV->set_memory_max()

../api_reference/C/envset_lk_detect.html
../api_reference/C/lockstat.html
../api_reference/C/db_stat.html
../api_reference/C/envclose.html
../api_reference/C/envremove.html
../api_reference/C/lock.html#locklist
../api_reference/C/lock.html#locklist
../api_reference/C/envset_lk_detect.html
../api_reference/C/envset_lk_detect.html
../api_reference/C/envset_timeout.html
../api_reference/C/envset_timeout.html
../api_reference/C/lockdetect.html#detect_DB_LOCK_DEFAULT
../api_reference/C/lockdetect.html#detect_DB_LOCK_YOUNGEST
../api_reference/C/envset_lk_detect.html
../api_reference/C/lockdetect.html
../api_reference/C/envset_lk_conflicts.html
../api_reference/C/envset_memory_max.html
../api_reference/C/envset_memory_max.html
../api_reference/C/envset_memory_max.html

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 278

method is discussed in Sizing a database environment (page 128). Here we will discuss how to
estimate the number of objects your application is likely to lock. Since running out of memory
for locking structures is a fatal error requiring reconfiguration and restarting the environment
it is best to overestimate the numbers.

When configuring a Berkeley DB Concurrent Data Store application, the number of lock objects
needed is two per open database (one for the database lock, and one for the cursor lock
when the DB_CDB_ALLDB option is not specified). The number of locks needed is one per open
database handle plus one per simultaneous cursor or non-cursor operation.

Configuring a Berkeley DB Transactional Data Store application is more complicated. The
recommended algorithm for selecting the number of locks, lockers, and lock objects is to
run the application under stressful conditions and then review the lock system's statistics to
determine the number of locks, lockers, and lock objects that were used. Then, double these
values for safety. However, in some large applications, finer granularity of control is necessary
in order to minimize the size of the Lock subsystem.

The number of lockers can be estimated as follows:

• If the database environment is using transactions, the number of lockers can be estimated
by adding the number of simultaneously active non-transactional cursors and open database
handles to the number of simultaneously active transactions and child transactions (where a
child transaction is active until it commits or aborts, not until its parent commits or aborts).

• If the database environment is not using transactions, the number of lockers can be
estimated by adding the number of simultaneously active non-transactional cursors and
open database handles to the number of simultaneous non-cursor operations.

The number of lock objects needed for a transaction can be estimated as follows:

• For each access to a non-Queue database, one lock object is needed for each page that is
read or updated.

• For the Queue access method you will need one lock object per record that is read or
updated. Deleted records skipped by a DB_NEXT or DB_PREV operation do not require a
separate lock object.

• For Btree and Recno databases additional lock objects may be needed for each node in the
btree that has to be split due to an update.

• For Hash and Queue databases, every access must obtain a lock on the metadata page for
the duration of the access. This is not held to the end of the transaction.

• If the transaction performs an update that needs to allocate a page to the database then a
lock object for the metadata page will be needed to the end of the transaction.

Note that transactions accumulate locks over the transaction lifetime, and the lock objects
required by a single transaction is the total lock objects required by all of the database
operations in the transaction. However, a database page (or record, in the case of the Queue
access method), that is accessed multiple times within a transaction only requires a single
lock object for the entire transaction. So if a transaction in your application typically accesses

../api_reference/C/envset_flags.html#set_flags_DB_CDB_ALLDB

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 279

10 records, that transaction will require about 10 lock objects (it may be a few more if it
splits btree nodes). If you have up to 10 concurrent threads in your application, then you
need to configure your system to have about 100 lock objects. It is always better to configure
more than you need so that you don't run out of lock objects. The memory overhead of over-
allocating lock objects is minimal as they are small structures.

The number of locks required by an application cannot be easily estimated. It is possible to
calculate a number of locks by multiplying the number of lockers, times the number of lock
objects, times two (two for the two possible lock modes for each object, read and write).
However, this is a pessimal value, and real applications are unlikely to actually need that
many locks. Reviewing the Lock subsystem statistics is the best way to determine this value.

By default a minimum number of locking objects are allocated at startup. To avoid contention
due to allocation the application may use the DB_ENV->set_memory_init() method to
preallocate and initialize the following lock structures:

• DB_MEM_LOCK

Specifies the number of locks that can be simultaneously requested in the system.

• DB_MEM_LOCKER

Specifies the number of lockers that can simultaneously request locks in the system.

• DB_MEM_LOCKOBJECTS

Specifies the number of objects that can simultaneously be locked in the system.

In addition to the above structures, sizing your locking subsystem also requires specifying the
number of lock table partitions. You do this using the DB_ENV->set_lk_partitions() method.
Each partition may be accessed independently by a thread. More partitions can lead to
higher levels of concurrency. The default is to set the number of partitions to be 10 times the
number of cpus that the operating system reports at the time the environment is created.
Having more than one partition when there is only one cpu is not beneficial because the
locking system is more efficient when there is a single partition. Some operating systems
(Linux, Solaris) may report thread contexts as cpus, and so it may be necessary to override the
default to force a single partition on a single hyperthreaded cpu system. Objects and locks are
divided among the partitions so it is best to allocate several locks and objects per partition.
The system will force there to be at least one per partition. If a partition runs out of locks
or objects it will steal what is needed from the other partitions. This operation could impact
performance if it occurs too often. The final values specified for the locks and lock objects
should be more than or equal to the number of lock table partitions.

Standard lock modes

The Berkeley DB locking protocol is described by a conflict matrix. A conflict matrix is an
NxN array in which N is the number of different lock modes supported, and the (i, j)th entry
of the array indicates whether a lock of mode i conflicts with a lock of mode j. In addition,
Berkeley DB defines the type db_lockmode_t, which is the type of a lock mode within a
conflict matrix.

../api_reference/C/envset_memory_init.html
../api_reference/C/envset_lk_partitions.html

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 280

The following is an example of a conflict matrix. The actual conflict matrix used by Berkeley
DB to support the underlying access methods is more complicated, but this matrix shows the
lock mode relationships available to applications using the Berkeley DB Locking subsystem
interfaces directly.

DB_LOCK_NG
not granted (always 0)

DB_LOCK_READ
read (shared)

DB_LOCK_WRITE
write (exclusive)

DB_LOCK_IWRITE
intention to write (shared)

DB_LOCK_IREAD
intention to read (shared)

DB_LOCK_IWR
intention to read and write (shared)

In a conflict matrix, the rows indicate the lock that is held, and the columns indicate the lock
that is requested. A 1 represents a conflict (that is, do not grant the lock if the indicated lock
is held), and a 0 indicates that it is OK to grant the lock.

 Notheld Read Write IWrite IRead IRW
Notheld 0 0 0 0 0 0
Read* 0 0 1 1 0 1
Write** 0 1 1 1 1 1
Intent Write 0 1 1 0 0 0
Intent Read 0 0 1 0 0 0
Intent RW 0 1 1 0 0 0

*
In this case, suppose that there is a read lock held on an object. A new request for a
read lock would be granted, but a request for a write lock would not.

**
In this case, suppose that there is a write lock held on an object. A new request for
either a read or write lock would be denied.

Deadlock detection

Practically any application that uses locking may deadlock. The exceptions to this rule are
when all the threads of control accessing the database are read-only or when the Berkeley
DB Concurrent Data Store product is used; the Berkeley DB Concurrent Data Store product
guarantees deadlock-free operation at the expense of reduced concurrency. While there are
data access patterns that are deadlock free (for example, an application doing nothing but
overwriting fixed-length records in an already existing database), they are extremely rare.

When a deadlock exists in the system, all the threads of control involved in the deadlock
are, by definition, waiting on a lock. The deadlock detector examines the state of the lock

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 281

manager and identifies a deadlock, and selects one of the lock requests to reject. (See
Configuring locking (page 277) for a discussion of how a participant is selected). The DB_ENV-
>lock_get() or DB_ENV->lock_vec() call for which the selected participant is waiting then
returns a DB_LOCK_DEADLOCK (page 259) error. When using the Berkeley DB access methods,
this error return is propagated back through the Berkeley DB database handle method to the
calling application.

The deadlock detector identifies deadlocks by looking for a cycle in what is commonly
referred to as its "waits-for" graph. More precisely, the deadlock detector reads through
the lock table, and reviews each lock object currently locked. Each object has lockers that
currently hold locks on the object and possibly a list of lockers waiting for a lock on the
object. Each object's list of waiting lockers defines a partial ordering. That is, for a particular
object, every waiting locker comes after every holding locker because that holding locker
must release its lock before the waiting locker can make forward progress. Conceptually,
after each object has been examined, the partial orderings are topologically sorted. If this
topological sort reveals any cycles, the lockers forming the cycle are involved in a deadlock.
One of the lockers is selected for rejection.

It is possible that rejecting a single lock request involved in a deadlock is not enough to allow
other lockers to make forward progress. Unfortunately, at the time a lock request is selected
for rejection, there is not enough information available to determine whether rejecting that
single lock request will allow forward progress or not. Because most applications have few
deadlocks, Berkeley DB takes the conservative approach, rejecting as few requests as may
be necessary to resolve the existing deadlocks. In particular, for each unique cycle found in
the waits-for graph described in the previous paragraph, only one lock request is selected for
rejection. However, if there are multiple cycles, one lock request from each cycle is selected
for rejection. Only after the enclosing transactions have received the lock request rejection
return and aborted their transactions can it be determined whether it is necessary to reject
additional lock requests in order to allow forward progress.

The db_deadlock utility performs deadlock detection by calling the underlying Berkeley DB
DB_ENV->lock_detect() method at regular intervals (DB_ENV->lock_detect() runs a single
iteration of the Berkeley DB deadlock detector). Alternatively, applications can create their
own deadlock utility or thread by calling the DB_ENV->lock_detect() method directly, or by
using the DB_ENV->set_lk_detect() method to configure Berkeley DB to automatically run the
deadlock detector whenever there is a conflict over a lock. The tradeoffs between using the
DB_ENV->lock_detect() and DB_ENV->set_lk_detect() methods is that automatic deadlock
detection will resolve deadlocks more quickly (because the deadlock detector runs as soon
as the lock request blocks), however, automatic deadlock detection often runs the deadlock
detector when there is no need for it, and for applications with large numbers of locks and/
or where many operations block temporarily on locks but are soon able to proceed, automatic
detection can decrease performance.

Deadlock detection using timers

Lock and transaction timeouts may be used in place of, or in addition to, regular deadlock
detection. If lock timeouts are set, lock requests will return DB_LOCK_NOTGRANTED (page
259) from a lock call when it is detected that the lock's timeout has expired, that is, the lock
request has blocked, waiting, longer than the specified timeout. If transaction timeouts are

../api_reference/C/lockget.html
../api_reference/C/lockget.html
../api_reference/C/lockvec.html
../api_reference/C/db_deadlock.html
../api_reference/C/lockdetect.html
../api_reference/C/lockdetect.html
../api_reference/C/lockdetect.html
../api_reference/C/envset_lk_detect.html
../api_reference/C/lockdetect.html
../api_reference/C/envset_lk_detect.html

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 282

set, lock requests will return DB_LOCK_NOTGRANTED (page 259) from a lock call when it has
been detected that the transaction has been active longer than the specified timeout.

If lock or transaction timeouts have been set, database operations will return
DB_LOCK_DEADLOCK (page 259) when the lock timeout has expired or the transaction has
been active longer than the specified timeout. Applications wanting to distinguish between
true deadlock and timeout can use the DB_ENV->set_flags() configuration flag, which causes
database operations to instead return DB_LOCK_NOTGRANTED (page 259) in the case of
timeout.

As lock and transaction timeouts are only checked when lock requests first block or when
deadlock detection is performed, the accuracy of the timeout depends on how often deadlock
detection is performed. More specifically, transactions will continue to run after their timeout
has expired if they do not block on a lock request after that time. A separate deadlock
detection thread (or process) should always be used if the application depends on timeouts;
otherwise, if there are no new blocked lock requests a pending timeout will never trigger.

If the database environment deadlock detector has been configured with the DB_LOCK_EXPIRE
option, timeouts are the only mechanism by which deadlocks will be broken. If the deadlock
detector has been configured with a different option, then regular deadlock detection will
be performed, and in addition, if timeouts have also been specified, lock requests and
transactions will time out as well.

Lock and transaction timeouts may be specified on a database environment wide basis using
the DB_ENV->set_timeout() method. Lock timeouts may be specified on a per-lock request
basis using the DB_ENV->lock_vec() method. Lock and transaction timeouts may be specified
on a per-transaction basis using the DB_TXN->set_timeout() method. Per-lock and per-
transaction timeouts supersede environment wide timeouts.

For example, consider that the environment wide transaction timeout has been set to 20ms,
the environment wide lock timeout has been set to 10ms, a transaction has been created in
this environment and its timeout value set to 8ms, and a specific lock request has been made
on behalf of this transaction where the lock timeout was set to 4ms. By default, transactions
in this environment will be timed out if they block waiting for a lock after 20ms. The specific
transaction described will be timed out if it blocks waiting for a lock after 8ms. By default,
any lock request in this system will be timed out if it blocks longer than 10ms, and the specific
lock described will be timed out if it blocks longer than 4ms.

Deadlock debugging

An occasional debugging problem in Berkeley DB applications is unresolvable deadlock. The
output of the -Co flags of the db_stat utility can be used to detect and debug these problems.
The following is a typical example of the output of this utility:

Locks grouped by object
Locker Mode Count Status ----------- Object ----------
 1 READ 1 HELD a.db handle 0
80000004 WRITE 1 HELD a.db page 3

In this example, we have opened a database and stored a single key/data pair in it. Because
we have a database handle open, we have a read lock on that database handle. The database

../api_reference/C/envset_flags.html
../api_reference/C/lockdetect.html#detect_DB_LOCK_EXPIRE
../api_reference/C/envset_timeout.html
../api_reference/C/lockvec.html
../api_reference/C/txnset_timeout.html
../api_reference/C/db_stat.html

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 283

handle lock is the read lock labeled handle. (We can normally ignore handle locks for the
purposes of database debugging, as they will only conflict with other handle operations, for
example, an attempt to remove the database will block because we are holding the handle
locked, but reading and writing the database will not conflict with the handle lock.)

It is important to note that locker IDs are 32-bit unsigned integers, and are divided into two
name spaces. Locker IDs with the high bit set (that is, values 80000000 or higher), are locker
IDs associated with transactions. Locker IDs without the high bit set are locker IDs that are not
associated with a transaction. Locker IDs associated with transactions map one-to-one with
the transaction, that is, a transaction never has more than a single locker ID, and all of the
locks acquired by the transaction will be acquired on behalf of the same locker ID.

We also hold a write lock on the database page where we stored the new key/data pair. The
page lock is labeled page and is on page number 3. If we were to put an additional key/data
pair in the database, we would see the following output:

Locks grouped by object
Locker Mode Count Status ----------- Object ----------
80000004 WRITE 2 HELD a.db page 3
 1 READ 1 HELD a.db handle 0

That is, we have acquired a second reference count to page number 3, but have not acquired
any new locks. If we add an entry to a different page in the database, we would acquire
additional locks:

Locks grouped by object
Locker Mode Count Status ----------- Object ----------
 1 READ 1 HELD a.db handle 0
80000004 WRITE 2 HELD a.db page 3
80000004 WRITE 1 HELD a.db page 2

Here's a simple example of one lock blocking another one:

Locks grouped by object
Locker Mode Count Status ----------- Object ----------
80000004 WRITE 1 HELD a.db page 2
80000005 WRITE 1 WAIT a.db page 2
 1 READ 1 HELD a.db handle 0
80000004 READ 1 HELD a.db page 1

In this example, there are two different transactional lockers (80000004 and 80000005).
Locker 80000004 is holding a write lock on page 2, and locker 80000005 is waiting for a write
lock on page 2. This is not a deadlock, because locker 80000004 is not blocked on anything.
Presumably, the thread of control using locker 80000004 will proceed, eventually release its
write lock on page 2, at which point the thread of control using locker 80000005 can also
proceed, acquiring a write lock on page 2.

If lockers 80000004 and 80000005 are not in different threads of control, the result would be
self deadlock. Self deadlock is not a true deadlock, and won't be detected by the Berkeley
DB deadlock detector. It's not a true deadlock because, if work could continue to be done on
behalf of locker 80000004, then the lock would eventually be released, and locker 80000005
could acquire the lock and itself proceed. So, the key element is that the thread of control

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 284

holding the lock cannot proceed because it is the same thread as is blocked waiting on the
lock.

Here's an example of three transactions reaching true deadlock. First, three different threads
of control opened the database, acquiring three database handle read locks.
Locks grouped by object
Locker Mode Count Status ----------- Object ----------
 1 READ 1 HELD a.db handle 0
 3 READ 1 HELD a.db handle 0
 5 READ 1 HELD a.db handle 0

The three threads then each began a transaction, and put a key/data pair on a different page:
Locks grouped by object
Locker Mode Count Status ----------- Object ----------
80000008 WRITE 1 HELD a.db page 4
 1 READ 1 HELD a.db handle 0
 3 READ 1 HELD a.db handle 0
 5 READ 1 HELD a.db handle 0
80000006 READ 1 HELD a.db page 1
80000007 READ 1 HELD a.db page 1
80000008 READ 1 HELD a.db page 1
80000006 WRITE 1 HELD a.db page 2
80000007 WRITE 1 HELD a.db page 3

The thread using locker 80000006 put a new key/data pair on page 2, the thread using locker
80000007, on page 3, and the thread using locker 80000008 on page 4. Because the database
is a 2-level Btree, the tree was searched, and so each transaction acquired a read lock on the
Btree root page (page 1) as part of this operation.

The three threads then each attempted to put a second key/data pair on a page currently
locked by another thread. The thread using locker 80000006 tried to put a key/data pair on
page 3, the thread using locker 80000007 on page 4, and the thread using locker 80000008 on
page 2:
Locks grouped by object
Locker Mode Count Status ----------- Object ----------
80000008 WRITE 1 HELD a.db page 4
80000007 WRITE 1 WAIT a.db page 4
 1 READ 1 HELD a.db handle 0
 3 READ 1 HELD a.db handle 0
 5 READ 1 HELD a.db handle 0
80000006 READ 2 HELD a.db page 1
80000007 READ 2 HELD a.db page 1
80000008 READ 2 HELD a.db page 1
80000006 WRITE 1 HELD a.db page 2
80000008 WRITE 1 WAIT a.db page 2
80000007 WRITE 1 HELD a.db page 3
80000006 WRITE 1 WAIT a.db page 3

Now, each of the threads of control is blocked, waiting on a different thread of control. The
thread using locker 80000007 is blocked by the thread using locker 80000008, due to the lock

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 285

on page 4. The thread using locker 80000008 is blocked by the thread using locker 80000006,
due to the lock on page 2. And the thread using locker 80000006 is blocked by the thread
using locker 80000007, due to the lock on page 3. Since none of the threads of control can
make progress, one of them will have to be killed in order to resolve the deadlock.

Locking granularity

With the exception of the Queue access method, the Berkeley DB access methods do page-
level locking. The size of pages in a database may be set when the database is created by
calling the DB->set_pagesize() method. If not specified by the application, Berkeley DB selects
a page size that will provide the best I/O performance by setting the page size equal to the
block size of the underlying file system. Selecting a smaller page size can result in increased
concurrency for some applications.

In the Btree access method, Berkeley DB uses a technique called lock coupling to improve
concurrency. The traversal of a Btree requires reading a page, searching that page to
determine which page to search next, and then repeating this process on the next page.
Once a page has been searched, it will never be accessed again for this operation, unless
a page split is required. To improve concurrency in the tree, once the next page to read/
search has been determined, that page is locked and then the original page lock is released
atomically (that is, without relinquishing control of the lock manager). When page splits
become necessary, write locks are reacquired.

Because the Recno access method is built upon Btree, it also uses lock coupling for read
operations. However, because the Recno access method must maintain a count of records on
its internal pages, it cannot lock-couple during write operations. Instead, it retains write locks
on all internal pages during every update operation. For this reason, it is not possible to have
high concurrency in the Recno access method in the presence of write operations.

The Queue access method uses only short-term page locks. That is, a page lock is released
prior to requesting another page lock. Record locks are used for transaction isolation. The
provides a high degree of concurrency for write operations. A metadata page is used to keep
track of the head and tail of the queue. This page is never locked during other locking or I/O
operations.

The Hash access method does not have such traversal issues, but it must always refer to its
metadata while computing a hash function because it implements dynamic hashing. This
metadata is stored on a special page in the hash database. This page must therefore be read-
locked on every operation. Fortunately, it needs to be write-locked only when new pages are
allocated to the file, which happens in three cases:

• a hash bucket becomes full and needs to split

• a key or data item is too large to fit on a normal page

• the number of duplicate items for a fixed key becomes so large that they are moved to an
auxiliary page

In this case, the access method must obtain a write lock on the metadata page, thus requiring
that all readers be blocked from entering the tree until the update completes.

../api_reference/C/dbset_pagesize.html

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 286

Finally, when traversing duplicate data items for a key, the lock on the key value also acts as a
lock on all duplicates of that key. Therefore, two conflicting threads of control cannot access
the same duplicate set simultaneously.

Locking without transactions

If an application runs with locking specified, but not transactions (for example, DB_ENV-
>open() is callsed with DB_INIT_LOCK or DB_INIT_CDB specified, but not DB_INIT_TXN), locks
are normally acquired during each Berkeley DB operation and released before the operation
returns to the caller. The only exception is in the case of cursor operations. Cursors identify a
particular position in a file. For this reason, cursors must retain read locks across cursor calls
to make sure that the position is uniquely identifiable during a subsequent cursor call, and
so that an operation using DB_CURRENT will always refer to the same record as a previous
cursor call. These cursor locks cannot be released until the cursor is either repositioned and a
new cursor lock established (for example, using the DB_NEXT or DB_SET flags), or the cursor is
closed. As a result, application writers are encouraged to close cursors as soon as possible.

It is important to realize that concurrent applications that use locking must ensure that two
concurrent threads do not block each other. However, because Btree and Hash access method
page splits can occur at any time, there is virtually no way to guarantee that an application
that writes the database cannot deadlock. Applications running without the protection
of transactions may deadlock, and can leave the database in an inconsistent state when
they do so. Applications that need concurrent access, but not transactions, are more safely
implemented using the Berkeley DB Concurrent Data Store Product.

Locking with transactions: two-phase locking

Berkeley DB uses a locking protocol called two-phase locking (2PL). This is the traditional
protocol used in conjunction with lock-based transaction systems.

In a two-phase locking system, transactions are divided into two distinct phases. During the
first phase, the transaction only acquires locks; during the second phase, the transaction
only releases locks. More formally, once a transaction releases a lock, it may not acquire
any additional locks. Practically, this translates into a system in which locks are acquired as
they are needed throughout a transaction and retained until the transaction ends, either by
committing or aborting. In Berkeley DB, locks are released during DB_TXN->abort() or DB_TXN-
>commit(). The only exception to this protocol occurs when we use lock-coupling to traverse
a data structure. If the locks are held only for traversal purposes, it is safe to release locks
before transactions commit or abort.

For applications, the implications of 2PL are that long-running transactions will hold locks for
a long time. When designing applications, lock contention should be considered. In order to
reduce the probability of deadlock and achieve the best level of concurrency possible, the
following guidelines are helpful.

1. When accessing multiple databases, design all transactions so that they access the files in
the same order.

2. If possible, access your most hotly contested resources last (so that their locks are held
for the shortest time possible).

../api_reference/C/envopen.html
../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_LOCK
../api_reference/C/envopen.html#envopen_DB_INIT_CDB
../api_reference/C/envopen.html#envopen_DB_INIT_TXN
../api_reference/C/dbcget.html#dbcget_DB_CURRENT
../api_reference/C/dbcget.html#dbcget_DB_NEXT
../api_reference/C/dbcget.html#dbcget_DB_SET
../api_reference/C/txnabort.html
../api_reference/C/txncommit.html
../api_reference/C/txncommit.html

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 287

3. If possible, use nested transactions to protect the parts of your transaction most likely to
deadlock.

Berkeley DB Concurrent Data Store locking conventions

The Berkeley DB Concurrent Data Store product has a simple set of conventions for locking.
It provides multiple-reader/single-writer semantics, but not per-page locking or transaction
recoverability. As such, it does its locking entirely in the Berkeley DB interface layer.

The object it locks is the file, identified by its unique file number. The locking matrix is
not one of the two standard lock modes, instead, we use a four-lock set, consisting of the
following:

DB_LOCK_NG
not granted (always 0)

DB_LOCK_READ
read (shared)

DB_LOCK_WRITE
write (exclusive)

DB_LOCK_IWRITE
intention-to-write (shared with NG and READ, but conflicts with WRITE and IWRITE)

The IWRITE lock is used for cursors that will be used for updating (IWRITE locks are implicitly
obtained for write operations through the Berkeley DB handles, for example, DB->put() or
DB->del()). While the cursor is reading, the IWRITE lock is held; but as soon as the cursor is
about to modify the database, the IWRITE is upgraded to a WRITE lock. This upgrade blocks
until all readers have exited the database. Because only one IWRITE lock is allowed at any one
time, no two cursors can ever try to upgrade to a WRITE lock at the same time, and therefore
deadlocks are prevented, which is essential because Berkeley DB Concurrent Data Store does
not include deadlock detection and recovery.

Applications that need to lock compatibly with Berkeley DB Concurrent Data Store must obey
the following rules:

1. Use only lock modes DB_LOCK_NG, DB_LOCK_READ, DB_LOCK_WRITE, DB_LOCK_IWRITE.

2. Never attempt to acquire a WRITE lock on an object that is already locked with a READ
lock.

Berkeley DB Transactional Data Store locking conventions

All Berkeley DB access methods follow the same conventions for locking database objects.
Applications that do their own locking and also do locking via the access methods must be
careful to adhere to these conventions.

Whenever a Berkeley DB database is opened, the DB handle is assigned a unique locker ID.
Unless transactions are specified, that ID is used as the locker for all calls that the Berkeley
DB methods make to the lock subsystem. In order to lock a file, pages in the file, or records
in the file, we must create a unique ID that can be used as the object to be locked in calls
to the lock manager. Under normal operation, that object is a 28-byte value created by the

../api_reference/C/dbput.html
../api_reference/C/dbdel.html
../api_reference/C/db.html

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 288

concatenation of a unique file identifier, a page or record number, and an object type (page or
record).

In a transaction-protected environment, database create and delete operations are
recoverable and single-threaded. This single-threading is achieved using a single lock for the
entire environment that must be acquired before beginning a create or delete operation. In
this case, the object on which Berkeley DB will lock is a 4-byte unsigned integer with a value
of 0.

If applications are using the lock subsystem directly while they are also using locking via the
access methods, they must take care not to inadvertently lock objects that happen to be
equal to the unique file IDs used to lock files. This is most easily accomplished by using a lock
object with a length different from the values used by Berkeley DB.

All the access methods other than Queue use standard read/write locks in a simple multiple-
reader/single writer page-locking scheme. An operation that returns data (for example,
DB->get() or DBC->get()) obtains a read lock on all the pages accessed while locating the
requested record. When an update operation is requested (for example, DB->put() or DBC-
>del()), the page containing the updated (or new) data is write-locked. As read-modify-write
cycles are quite common and are deadlock-prone under normal circumstances, the Berkeley
DB interfaces allow the application to specify the DB_RMW flag, which causes operations to
immediately obtain a write lock, even though they are only reading the data. Although this
may reduce concurrency somewhat, it reduces the probability of deadlock. In the presence of
transactions, page locks are held until transaction commit.

The Queue access method does not hold long-term page locks. Instead, page locks are held
only long enough to locate records or to change metadata on a page, and record locks are
held for the appropriate duration. In the presence of transactions, record locks are held until
transaction commit. For DB operations, record locks are held until operation completion; for
DBC operations, record locks are held until subsequent records are returned or the cursor is
closed.

Under non-transaction operations, the access methods do not normally hold locks across
calls to the Berkeley DB interfaces. The one exception to this rule is when cursors are used.
Because cursors maintain a position in a file, they must hold locks across calls; in fact, they
will hold a lock until the cursor is closed.

In this mode, the assignment of locker IDs to DB and cursor handles is complicated. If the
DB_THREAD option was specified when the DB handle was opened, each use of DB has its own
unique locker ID, and each cursor is assigned its own unique locker ID when it is created, so DB
handle and cursor operations can all conflict with one another. (This is because when Berkeley
DB handles may be shared by multiple threads of control the Berkeley DB library cannot
identify which operations are performed by which threads of control, and it must ensure that
two different threads of control are not simultaneously modifying the same data structure.
By assigning each DB handle and cursor its own locker, two threads of control sharing a handle
cannot inadvertently interfere with each other.)

This has important implications. If a single thread of control opens two cursors, uses a
combination of cursor and non-cursor operations, or begins two separate transactions, the
operations are performed on behalf of different lockers. Conflicts that arise between these

../api_reference/C/dbget.html
../api_reference/C/dbcget.html
../api_reference/C/dbput.html
../api_reference/C/dbcdel.html
../api_reference/C/dbcdel.html
../api_reference/C/dbcget.html#dbcget_DB_RMW
../api_reference/C/db.html
../api_reference/C/dbc.html
../api_reference/C/db.html
../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/db.html

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 289

different lockers may not cause actual deadlocks, but can, in fact, permanently block the
thread of control. For example, assume that an application creates a cursor and uses it to
read record A. Now, assume a second cursor is opened, and the application attempts to write
record A using the second cursor. Unfortunately, the first cursor has a read lock, so the second
cursor cannot obtain its write lock. However, that read lock is held by the same thread of
control, so the read lock can never be released if we block waiting for the write lock. This
might appear to be a deadlock from the application's perspective, but Berkeley DB cannot
identify it as such because it has no knowledge of which lockers belong to which threads of
control. For this reason, application designers are encouraged to close cursors as soon as they
are done with them.

If the DB_THREAD option was not specified when the DB handle was opened, all uses of the DB
handle and all cursors created using that handle will use the same locker ID for all operations.
In this case, if a single thread of control opens two cursors or uses a combination of cursor and
non-cursor operations, these operations are performed on behalf of the same locker, and so
cannot deadlock or block the thread of control.

Complicated operations that require multiple cursors (or combinations of cursor and non-
cursor operations) can be performed in two ways. First, they may be performed within a
transaction, in which case all operations lock on behalf of the designated transaction. Second,
they may be performed using a local DB handle, although, as DB->open() operations are
relatively slow, this may not be a good idea. Finally, the DBC->dup() function duplicates a
cursor, using the same locker ID as the originating cursor. There is no way to achieve this
duplication functionality through the DB handle calls, but any DB call can be implemented by
one or more calls through a cursor.

When the access methods use transactions, many of these problems disappear. The transaction
ID is used as the locker ID for all operations performed on behalf of the transaction. This
means that the application may open multiple cursors on behalf of the same transaction and
these cursors will all share a common locker ID. This is safe because transactions cannot
span threads of control, so the library knows that two cursors in the same transaction cannot
modify the database concurrently.

Locking and non-Berkeley DB applications

The Lock subsystem is useful outside the context of Berkeley DB. It can be used to manage
concurrent access to any collection of either ephemeral or persistent objects. That is, the
lock region can persist across invocations of an application, so it can be used to provide long-
term locking (for example, conference room scheduling).

In order to use the locking subsystem in such a general way, the applications must adhere
to a convention for identifying objects and lockers. Consider a conference room scheduling
problem, in which there are three conference rooms scheduled in half-hour intervals. The
scheduling application must then select a way to identify each conference room/time
slot combination. In this case, we could describe the objects being locked as bytestrings
consisting of the conference room name, the date when it is needed, and the beginning of the
appropriate half-hour slot.

Lockers are 32-bit numbers, so we might choose to use the User ID of the individual running
the scheduling program. To schedule half-hour slots, all the application needs to do is issue a

../api_reference/C/dbopen.html#open_DB_THREAD
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/db.html
../api_reference/C/dbopen.html
../api_reference/C/dbcdup.html
../api_reference/C/db.html
../api_reference/C/db.html

Library Version 11.2.5.3 The Locking Subsystem

9/9/2013 DB Reference Guide Page 290

DB_ENV->lock_get() call for the appropriate locker/object pair. To schedule a longer slot, the
application needs to issue a DB_ENV->lock_vec() call, with one DB_ENV->lock_get() operation
per half-hour — up to the total length. If the DB_ENV->lock_vec() call fails, the application
would have to release the parts of the time slot that were obtained.

To cancel a reservation, the application would make the appropriate DB_ENV->lock_put()
calls. To reschedule a reservation, the DB_ENV->lock_get() and DB_ENV->lock_put() calls could
all be made inside of a single DB_ENV->lock_vec() call. The output of DB_ENV->lock_stat()
could be post-processed into a human-readable schedule of conference room use.

../api_reference/C/lockget.html
../api_reference/C/lockvec.html
../api_reference/C/lockget.html
../api_reference/C/lockvec.html
../api_reference/C/lockput.html
../api_reference/C/lockget.html
../api_reference/C/lockput.html
../api_reference/C/lockvec.html
../api_reference/C/lockstat.html

9/9/2013 DB Reference Guide Page 291

Chapter 17. The Logging Subsystem

Introduction to the logging subsystem

The Logging subsystem is the logging facility used by Berkeley DB. It is largely Berkeley DB-
specific, although it is potentially useful outside of the Berkeley DB package for applications
wanting write-ahead logging support. Applications wanting to use the log for purposes other
than logging file modifications based on a set of open file descriptors will almost certainly
need to make source code modifications to the Berkeley DB code base.

A log can be shared by any number of threads of control. The DB_ENV->open() method is used
to open a log. When the log is no longer in use, it should be closed using the DB_ENV->close()
method.

Individual log entries are identified by log sequence numbers. Log sequence numbers are
stored in an opaque object, an DB_LSN.

The DB_ENV->log_cursor() method is used to allocate a log cursor. Log cursors have two
methods: DB_LOGC->get() method to retrieve log records from the log, and DB_LOGC->close()
method to destroy the cursor.

There are additional methods for integrating the log subsystem with a transaction processing
system:

DB_ENV->log_flush()
Flushes the log up to a particular log sequence number.

DB_ENV->log_compare()
Allows applications to compare any two log sequence numbers.

DB_ENV->log_file()
Maps a log sequence number to the specific log file that contains it.

DB_ENV->log_archive()
Returns various sets of log filenames. These methods are used for database
administration; for example, to determine if log files may safely be removed from the
system.

DB_ENV->log_stat()
The display db_stat utility used the DB_ENV->log_stat() method to display statistics
about the log.

DB_ENV->remove()
The log meta-information (but not the log files themselves) may be removed using the
DB_ENV->remove() method.

For more information on the logging subsystem methods, see the Logging Subsystem and
Related Methods section in the Berkeley DB C API Reference Guide.

Configuring logging

The aspects of logging that may be configured are the size of the logging subsystem's region,
the size of the log files on disk and the size of the log buffer in memory. The DB_ENV-

../api_reference/C/envopen.html
../api_reference/C/envclose.html
../api_reference/C/lsn.html
../api_reference/C/logcursor.html
../api_reference/C/logcget.html
../api_reference/C/logcclose.html
../api_reference/C/logflush.html
../api_reference/C/logcompare.html
../api_reference/C/logfile.html
../api_reference/C/logarchive.html
../api_reference/C/logstat.html
../api_reference/C/db_stat.html
../api_reference/C/logstat.html
../api_reference/C/envremove.html
../api_reference/C/envremove.html
../api_reference/C/lsn.html#loglist
../api_reference/C/lsn.html#loglist
../api_reference/C/envset_lg_regionmax.html

Library Version 11.2.5.3 The Logging Subsystem

9/9/2013 DB Reference Guide Page 292

>set_lg_regionmax() method specifies the size of the logging subsystem's region, in bytes. The
logging subsystem's default size is approximately 60KB. This value may need to be increased
if a large number of files are registered with the Berkeley DB log manager, for example, by
opening a large number of Berkeley DB database files in a transactional application.

The DB_ENV->set_lg_max() method specifies the individual log file size for all the applications
sharing the Berkeley DB environment. Setting the log file size is largely a matter of
convenience and a reflection of the application's preferences in backup media and frequency.
However, setting the log file size too low can potentially cause problems because it would be
possible to run out of log sequence numbers, which requires a full archival and application
restart to reset. See Log file limits (page 292) for more information.

The DB_ENV->set_lg_bsize() method specifies the size of the in-memory log buffer, in bytes.
Log information is stored in memory until the buffer fills up or transaction commit forces
the buffer to be written to disk. Larger buffer sizes can significantly increase throughput in
the presence of long-running transactions, highly concurrent applications, or transactions
producing large amounts of data. By default, the buffer is approximately 32KB.

The DB_ENV->set_lg_dir() method specifies the directory in which log files will be placed. By
default, log files are placed in the environment home directory.

The DB_ENV->set_lg_filemode() method specifies the absolute file mode for created log files.
This method is only useful for the rare Berkeley DB application that does not control its umask
value.

The DB_ENV->log_set_config() method configures several boolean parameters that control the
use of file system controls such as O_DIRECT and O_DSYNC, automatic removal of log files, in-
memory logging, and pre-zeroing of logfiles.

Log file limits

Log filenames and sizes impose a limit on how long databases may be used in a Berkeley DB
database environment. It is quite unlikely that an application will reach this limit; however, if
the limit is reached, the Berkeley DB environment's databases must be dumped and reloaded.

The log filename consists of log. followed by 10 digits, with a maximum of 2,000,000,000 log
files. Consider an application performing 6000 transactions per second for 24 hours a day,
logged into 10MB log files, in which each transaction is logging approximately 500 bytes of
data. The following calculation:

(10 * 2^20 * 2000000000) / (6000 * 500 * 365 * 60 * 60 * 24) = ~221

indicates that the system will run out of log filenames in roughly 221 years.

There is no way to reset the log filename space in Berkeley DB. If your application is reaching
the end of its log filename space, you must do the following:

1. Archive your databases as if to prepare for catastrophic failure (see Database and log file
archival (page 177) for more information).

2. Reset the database's log sequence numbers (see the -r option to the db_load utility for
more information).

../api_reference/C/envset_lg_regionmax.html
../api_reference/C/envset_lg_max.html
../api_reference/C/envset_lg_bsize.html
../api_reference/C/envset_lg_dir.html
../api_reference/C/envset_lg_filemode.html
../api_reference/C/envlog_set_config.html
../api_reference/C/db_load.html

Library Version 11.2.5.3 The Logging Subsystem

9/9/2013 DB Reference Guide Page 293

3. Remove all of the log files from the database environment. (This is the only situation in
which all the log files are removed from an environment; in all other cases, at least a
single log file is retained.)

4. Restart your application.

9/9/2013 DB Reference Guide Page 294

Chapter 18. The Memory Pool Subsystem

Introduction to the memory pool subsystem

The Memory Pool subsystem is the general-purpose shared memory buffer pool used by
Berkeley DB. This module is useful outside of the Berkeley DB package for processes that
require page-oriented, shared and cached file access. (However, such "use outside of Berkeley
DB" is not supported in replicated environments.)

A memory pool is a memory cache shared among any number of threads of control. The
DB_INIT_MPOOL flag to the DB_ENV->open() method opens and optionally creates a memory
pool. When that pool is no longer in use, it should be closed using the DB_ENV->close()
method.

The DB_ENV->memp_fcreate() method returns a DB_MPOOLFILE handle on an underlying
file within the memory pool. The file may be opened using the DB_MPOOLFILE->open()
method. The DB_MPOOLFILE->get() method is used to retrieve pages from files in the pool.
All retrieved pages must be subsequently returned using the DB_MPOOLFILE->put() method.
At the time pages are returned, they may be marked dirty, which causes them to be written
to the underlying file before being discarded from the pool. If there is insufficient room to
bring a new page in the pool, a page is selected to be discarded from the pool using a least-
recently-used algorithm. All dirty pages in the pool from the file may be flushed using the
DB_MPOOLFILE->sync() method. When the file handle is no longer in use, it should be closed
using the DB_MPOOLFILE->close() method.

There are additional configuration interfaces that apply when opening a new file in the
memory pool:

• The DB_MPOOLFILE->set_clear_len() method specifies the number of bytes to clear when
creating a new page in the memory pool.

• The DB_MPOOLFILE->set_fileid() method specifies a unique ID associated with the file.

• The DB_MPOOLFILE->set_ftype() method specifies the type of file for the purposes of page
input and output processing.

• The DB_MPOOLFILE->set_lsn_offset() method specifies the byte offset of each page's log
sequence number (DB_LSN) for the purposes of transaction checkpoints.

• The DB_MPOOLFILE->set_pgcookie() method specifies an application provided argument for
the purposes of page input and output processing.

There are additional interfaces for the memory pool as a whole:

• It is possible to gradually flush buffers from the pool in order to maintain a consistent
percentage of clean buffers in the pool using the DB_ENV->memp_trickle() method.

• Because special-purpose processing may be necessary when pages are read or written (for
example, endian conversion, or page checksums), the DB_ENV->memp_register() function
allows applications to specify automatic input and output processing in these cases.

../api_reference/C/envopen.html#envopen_DB_INIT_MPOOL
../api_reference/C/envopen.html
../api_reference/C/envclose.html
../api_reference/C/mempfcreate.html
../api_reference/C/memp.html
../api_reference/C/mempfopen.html
../api_reference/C/mempfget.html
../api_reference/C/mempput.html
../api_reference/C/mempfsync.html
../api_reference/C/mempfclose.html
../api_reference/C/mempset_clear_len.html
../api_reference/C/mempset_fileid.html
../api_reference/C/mempset_ftype.html
../api_reference/C/mempset_lsn_offset.html
../api_reference/C/lsn.html
../api_reference/C/mempset_pgcookie.html
../api_reference/C/memptrickle.html
../api_reference/C/mempregister.html

Library Version 11.2.5.3 The Memory Pool Subsystem

9/9/2013 DB Reference Guide Page 295

• The db_stat utility uses the DB_ENV->memp_stat() method to display statistics about the
efficiency of the pool.

• All dirty pages in the pool may be flushed using the DB_ENV->memp_sync() method. In
addition, DB_ENV->memp_sync() takes an argument that is specific to database systems,
and which allows the memory pool to be flushed up to a specified log sequence number
(DB_LSN).

• The entire pool may be discarded using the DB_ENV->remove() method.

For more information on the memory pool subsystem methods, see the Memory Pools and
Related Methods section in the Berkeley DB C API Reference Guide.

Configuring the memory pool

There are two issues to consider when configuring the memory pool.

The first issue, the most important tuning parameter for Berkeley DB applications, is the size
of the memory pool. There are two ways to specify the pool size. First, calling the DB_ENV-
>set_cachesize() method specifies the pool size for all of the applications sharing the Berkeley
DB environment. Second, the DB->set_cachesize() method only specifies a pool size for the
specific database. Note: It is meaningless to call DB->set_cachesize() for a database opened
inside of a Berkeley DB environment because the environment pool size will override any pool
size specified for a single database. For information on tuning the Berkeley DB cache size, see
Selecting a cache size (page 24).

Note the memory pool defaults to assuming that the average page size is 4k. This factor is
used to determine the size of the hash table used to locate pages in the memory pool. The
size of the hash table is calculated to so that on average 2.5 pages will be in each hash table
entry. Each page requires a mutex be allocated to it and the average page size is used to
determine the number of mutexes to allocate to the memory pool.

Normally you should see good results by using the default values for the page size, but in some
cases you may be able to achieve better performance by manually configuring the page size.
The expected page size, hash table size and mutex count can be set via the methods: DB_ENV-
>set_mp_pagesize(), DB_ENV->set_mp_tablesize(), and DB_ENV->set_mp_mtxcount().

The second memory pool configuration issue is the maximum size an underlying file can be
and still be mapped into the process address space (instead of reading the file's pages into
the cache). Mapping files into the process address space can result in better performance
because available virtual memory is often much larger than the local cache, and page faults
are faster than page copying on many systems. However, in the presence of limited virtual
memory, it can cause resource starvation; and in the presence of large databases, it can
result in immense process sizes. In addition, because of the requirements of the Berkeley DB
transactional implementation, only read-only files can be mapped into process memory.

To specify that no files are to be mapped into the process address space, specify the
DB_NOMMAP flag to the DB_ENV->set_flags() method. To specify that any individual file
should not be mapped into the process address space, specify the DB_NOMMAP flag to the
DB_MPOOLFILE->open() interface. To limit the size of files mapped into the process address
space, use the DB_ENV->set_mp_mmapsize() method.

../api_reference/C/db_stat.html
../api_reference/C/mempstat.html
../api_reference/C/mempsync.html
../api_reference/C/mempsync.html
../api_reference/C/lsn.html
../api_reference/C/envremove.html
../api_reference/C/memp.html#memplist
../api_reference/C/memp.html#memplist
../api_reference/C/envset_cachesize.html
../api_reference/C/envset_cachesize.html
../api_reference/C/dbset_cachesize.html
../api_reference/C/dbset_cachesize.html
../api_reference/C/envset_mp_pagesize.html
../api_reference/C/envset_mp_pagesize.html
../api_reference/C/envset_mp_tablesize.html
../api_reference/C/envset_mp_mtxcount.html
../api_reference/C/dbopen.html#open_DB_NOMMAP
../api_reference/C/envset_flags.html
../api_reference/C/dbopen.html#open_DB_NOMMAP
../api_reference/C/mempfopen.html
../api_reference/C/envset_mp_mmapsize.html

Library Version 11.2.5.3 The Memory Pool Subsystem

9/9/2013 DB Reference Guide Page 296

Warming the memory pool

Some applications find it is useful to pre-load the memory pool upon application startup. This
is a strictly optional activity that provides faster initial access to your data at the expense of
longer application startup times.

To warm the cache, you simply have to read the records that your application will operate on
most frequently. You can do this with normal database reads, and you can also use cursors. But
the most efficient way to warm the cache is to use memory pool APIs to get the pages that
contain your most frequently accessed records.

You read pages into the memory pool using the DB_MPOOLFILE->get() method. This method
acquires locks on the page, so immediately upon getting the page you need to put it so as to
release the locks.

Also, you obtain a memory pool file handle using a database handle. This means that if your
data is contained in more than one Berkeley DB database, you must operate on each database
handle in turn.

The following example code illustrates this. It does the following:

• Opens an environment and two database handles.

• Determines how many database pages can fit into the memory pool.

• Uses DB_MPOOLFILE->get() and DB_MPOOLFILE->put() to load that number of pages into
the memory pool.

First, we include the libraries that we need, forward declare some functions, and intialize
some variables.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <db.h>

/* Forward declarations */
int warm_cache(DB *, int *, int);
int open_db(DB_ENV *, DB **, const char *);

int
main(void)
{
 DB *dbp1 = 0, *dbp2 = 0;
 DB_ENV *envp = 0;
 u_int32_t env_flags, pagesize, gbytes, bytes;
 int ret = 0, ret_t = 0, numcachepages, pagecount;

Then we open the environment and our databases. The open_db() function that we use here
simply opens a database. We will provide that code at the end of this example, but it should
hold no surprises for you. We only use the function so as to reuse the code.

Library Version 11.2.5.3 The Memory Pool Subsystem

9/9/2013 DB Reference Guide Page 297

 /*
 * Open the environment and the databases
 */
 ret = db_env_create(&envp, 0);
 if (ret != 0) {
 fprintf(stderr, "Error creating environment handle: %s\n",
 db_strerror(ret));
 goto err;
 }

 env_flags =
 DB_CREATE | /* Create the environment if it does
 not exist */
 DB_RECOVER | /* Run normal recovery. */
 DB_INIT_LOCK | /* Initialize the locking subsystem */
 DB_INIT_LOG | /* Initialize the logging subsystem */
 DB_INIT_TXN | /* Initialize the transactional subsystem. This
 * also turns on logging. */
 DB_INIT_MPOOL; /* Initialize the memory pool */

 /* Now actually open the environment */
 ret = envp->open(envp, "./env", env_flags, 0);
 if (ret != 0) {
 fprintf(stderr, "Error opening environment: %s\n",
 db_strerror(ret));
 goto err;
 }

 ret = open_db(envp, &dbp1, "mydb1.db");
 if (ret != 0)
 goto err;

 ret = open_db(envp, &dbp2, "mydb2.db");
 if (ret != 0)
 goto err;

Next we determine how many database pages we can fit into the cache. We do this by finding
out how large our pages are, and then finding out how large our cache can be.

 /* Find out how many pages can fit at most in the cache */
 ret = envp->get_mp_pagesize(envp, &pagesize);
 if (ret != 0) {
 fprintf(stderr, "Error retrieving the cache pagesize: %s\n",
 db_strerror(ret));
 goto err;
 }

 ret = envp->get_cache_max(envp, &gbytes, &bytes);
 if (ret != 0) {
 fprintf(stderr, "Error retrieving maximum cache size: %s\n",

Library Version 11.2.5.3 The Memory Pool Subsystem

9/9/2013 DB Reference Guide Page 298

 db_strerror(ret));
 goto err;
 }
 /* Avoid an overflow by first calculating pages per gigabyte. */
 numcachepages = gbytes * ((1024 * 1024 * 1024) / pagesize);
 numcachepages += bytes / pagesize;

Now we call our warm_cache() function. We will describe this function in a little while, but
note that we call warm_cache() twice. This is because our example uses two databases, and
the memory pool methods operate on a per-handle basis.

 /*
 * Warm the cache by loading pages from each of the databases
 * in turn.
 */
 pagecount = 0;
 ret = warm_cache(dbp1, &pagecount, numcachepages);
 if (ret != 0) {
 fprintf(stderr, "Error warming the cache: %s\n",
 db_strerror(ret));
 goto err;
 }

 ret = warm_cache(dbp2, &pagecount, numcachepages);
 if (ret != 0) {
 fprintf(stderr, "Error warming the cache: %s\n",
 db_strerror(ret));
 goto err;
 }

Now we close all our handles and finish our main() function. Again, this is straight-forward
boilerplate code that we provide simply to be complete.

err:
 /* Close our database handles, if they were opened. */
 if (dbp1 != NULL) {
 ret_t = dbp1->close(dbp1, 0);
 if (ret_t != 0) {
 fprintf(stderr, "dbp1 close failed: %s\n",
 db_strerror(ret_t));
 ret = ret_t;
 }
 }

 if (dbp2 != NULL) {
 ret_t = dbp2->close(dbp2, 0);
 if (ret_t != 0) {
 fprintf(stderr, "dbp2 close failed: %s\n",
 db_strerror(ret_t));
 ret = ret_t;
 }

Library Version 11.2.5.3 The Memory Pool Subsystem

9/9/2013 DB Reference Guide Page 299

 }

 /* Close our environment, if it was opened. */
 if (envp != NULL) {
 ret_t = envp->close(envp, 0);
 if (ret_t != 0) {
 fprintf(stderr, "environment close failed: %s\n",
 db_strerror(ret_t));
 ret = ret_t;
 }
 }

 /* Final status message and return. */
 printf("I'm all done.\n");
 return (ret == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
}

As noted above, this example uses an open_db() function, which opens a database handle
inside the provided environment. To be complete, this is the implementation of that function:

/* Open a database handle */
int
open_db(DB_ENV *envp, DB **dbpp, const char *file_name)
{
 int ret = 0;
 u_int32_t db_flags = 0;
 DB *dbp;

 /* Open the database */
 ret = db_create(&dbp, envp, 0);
 if (ret != 0) {
 fprintf(stderr, "Error opening database: %s : %s\n",
 file_name, db_strerror(ret));
 return ret;
 }

 /* Point to the memory malloc'd by db_create() */
 *dbpp = dbp;

 db_flags = DB_CREATE | /* Create the database if it does
 not exist */
 DB_AUTO_COMMIT; /* Allow autocommit */

 ret = dbp->open(dbp, /* Pointer to the database */
 0, /* Txn pointer */
 file_name, /* File name */
 0, /* Logical db name */
 DB_BTREE, /* Database type (using btree) */
 db_flags, /* Open flags */
 0); /* File mode. Using defaults */

Library Version 11.2.5.3 The Memory Pool Subsystem

9/9/2013 DB Reference Guide Page 300

 if (ret != 0) {
 dbp->err(dbp, ret, "Database open failed: %s : %s\n",
 file_name, db_strerror(ret));
 return ret;
 }
 return 0;
}

The warm_cache() function

In this section we provide the implementation of the warm_cache() function. This example
function simply loads all the database pages that will fit into the memory pool. It starts from
the first database page and continues until it either runs out of database pages or it runs out
of room in the memory pool.

/* Warm the cache */
int
warm_cache(DB *dbp, int *pagecountp, int numcachepages)
{
 DB_MPOOLFILE *mpf = 0;
 void *page_addrp = 0;
 db_pgno_t page_number = 0;
 int ret = 0;
 int pagecount = *pagecountp;

 /*
 * Get the mpool handle
 */
 mpf = dbp->get_mpf(dbp);

 /* Load pages until there are no more pages in the database,
 * or until we've put as many pages into the cache as will fit.
 */
 while (ret != DB_PAGE_NOTFOUND && pagecount < numcachepages) {
 /*
 * Get the page from the cache. This causes DB to retrieve
 * the page from disk if it isn't already in the cache.
 */
 ret = mpf->get(mpf, &page_number, 0, 0, &page_addrp);
 if (ret && ret != DB_PAGE_NOTFOUND) {
 fprintf(stderr, "Error retrieving db page: %i : %s\n",
 page_number, db_strerror(ret));
 return ret;
 }

 /*
 * If a page was retrieved, put it back into the cache. This
 * releases the page latch so that the page can be evicted
 * if DB needs more room in the cache at some later time.
 */

Library Version 11.2.5.3 The Memory Pool Subsystem

9/9/2013 DB Reference Guide Page 301

 if (ret != DB_PAGE_NOTFOUND) {
 ret = mpf->put(mpf, page_addrp, DB_PRIORITY_UNCHANGED, 0);
 if (ret) {
 fprintf(stderr, "Error putting db page: %i : %s\n",
 page_number, db_strerror(ret));
 return ret;
 }
 }
 ++page_number;
 ++pagecount;
 *pagecountp = pagecount;
 }

 return 0;
}

9/9/2013 DB Reference Guide Page 302

Chapter 19. The Transaction Subsystem

Introduction to the transaction subsystem

The Transaction subsystem makes operations atomic, consistent, isolated, and durable
in the face of system and application failures. The subsystem requires that the data be
properly logged and locked in order to attain these properties. Berkeley DB contains all the
components necessary to transaction-protect the Berkeley DB access methods, and other
forms of data may be protected if they are logged and locked appropriately.

The Transaction subsystem is created, initialized, and opened by calls to DB_ENV->open() with
the DB_INIT_TXN flag specified. Note that enabling transactions automatically enables logging,
but does not enable locking because a single thread of control that needed atomicity and
recoverability would not require it.

The DB_ENV->txn_begin() function starts a transaction, returning an opaque handle to a
transaction. If the parent parameter to DB_ENV->txn_begin() is non-NULL, the new transaction
is a child of the designated parent transaction.

The DB_TXN->abort() function ends the designated transaction and causes all updates
performed by the transaction to be undone. The end result is that the database is left in a
state identical to the state that existed prior to the DB_ENV->txn_begin(). If the aborting
transaction has any child transactions associated with it (even ones that have already been
committed), they are also aborted. Any transactions that are unresolved (neither committed
nor aborted) when the application or system fails are aborted during recovery.

The DB_TXN->commit() function ends the designated transaction and makes all the updates
performed by the transaction permanent, even in the face of application or system failure. If
this is a parent transaction committing, all child transactions that individually committed or
had not been resolved are also committed.

Transactions are identified by 32-bit unsigned integers. The ID associated with any transaction
can be obtained using the DB_TXN->id() function. If an application is maintaining information
outside of Berkeley DB it wants to transaction-protect, it should use this transaction ID as the
locking ID.

The DB_ENV->txn_checkpoint() function causes a transaction checkpoint. A checkpoint is
performed using to a specific log sequence number (LSN), referred to as the checkpoint LSN.
When a checkpoint completes successfully, it means that all data buffers whose updates are
described by LSNs less than the checkpoint LSN have been written to disk. This, in turn, means
that the log records less than the checkpoint LSN are no longer necessary for normal recovery
(although they would be required for catastrophic recovery if the database files were lost),
and all log files containing only records prior to the checkpoint LSN may be safely archived
and removed.

The time required to run normal recovery is proportional to the amount of work done between
checkpoints. If a large number of modifications happen between checkpoints, many updates
recorded in the log may not have been written to disk when failure occurred, and recovery
may take longer to run. Generally, if the interval between checkpoints is short, data may

../api_reference/C/envopen.html
../api_reference/C/envopen.html#envopen_DB_INIT_TXN
../api_reference/C/txnbegin.html
../api_reference/C/txnbegin.html
../api_reference/C/txnabort.html
../api_reference/C/txnbegin.html
../api_reference/C/txncommit.html
../api_reference/C/txnid.html
../api_reference/C/txncheckpoint.html

Library Version 11.2.5.3 The Transaction Subsystem

9/9/2013 DB Reference Guide Page 303

be being written to disk more frequently, but the recovery time will be shorter. Often, the
checkpoint interval is tuned for each specific application.

The DB_TXN->stat() method returns information about the status of the transaction
subsystem. It is the programmatic interface used by the db_stat utility.

The transaction system is closed by a call to DB_ENV->close().

Finally, the entire transaction system may be removed using the DB_ENV->remove() method.

For more information on the transaction subsystem methods, see the Transaction Subsystem
and Related Methods section in the Berkeley DB C API Reference Guide.

Configuring transactions

The application may change the number of simultaneous outstanding transactions supported
by the Berkeley DB environment by calling the DB_ENV->set_tx_max() method. This will also
set the size of the underlying transaction subsystem's region. When the number of outstanding
transactions is reached, additional calls to DB_ENV->txn_begin() will fail until some active
transactions complete.

The application can limit how long a transaction runs or blocks on contested resources. The
DB_ENV->set_timeout() method specifies the length of the timeout. This value is checked
whenever deadlock detection is performed or when the transaction is about to block on a
lock that cannot be immediately granted. Because timeouts are only checked at these times,
the accuracy of the timeout depends on how often deadlock detection is performed or how
frequently the transaction blocks.

There is an additional parameter used in configuring transactions; the DB_TXN_NOSYNC.
Setting the DB_TXN_NOSYNC flag to DB_ENV->set_flags() when opening a transaction region
changes the behavior of transactions to not write or synchronously flush the log during
transaction commit.

This change may significantly increase application transactional throughput. However, it
means that although transactions will continue to exhibit the ACI (atomicity, consistency, and
isolation) properties, they will not have D (durability). Database integrity will be maintained,
but it is possible that some number of the most recently committed transactions may be
undone during recovery instead of being redone.

Transaction limits

Transaction IDs

Transactions are identified by 31-bit unsigned integers, which means there are just over
two billion unique transaction IDs. When a database environment is initially created or
recovery is run, the transaction ID name space is reset, and new transactions are numbered
starting from 0x80000000 (2,147,483,648). The IDs will wrap if the maximum transaction ID
is reached, starting again from 0x80000000. The most recently allocated transaction ID is
the st_last_txnid value in the transaction statistics information, and can be displayed by the
db_stat utility.

../api_reference/C/txnstat.html
../api_reference/C/db_stat.html
../api_reference/C/envclose.html
../api_reference/C/envremove.html
../api_reference/C/txn.html#txnlist
../api_reference/C/txn.html#txnlist
../api_reference/C/envset_tx_max.html
../api_reference/C/txnbegin.html
../api_reference/C/envset_timeout.html
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/envset_flags.html
../api_reference/C/db_stat.html

Library Version 11.2.5.3 The Transaction Subsystem

9/9/2013 DB Reference Guide Page 304

Cursors

When using transactions, cursors are localized to a single transaction. That is, a cursor may
not span transactions, and must be opened and closed within a single transaction. In addition,
intermingling transaction-protected cursor operations and non-transaction-protected cursor
operations on the same database in a single thread of control is practically guaranteed to
deadlock because the locks obtained for transactions and non-transactions can conflict.

Multiple Threads of Control

Because transactions must hold all their locks until commit, a single transaction may
accumulate a large number of long-term locks during its lifetime. As a result, when two
concurrently running transactions access the same database, there is strong potential
for conflict. Although Berkeley DB allows an application to have multiple outstanding
transactions active within a single thread of control, great care must be taken to ensure
that the transactions do not block each other (for example, attempt to obtain conflicting
locks on the same data). If two concurrently active transactions in the same thread of
control do encounter a lock conflict, the thread of control will deadlock so that the deadlock
detector cannot detect the problem. In this case, there is no true deadlock, but because the
transaction on which a transaction is waiting is in the same thread of control, no forward
progress can be made.

9/9/2013 DB Reference Guide Page 305

Chapter 20. Sequences
Sequences provide an arbitrary number of persistent objects that return an increasing or
decreasing sequence of integers. Opening a sequence handle associates it with a record in a
database. The handle can maintain a cache of values from the database so that a database
update is not needed as the application allocates a value.

A sequence is stored as a record pair in a database. The database may be of any type, but
may not have been configured to support duplicate data items. The sequence is referenced by
the key used when the sequence is created, therefore the key must be compatible with the
underlying access method. If the database stores fixed-length records, the record size must be
at least 64 bytes long.

Since a sequence handle is opened using a database handle, the use of transactions with
the sequence must follow how the database handle was opened. In other words, if the
database handle was opened within a transaction, operations on the sequence handle must
use transactions. Of course, if sequences are cached, not all operations will actually trigger a
transaction.

For the highest concurrency, caching should be used and the DB_AUTO_COMMIT and
DB_TXN_NOSYNC flags should be specified to the DB_SEQUENCE->get() method call. If
the allocation of the sequence value must be part of a transaction, and rolled back if the
transaction aborts, then no caching should be specified and the transaction handle must be
passed to the DB_SEQUENCE->get() method.

For more information on the operations supported by the sequence handle, see the Sequences
and Related Methods section in the Berkeley DB C API Reference Guide.

../api_reference/C/envset_flags.html#envset_flags_DB_AUTO_COMMIT
../api_reference/C/envset_flags.html#envset_flags_DB_TXN_NOSYNC
../api_reference/C/seqget.html
../api_reference/C/seqget.html
../api_reference/C/seq.html#seqlist
../api_reference/C/seq.html#seqlist

9/9/2013 DB Reference Guide Page 306

Chapter 21. Berkeley DB Extensions: Tcl

Loading Berkeley DB with Tcl

Berkeley DB includes a dynamically loadable Tcl API, which requires that Tcl/Tk 8.5 or later
already be installed on your system. You can download a copy of Tcl from the Tcl Developer
Xchange Web site.

This document assumes that you already configured Berkeley DB for Tcl support, and you
have built and installed everything where you want it to be. If you have not done so, see
Configuring Berkeley DB or Building the Tcl API in the Berkeley DB Installation and Build Guide
for more information.

Installing as a Tcl Package

Once enabled, the Berkeley DB shared library for Tcl is automatically installed as part of the
standard installation process. However, if you want to be able to dynamically load it as a Tcl
package into your script, there are several steps that must be performed:

1. Run the Tcl shell in the install directory.

2. Append this directory to your auto_path variable.

3. Run the pkg_mkIndex proc, giving the name of the Berkeley DB Tcl library.

For example:

tclsh8.5
% lappend auto_path /usr/local/BerkeleyDB.5.2/lib
% pkg_mkIndex /usr/local/BerkeleyDB.5.2/lib libdb_tcl-5.2.so

Note that your Tcl and Berkeley DB version numbers may differ from the example, and so your
tclsh and library names may be different.

Loading Berkeley DB with Tcl

The Berkeley DB package may be loaded into the user's interactive Tcl script (or wish session)
via the load command. For example:

load /usr/local/BerkeleyDB.5.2/lib/libdb_tcl-5.2.so

Note that your Berkeley DB version numbers may differ from the example, and so the library
name may be different.

If you installed your library to run as a Tcl package, Tcl application scripts should use the
package command to indicate to the Tcl interpreter that it needs the Berkeley DB package
and where to find it. For example:

lappend auto_path "/usr/local/BerkeleyDB.5.2/lib"
package require Db_tcl

No matter which way the library gets loaded, it creates a command named berkdb. All the
Berkeley DB functionality is accessed via this command and additional commands it creates on

http://www.tcl.tk
http://www.tcl.tk
../installation/build_unix_conf.html
../installation/build_win_tcl.html

Library Version 11.2.5.3 Berkeley DB Extensions: Tcl

9/9/2013 DB Reference Guide Page 307

behalf of the application. A simple test to determine whether everything is loaded and ready
is to display the library version, as follows:

berkdb version -string

This should return you the Berkeley DB version in a string format.

Using Berkeley DB with Tcl

All commands in the Berkeley DB Tcl interface are in the following form:

command_handle operation options

The command handle is berkdb or one of the additional commands that may be created. The
operation is what you want to do to that handle, and the options apply to the operation.
Commands that get created on behalf of the application have their own sets of operations.
Generally, any calls in DB that result in new object handles will translate into a new command
handle in Tcl. Then, the user can access the operations of the handle via the new Tcl
command handle.

Newly created commands are named with an abbreviated form of their objects, followed by
a number. Some created commands are subcommands of other created commands and will be
the first command, followed by a period (.), and then followed by the new subcommand. For
example, suppose that you have a database already existing called my_data.db. The following
example shows the commands created when you open the database and when you open a
cursor:

First open the database and get a database command handle
% berkdb open my_data.db
db0
#Get some data from that database
% db0 get my_key
{{my_key my_data0}{my_key my_data1}}
#Open a cursor in this database, get a new cursor handle
% db0 cursor
db0.c0
#Get the first data from the cursor
% db0.c0 get -first
{{first_key first_data}}

All commands in the library support a special option -? that will list the correct operations for
a command or the correct options.

A list of commands and operations can be found in the Tcl API documentation.

Tcl API programming notes

The Berkeley DB Tcl API does not attempt to avoid evaluating input as Tcl commands. For this
reason, it may be dangerous to pass unreviewed user input through the Berkeley DB Tcl API, as
the input may subsequently be evaluated as a Tcl command. Additionally, the Berkeley DB Tcl
API initialization routine resets process' effective user and group IDs to the real user and group
IDs, to minimize the effectiveness of a Tcl injection attack.

../api_reference/TCL/index.html

Library Version 11.2.5.3 Berkeley DB Extensions: Tcl

9/9/2013 DB Reference Guide Page 308

The Tcl API closely parallels the Berkeley DB programmatic interfaces. If you are already
familiar with one of those interfaces, there will not be many surprises in the Tcl API.

The Tcl API currently does not support multithreading although it could be made to do so.
The Tcl shell itself is not multithreaded and the Berkeley DB extensions use global data
unprotected from multiple threads.

Several pieces of Berkeley DB functionality are not available in the Tcl API. Any of the
functions that require a user-provided function are not supported via the Tcl API. For example,
there is no equivalent to the DB->set_dup_compare() or DB_ENV->set_errcall() methods.
Additionally, the heap access method is not available.

Tcl error handling

The Tcl interfaces to Berkeley DB generally return TCL_OK on success and throw a Tcl error
on failure, using the appropriate Tcl interfaces to provide the user with an informative
error message. There are some "expected" failures, however, for which no Tcl error will be
thrown and for which Tcl commands will return TCL_OK. These failures include times when
a searched-for key is not found, a requested key/data pair was previously deleted, or a key/
data pair cannot be written because the key already exists.

These failures can be detected by searching the Berkeley DB error message that is returned.
For example, use the following to detect that an attempt to put a record into the database
failed because the key already existed:
% berkdb open -create -btree a.db
db0
% db0 put dog cat
0
% set ret [db0 put -nooverwrite dog newcat]
DB_KEYEXIST: Key/data pair already exists
% if { [string first DB_KEYEXIST $ret] != -1 } {
 puts "This was an error; the key existed"
}
This was an error; the key existed
% db0 close
0
% exit

To simplify parsing, it is recommended that the initial Berkeley DB error name be checked; for
example, DB_MULTIPLE in the previous example. To ensure that Tcl scripts are not broken by
upgrading to new releases of Berkeley DB, these values will not change in future releases of
Berkeley DB. There are currently only three such "expected" error returns:
DB_NOTFOUND: No matching key/data pair found
DB_KEYEMPTY: Nonexistent key/data pair
DB_KEYEXIST: Key/data pair already exists

Finally, sometimes Berkeley DB will output additional error information when a Berkeley DB
error occurs. By default, all Berkeley DB error messages will be prefixed with the created
command in whose context the error occurred (for example, "env0", "db2", and so on). There
are several ways to capture and access this information.

../api_reference/C/dbset_dup_compare.html
../api_reference/C/envset_errcall.html
../api_reference/C/dbcput.html#dbcput_DB_KEYEXIST

Library Version 11.2.5.3 Berkeley DB Extensions: Tcl

9/9/2013 DB Reference Guide Page 309

First, if Berkeley DB invokes the error callback function, the additional information will be
placed in the error result returned from the command and in the errorInfo backtrace variable
in Tcl.

Also, the two calls to open an environment and open a database take an option, -errfile
filename, which sets an output file to which these additional error messages should be
written.

Additionally, the two calls to open an environment and open a database take an option, -
errpfx string, which sets the error prefix to the given string. This option may be useful in
circumstances where a more descriptive prefix is desired or where a constant prefix indicating
an error is desired.

Tcl FAQ

1. I have several versions of Tcl installed. How do I configure Berkeley DB to use a
particular version?

To compile the Tcl interface with a particular version of Tcl, use the --with-tcl option to
specify the Tcl installation directory that contains the tclConfig.sh file. See the Changing
compile or load options section in the Berkeley DB Installation and Build Guide for more
information.

2. Berkeley DB was configured using --enable-tcl or --with-tcl and fails to build.

The Berkeley DB Tcl interface requires Tcl version 8.5 or greater.

3. Berkeley DB was configured using --enable-tcl or --with-tcl and fails to build.

If the Tcl installation was moved after it was configured and installed, try reconfiguring
and reinstalling Tcl.

Also, some systems do not search for shared libraries by default, or do not search for
shared libraries named the way the Tcl installation names them, or are searching for a
different kind of library than those in your Tcl installation. For example, Linux systems
often require linking "libtcl.a" to "libtcl#.#.a", whereas AIX systems often require adding
the "-brtl" flag to the linker. A simpler solution that almost always works on all systems
is to create a link from "libtcl.#.#.a" or "libtcl.so" (or whatever you happen to have) to
"libtcl.a" and reconfigure.

4. Loading the Berkeley DB library into Tcl on AIX causes a core dump.

In some versions of Tcl, the "tclConfig.sh" autoconfiguration script created by the Tcl
installation does not work properly under AIX, and you may have to modify values in
the tclConfig.sh file to in order to load the Berkeley DB library into Tcl. Specifically, the
TCL_LIB_SPEC variable should contain sufficient linker flags to find and link against the
installed libtcl library. In some circumstances, the tclConfig.sh file built by Tcl does not.

../installation/build_unix_flags.html
../installation/build_unix_flags.html

9/9/2013 DB Reference Guide Page 310

Chapter 22. Berkeley DB Extensions
Using Berkeley DB with Apache

A mod_db4 Apache module is included in the Berkeley DB distribution, providing a safe
framework for running Berkeley DB applications in an Apache 1.3 environment. Apache
natively provides no interface for communication between threads or processes, so the
mod_db4 module exists to provide this communication.

In general, it is dangerous to run Berkeley DB in a multiprocess system without some facility
to coordinate database recovery between processes sharing the database environment after
application or system failure. Failure to run recovery after failure can include process hangs
and an inability to access the database environment. The mod_db4 Apache module oversees
the proper management of Berkeley DB database environment resources. Developers building
applications using Berkeley DB as the storage manager within an Apache module should
employ this technique for proper resource management.

Specifically, mod_db4 provides the following facilities:

1. New constructors for DB_ENV and DB handles, which install replacement open/close
methods.

2. Transparent caching of open DB_ENV and DB handles.

3. Reference counting on all structures, allowing the module to detect the initial opening of
any managed database and automatically perform recovery.

4. Automatic detection of unexpected failures (segfaults, or a module actually calling exit()
and avoiding shut down phases), and automatic termination of all child processes with
open database resources to attempt consistency.

mod_db4 is designed to be used as an alternative interface to Berkeley DB. To have another
Apache module (for example, mod_foo) use mod_db4, do not link mod_foo against the
Berkeley DB library. In your mod_foo makefile, you should:
#include "mod_db4_export.h"

and add your Apache include directory to your CPPFLAGS.

In mod_foo, to create a mod_db4 managed DB_ENV handle, use the following:
int mod_db4_db_env_create(DB_ENV **dbenvp, u_int32_t flags);

which takes identical arguments to db_env_create().

To create a mod_db4 managed DB handle, use the following:
int mod_db4_db_create(DB **dbp, DB_ENV *dbenv, u_int32_t flags);

which takes identical arguments to db_create().

Otherwise the API is completely consistent with the standard Berkeley DB API.

The mod_db4 module requires the Berkeley DB library be compiled with C++ extensions and
the MM library. (The MM library provides an abstraction layer which allows related processes

../api_reference/C/env.html
../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/db.html
../api_reference/C/env.html
../api_reference/C/envcreate.html
../api_reference/C/db.html
../api_reference/C/dbcreate.html

Library Version 11.2.5.3 Berkeley DB Extensions

9/9/2013 DB Reference Guide Page 311

to share data easily. On systems where shared memory or other inter-process communication
mechanisms are not available, the MM library emulates them using temporary files. MM is used
in several operating systems to provide shared memory pools to Apache modules.)

To build this apache module, perform the following steps:

% ./configure --with-apxs=[path to the apxs utility] \
 --with-db4=[Berkeley DB library installation directory] \
 --with-mm=[libmm installation directory]
% make
% make install

Post-installation, modules can use this extension via the functions documented in
$APACHE_INCLUDEDIR/mod_db4_export.h.

Using Berkeley DB with Perl

The original Perl module for Berkeley DB was DB_File, which was written to interface to
Berkeley DB version 1.85. The newer Perl module for Berkeley DB is BerkeleyDB, which was
written to interface to version 2.0 and subsequent releases. Because Berkeley DB version 2.X
has a compatibility API for version 1.85, you can (and should!) build DB_File using version 2.X
of Berkeley DB, although DB_File will still only support the 1.85 functionality.

DB_File is distributed with the standard Perl source distribution (look in the directory "ext/
DB_File"). You can find both DB_File and BerkeleyDB on CPAN, the Comprehensive Perl Archive
Network of mirrored FTP sites. The master CPAN site is ftp://ftp.funet.fi/.

Versions of both BerkeleyDB and DB_File that are known to work correctly with each release
of Berkeley DB are included in the distributed Berkeley DB source tree, in the subdirectories
perl.BerkeleyDB and perl.DB_File. Each of those directories contains a README file with
instructions on installing and using those modules.

The Perl interface is not maintained by Oracle. Questions about the DB_File and BerkeleyDB
modules are best asked on the Usenet newsgroup comp.lang.perl.modules.

Using Berkeley DB with PHP

A PHP 4 extension for this release of Berkeley DB is included in the distribution package. It
can either either link directly against the installed Berkeley DB library (which is necessary
for running in a non-Apache/mod_php4 environment), or against mod_db4, which provides
additional safety when running under Apache/mod_php4.

For installation instructions, see the INSTALL file that resides in the lang/php_db4 directory
in your Berkeley DB distribution.

The PHP extension provides the following classes, which mirror the standard Berkeley DB C++
API.

class Db4Env {
 function Db4Env($flags = 0) {}
 function close($flags = 0) {}
 function dbremove($txn, $filename, $database = null, $flags = 0) {}

ftp://ftp.funet.fi/

Library Version 11.2.5.3 Berkeley DB Extensions

9/9/2013 DB Reference Guide Page 312

 function dbrename($txn, $file, $database, $new_database,
 $flags = 0) {}
 function open($home, $flags = DB_CREATE | DB_INIT_LOCK |
 DB_INIT_LOG | DB_INIT_MPOOL | DB_INIT_TXN,
 $mode = 0666) {}
 function remove($home, $flags = 0) {}
 function set_data_dir($directory) {}
 function txn_begin($parent_txn = null, $flags = 0) {}
 function txn_checkpoint($kbytes, $minutes, $flags = 0) {}
}

class Db4 {
 function Db4($dbenv = null) {} // create a new Db4 object using
 // the optional DbEnv
 function open($txn = null, $file = null, $database = null,
 $flags = DB_CREATE, $mode = 0) {}
 function close() {}
 function del($key, $txn = null) {}
 function get($key, $txn = null, $flags = 0) {}
 function pget($key, &$pkey, $txn = null, $flags = 0) {}
 function get_type() {} // returns the stringified
 // database type name
 function stat($txn = null, $flags = 0) {} // returns statistics as
 // an as
 function join($cursor_list, $flags = 0) {}
 function sync() {}
 function truncate($txn = null, $flags = 0) {}
 function cursor($txn = null, flags = 0) {}
}

class Db4Txn {
 function abort() {}
 function commit() {}
 function discard() {}
 function id() {}
 function set_timeout($timeout, $flags = 0) {}
}

class Db4Cursor {
 function close() {}
 function count() {}
 function del() {}
 function dup($flags = 0) {}
 function get($key, $flags = 0) {}
 function pget($key, &$primary_key, $flags = 0) {}
 function put($key, $data, $flags = 0) {}
}

The PHP extension attempts to be "smart" for you by:

Library Version 11.2.5.3 Berkeley DB Extensions

9/9/2013 DB Reference Guide Page 313

1. Auto-committing operations on transactional databases if no explicit Db4Txn object is
specified.

2. Performing reference and dependency checking to insure that all resources are closed in
the correct order.

3. Supplying default values for flags.

9/9/2013 DB Reference Guide Page 314

Chapter 23. Dumping and Reloading Databases

The db_dump and db_load utilities

There are three utilities used for dumping and loading Berkeley DB databases: the db_dump
utility, the db_dump185 utility and the db_load utility.

The db_dump utility and the db_dump185 utility dump Berkeley DB databases into a flat-text
representation of the data that can be read by db_load utility. The only difference between
them is that the db_dump utility reads Berkeley DB version 2 and greater database formats,
whereas the db_dump185 utility reads Berkeley DB version 1.85 and 1.86 database formats.

The db_load utility reads either the output format used by the dump utilities or (optionally) a
flat-text representation created using other tools, and stores it into a Berkeley DB database.

Dumping and reloading Hash databases that use user-defined hash functions will result in new
databases that use the default hash function. Although using the default hash function may
not be optimal for the new database, it will continue to work correctly.

Dumping and reloading Btree databases that use user-defined prefix or comparison functions
will result in new databases that use the default prefix and comparison functions. In this case,
it is quite likely that applications will be unable to retrieve records, and it is possible that the
load process itself will fail.

The only available workaround for either Hash or Btree databases is to modify the sources
for the db_load utility to load the database using the correct hash, prefix, and comparison
functions.

Dump output formats

There are two output formats used by the db_dump utility and db_dump185 utility.

In both output formats, the first few lines of the output contain header information describing
the underlying access method, filesystem page size, and other bookkeeping information.

The header information starts with a single line, VERSION=N, where N is the version number of
the dump output format.

The header information is then output in name=value pairs, where name may be any of the
keywords listed in the db_load utility manual page, and value will be its value. Although this
header information can be manually edited before the database is reloaded, there is rarely
any reason to do so because all of this information can also be specified or overridden by
command-line arguments to the db_load utility.

The header information ends with single line HEADER=END.

Following the header information are the key/data pairs from the database. If the database
being dumped is a Btree or Hash database, or if the -k option was specified, the output will
be paired lines of text where the first line of the pair is the key item, and the second line
of the pair is its corresponding data item. If the database being dumped is a Queue or Recno

../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/db_load.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/db_load.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/db_load.html
../api_reference/C/db_load.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/db_load.html
../api_reference/C/db_load.html

Library Version 11.2.5.3 Dumping and Reloading Databases

9/9/2013 DB Reference Guide Page 315

database, and the -k option was not specified, the output will be lines of text where each line
is the next data item for the database. Each of these lines is preceded by a single space.

If the -p option was specified to the db_dump utility or db_dump185 utility, the key/data
lines will consist of single characters representing any characters from the database that are
printing characters and backslash (\) escaped characters for any that were not. Backslash
characters appearing in the output mean one of two things: if the backslash character
precedes another backslash character, it means that a literal backslash character occurred
in the key or data item. If the backslash character precedes any other character, the next
two characters must be interpreted as hexadecimal specification of a single character; for
example, \0a is a newline character in the ASCII character set.

Although some care should be exercised, it is perfectly reasonable to use standard text editors
and tools to edit databases dumped using the -p option before reloading them using the
db_load utility.

Note that the definition of a printing character may vary from system to system, so database
representations created using the -p option may be less portable than those created without
it.

If the -p option in not specified to db_dump utility or db_dump185 utility, each output line
will consist of paired hexadecimal values; for example, the line 726f6f74 is the string root in
the ASCII character set.

In all output formats, the key and data items are ended by a single line DATA=END.

Where multiple databases have been dumped from a file, the overall output will repeat; that
is, a new set of headers and a new set of data items.

Loading text into databases

The db_load utility can be used to load text into databases. The -T option permits
nondatabase applications to create flat-text files that are then loaded into databases for fast,
highly-concurrent access. For example, the following command loads the standard UNIX /
etc/passwd file into a database, with the login name as the key item and the entire password
entry as the data item:

awk -F: '{print $1; print $0}' < /etc/passwd |\
 sed 's/\\/\\\\/g' | db_load -T -t hash passwd.db

Note that backslash characters naturally occurring in the text are escaped to avoid
interpretation as escape characters by the db_load utility.

../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/db_load.html
../api_reference/C/db_dump.html
../api_reference/C/db_dump.html
../api_reference/C/db_load.html
../api_reference/C/db_load.html

9/9/2013 DB Reference Guide Page 316

Chapter 24. Additional References

Additional references

For more information on Berkeley DB or on database systems theory in general, we
recommend the following sources:

Technical Papers on Berkeley DB

These papers have appeared in refereed conference proceedings, and are subject to
copyrights held by the conference organizers and the authors of the papers. Oracle makes
them available here as a courtesy with the permission of the copyright holders.

Berkeley DB (Postscript)
Michael Olson, Keith Bostic, and Margo Seltzer, Proceedings of the 1999 Summer
Usenix Technical Conference, Monterey, California, June 1999. This paper describes
recent commercial releases of Berkeley DB, its most important features, the history of
the software, and Sleepycat Software's Open Source licensing policies.

Challenges in Embedded Database System Administration (HTML)
Margo Seltzer and Michael Olson, First Workshop on Embedded Systems, Cambridge,
Massachusetts, March 1999. This paper describes the challenges that face embedded
systems developers, and how Berkeley DB has been designed to address them.

LIBTP: Portable Modular Transactions for UNIX (Postscript)
Margo Seltzer and Michael Olson, USENIX Conference Proceedings, Winter 1992. This
paper describes an early prototype of the transactional system for Berkeley DB.

A New Hashing Package for UNIX (Postscript)
Margo Seltzer and Oz Yigit, USENIX Conference Proceedings, Winter 1991. This paper
describes the Extended Linear Hashing techniques used by Berkeley DB.

Background on Berkeley DB Features

These papers, although not specific to Berkeley DB, give a good overview of the way different
Berkeley DB features were implemented.

Operating System Support for Database Management
Michael Stonebraker, Communications of the ACM 24(7), 1981, pp. 412-418.

Dynamic Hash Tables
Per-Ake Larson, Communications of the ACM, April 1988.

Linear Hashing: A New Tool for File and Table Addressing
Witold Litwin, Proceedings of the 6th International Conference on Very Large
Databases (VLDB), 1980

The Ubiquitous B-tree
Douglas Comer, ACM Comput. Surv. 11, 2 (June 1979), pp. 121-138.

Prefix B-trees
Bayer and Unterauer, ACM Transactions on Database Systems, Vol. 2, 1 (March 1977),
pp. 11-26.

embedded.html
witold.html

Library Version 11.2.5.3 Additional References

9/9/2013 DB Reference Guide Page 317

The Art of Computer Programming Vol. 3: Sorting and Searching
D.E. Knuth, 1968, pp. 471-480.

Document Processing in a Relational Database System
Michael Stonebraker, Heidi Stettner, Joseph Kalash, Antonin Guttman, Nadene Lynn,
Memorandum No. UCB/ERL M82/32, May 1982.

Database Systems Theory

These publications are standard reference works on the design and implementation of
database systems. Berkeley DB uses many of the ideas they describe.

Transaction Processing Concepts and Techniques
by Jim Gray and Andreas Reuter, Morgan Kaufmann Publishers. We recommend
chapters 1, 4 (skip 4.6, 4.7, 4.9, 4.10 and 4.11), 7, 9, 10.3, and 10.4.

An Introduction to Database Systems, Volume 1
by C.J. Date, Addison Wesley Longman Publishers. In the 5th Edition, we recommend
chapters 1, 2, 3, 16 and 17.

Concurrency Control and Recovery in Database Systems
by Bernstein, Goodman, Hadzilaco. Currently out of print, but available from http://
research.microsoft.com/en-us/people/philbe/ccontrol.aspx.

http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx

	Berkeley DB Programmer's Reference Guide
	Table of Contents
	Preface
	Conventions Used in this Book
	For More Information
	Contact Us

	Chapter 1. Introduction
	An introduction to data management
	Mapping the terrain: theory and practice
	Data access and data management
	Relational databases
	Object-oriented databases
	Network databases
	Clients and servers

	What is Berkeley DB?
	Data Access Services
	Data management services
	Design

	What Berkeley DB is not
	Berkeley DB is not a relational database
	Berkeley DB is not an object-oriented database
	Berkeley DB is not a network database
	Berkeley DB is not a database server

	Do you need Berkeley DB?
	What other services does Berkeley DB provide?
	What does the Berkeley DB distribution include?
	Where does Berkeley DB run?
	The Berkeley DB products
	Berkeley DB Data Store
	Berkeley DB Concurrent Data Store
	Berkeley DB Transactional Data Store
	Berkeley DB High Availability

	Chapter 2. Access Method Configuration
	What are the available access methods?
	Btree
	Hash
	Heap
	Queue
	Recno

	Selecting an access method
	Btree or Heap?
	Disk Space Usage
	Record Access
	Record Creation/Deletion
	Cursor Operations
	Which Access Method Should You Use?

	Hash or Btree?
	Queue or Recno?

	Logical record numbers
	General access method configuration
	Selecting a page size
	Selecting a cache size
	Selecting a byte order
	Duplicate data items
	Non-local memory allocation

	Btree access method specific configuration
	Btree comparison
	Btree prefix comparison
	Minimum keys per page
	Retrieving Btree records by logical record number
	Compression
	Custom compression
	Programmer Notes

	Hash access method specific configuration
	Page fill factor
	Specifying a database hash
	Hash table size

	Heap access method specific configuration
	Queue and Recno access method specific configuration
	Managing record-based databases
	Record Delimiters
	Record Length
	Record Padding Byte Value

	Selecting a Queue extent size
	Flat-text backing files
	Logically renumbering records

	Chapter 3. Access Method Operations
	Database open
	Opening multiple databases in a single file
	Configuring databases sharing a file
	Caching databases sharing a file
	Locking in databases based on sharing a file

	Partitioning databases
	Specifying partition keys
	Partitioning callback
	Placing partition files

	Retrieving records
	Storing records
	Deleting records
	Database statistics
	Database truncation
	Database upgrade
	Database verification and salvage
	Flushing the database cache
	Database close
	Secondary indexes
	Error Handling With Secondary Indexes

	Foreign key indexes
	Cursor operations
	Retrieving records with a cursor
	Cursor position flags
	Retrieving specific key/data pairs
	Retrieving based on record numbers
	Special-purpose flags

	Storing records with a cursor
	Deleting records with a cursor
	Duplicating a cursor
	Equality Join
	Example

	Data item count
	Cursor close

	Chapter 4. Access Method Wrapup
	Data alignment
	Retrieving and updating records in bulk
	Bulk retrieval
	Bulk updates
	Bulk deletes

	Partial record storage and retrieval
	Storing C/C++ structures/objects
	Retrieved key/data permanence for C/C++
	Error support
	Cursor stability
	Database limits
	Disk space requirements
	Btree
	Hash

	Specifying a Berkeley DB schema using SQL DDL
	Access method tuning
	Access method FAQ

	Chapter 5. Java API
	Java configuration
	Compatibility
	Java programming notes
	Java FAQ

	Chapter 6. C# API
	Compatibility

	Chapter 7. Standard Template Library API
	Dbstl introduction
	Standards compatible
	Performance overhead
	Portability

	Dbstl typical use cases
	Dbstl examples
	Berkeley DB configuration
	Registering database and environment handles
	Truncate requirements
	Auto commit support
	Database and environment identity checks
	Products, constructors and configurations

	Using advanced Berkeley DB features with dbstl
	Using bulk retrieval iterators
	Using the DB_RMW flag
	Using secondary index database and secondary containers

	Using transactions in dbstl
	Using dbstl in multithreaded applications
	Working with primitive types
	Storing strings

	Store and Retrieve data or objects of complex types
	Storing varying length objects
	Storing by marshaling objects
	Using a DbstlDbt wrapper object

	Storing arbitrary sequences
	The SequenceLenFunct function
	The SequenceCopyFunct function

	Notes

	Dbstl persistence
	Direct database get
	Change persistence
	Object life time and persistence

	Dbstl container specific notes
	db_vector specific notes
	Associative container specific notes

	Using dbstl efficiently
	Using iterators efficiently
	Using containers efficiently

	Dbstl memory management
	Freeing memory
	Type specific notes
	DbEnv/Db
	DbstlDbt

	Dbstl miscellaneous notes
	Special notes about trivial methods
	Using correct container and iterator public types

	Dbstl known issues

	Chapter 8. Berkeley DB Architecture
	The big picture
	Programming model
	Programmatic APIs
	C
	C++
	STL
	Java
	Dbm/Ndbm, Hsearch

	Scripting languages
	Perl
	PHP
	Tcl

	Supporting utilities

	Chapter 9. The Berkeley DB Environment
	Database environment introduction
	Creating a database environment
	Sizing a database environment
	Opening databases within the environment
	Error support
	DB_CONFIG configuration file
	File naming
	Specifying file naming to Berkeley DB
	Filename resolution in Berkeley DB
	Examples

	Shared memory regions
	Security
	Encryption
	Remote filesystems
	Environment FAQ

	Chapter 10. Berkeley DB Concurrent Data Store Applications
	Concurrent Data Store introduction
	Handling failure in Data Store and Concurrent Data Store applications
	Architecting Data Store and Concurrent Data Store applications

	Chapter 11. Berkeley DB Transactional Data Store Applications
	Transactional Data Store introduction
	Why transactions?
	Terminology
	Handling failure in Transactional Data Store applications
	Architecting Transactional Data Store applications
	Opening the environment
	Opening the databases
	Recoverability and deadlock handling
	Atomicity
	Isolation
	Degrees of isolation
	Snapshot Isolation

	Transactional cursors
	Nested transactions
	Environment infrastructure
	Deadlock detection
	Checkpoints
	Database and log file archival
	Log file removal
	Recovery procedures
	Hot failover
	Using Recovery on Journaling Filesystems
	Recovery and filesystem operations
	Berkeley DB recoverability
	Transaction tuning
	Transaction throughput
	Transaction FAQ

	Chapter 12. Berkeley DB Replication
	Replication introduction
	Replication environment IDs
	Replication environment priorities
	Building replicated applications
	Replication Manager methods
	Base API Methods
	Building the communications infrastructure
	Connecting to a new site
	Managing Replication Manager Group Membership
	Adding Sites to a Replication Group
	Removing Sites from a Replication Group
	Primordial Startups
	Upgrading Groups

	Managing Replication Files
	Running Replication Manager in multiple processes
	One replication process and multiple subordinate processes
	Persistence of local site network address configuration
	Programming considerations
	Handling failure
	Other miscellaneous rules

	Running Replication using the db_replicate Utility
	One Replication Process and Multiple Subordinate Processes
	Common Use Case
	Avoiding Rollback
	When to Consider an Integrated HA Application

	Choosing a Replication Manager Ack Policy
	Elections
	Synchronizing with a master
	Delaying client synchronization
	Client-to-client synchronization
	Blocked client operations
	Clients too far out-of-date to synchronize

	Initializing a new site
	Bulk transfer
	Transactional guarantees
	Master Leases
	Changing Group Size

	Read your writes consistency
	Getting a token
	Token handling
	Using a token to check or wait for a transaction

	Clock Skew
	Using Replication Manager message channels
	DB_CHANNEL
	Sending messages over a message channel
	Message Responses

	Receiving messages

	Special considerations for two-site replication groups
	Network partitions
	Replication FAQ
	Ex_rep: a replication example
	Ex_rep_base: a TCP/IP based communication infrastructure
	Ex_rep_base: putting it all together
	Ex_rep_chan: a Replication Manager channel example

	Chapter 13. Distributed Transactions
	Introduction
	Berkeley DB XA Implementation
	Building a Global Transaction Manager
	Communicating with multiple Berkeley DB environments
	Recovering from GTM failure
	Managing the Global Transaction ID (GID) name space
	Maintaining state for each distributed transaction.
	Recovering from the failure of a single environment
	Recovering from GTM failure

	XA Introduction
	Configuring Berkeley DB with the Tuxedo System
	Update the Resource Manager File in Tuxedo
	Build the Transaction Manager Server
	Update the UBBCONFIG File

	Restrictions on XA Transactions
	XA: Frequently Asked Questions

	Chapter 14. Application Specific Logging and Recovery
	Introduction to application specific logging and recovery
	Defining application-specific log records
	Automatically generated functions
	Application configuration

	Chapter 15. Programmer Notes
	Signal handling
	Error returns to applications
	Environment variables
	Multithreaded applications
	Berkeley DB handles
	Name spaces
	C Language Name Space
	Filesystem Name Space

	Memory-only or Flash configurations
	Disk drive caches
	Copying or moving databases
	Compatibility with historic UNIX interfaces
	Run-time configuration
	Performance Event Monitoring
	Using the DTrace Provider
	Using SystemTap
	Example Scripts
	Performance Events Reference

	Programmer notes FAQ

	Chapter 16. The Locking Subsystem
	Introduction to the locking subsystem
	Configuring locking
	Configuring locking: sizing the system
	Standard lock modes
	Deadlock detection
	Deadlock detection using timers
	Deadlock debugging
	Locking granularity
	Locking without transactions
	Locking with transactions: two-phase locking
	Berkeley DB Concurrent Data Store locking conventions
	Berkeley DB Transactional Data Store locking conventions
	Locking and non-Berkeley DB applications

	Chapter 17. The Logging Subsystem
	Introduction to the logging subsystem
	Configuring logging
	Log file limits

	Chapter 18. The Memory Pool Subsystem
	Introduction to the memory pool subsystem
	Configuring the memory pool
	Warming the memory pool
	The warm_cache() function

	Chapter 19. The Transaction Subsystem
	Introduction to the transaction subsystem
	Configuring transactions
	Transaction limits
	Transaction IDs
	Cursors
	Multiple Threads of Control

	Chapter 20. Sequences
	Chapter 21. Berkeley DB Extensions: Tcl
	Loading Berkeley DB with Tcl
	Installing as a Tcl Package
	Loading Berkeley DB with Tcl

	Using Berkeley DB with Tcl
	Tcl API programming notes
	Tcl error handling
	Tcl FAQ

	Chapter 22. Berkeley DB Extensions
	Using Berkeley DB with Apache
	Using Berkeley DB with Perl
	Using Berkeley DB with PHP

	Chapter 23. Dumping and Reloading Databases
	The db_dump and db_load utilities
	Dump output formats
	Loading text into databases

	Chapter 24. Additional References
	Additional references
	Technical Papers on Berkeley DB
	Background on Berkeley DB Features
	Database Systems Theory

