
Berkeley DB

Michael A. Olson
Keith Bostic

Margo Seltzer
Sleepycat Software, Inc.

Abstract
Berkeley DB is an Open Source embedded database system with a number of key advantages over comparable sys-
tems. It is simple to use, supports concurrent access by multiple users, and provides industrial-strength transaction
support, including surviving system and disk crashes. This paper describes the design and technical features of
Berkeley DB, the distribution, and its license.

1. Introduction
The Berkeley Database (Berkeley DB) is an embedded
database system that can be used in applications requir-
ing high-performance concurrent storage and retrieval
of key/value pairs. The software is distributed as a
library that can be linked directly into an application. It
provides a variety of programmatic interfaces, includ-
ing callable APIs for C, C++, Perl, Tcl and Java. Users
may download Berkeley DB from Sleepycat Software’s
Web site, at www.sleepycat.com.

Sleepycat distributes Berkeley DB as an Open Source
product. The company collects license fees for certain
uses of the software and sells support and services.

1.1. History
Berkeley DB beg an as a new implementation of a hash
access method to replace both hsearch and the vari-
ous dbm implementations (dbm from AT&T, ndbm
from Berkeley, and gdbm from the GNU project). In
1990 Seltzer and Yigit produced a package called Hash
to do this [Selt91].

The first general release of Berkeley DB, in 1991,
included some interface changes and a new B+tree
access method. At roughly the same time, Seltzer and
Olson developed a prototype transaction system based
on Berkeley DB, called LIBTP [Selt92], but never
released the code.

The 4.4BSD UNIX release included Berkeley DB 1.85
in 1992. Seltzer and Bostic maintained the code in the
early 1990s in Berkeley and in Massachusetts. Many
users adopted the code during this period.

By mid-1996, users wanted commercial support for the
software. In response, Bostic and Seltzer formed
Sleepycat Software. The company enhances,

distributes, and supports Berkeley DB and supporting
software and documentation. Sleepycat released ver-
sion 2.1 of Berkeley DB in mid-1997 with important
new features, including support for concurrent access to
databases. The company makes about three commer-
cial releases a year, and most recently shipped version
2.8.

1.2. Overview of Berkeley DB
The C interfaces in Berkeley DB permit dbm-style
record management for databases, with significant
extensions to handle duplicate data items elegantly, to
deal with concurrent access, and to provide transac-
tional support so that multiple changes can be simulta-
neously committed (so that they are made permanent)
or rolled back (so that the database is restored to its
state at the beginning of the transaction).

C++ and Java interfaces provide a small set of classes
for operating on a database. The main class in both
cases is called Db, and provides methods that encapsu-
late the dbm-style interfaces that the C interfaces pro-
vide.

Tcl and Perl interfaces allow dev elopers working in
those languages to use Berkeley DB in their applica-
tions. Bindings for both languages are included in the
distribution.

Developers may compile their applications and link in
Berkeley DB statically or dynamically.

1.3. How Berkeley DB is used
The Berkeley DB library supports concurrent access to
databases. It can be linked into standalone applica-
tions, into a collection of cooperating applications, or
into servers that handle requests and do database



operations on behalf of clients.

Compared to using a standalone database management
system, Berkeley DB is easy to understand and simple
to use. The software stores and retrieves records,
which consist of key/value pairs. Ke ys are used to
locate items and can be any data type or structure sup-
ported by the programming language.

The programmer can provide the functions that Berke-
ley DB uses to operate on keys. For example, B+trees
can use a custom comparison function, and the Hash
access method can use a custom hash function. Berke-
ley DB uses default functions if none are supplied.
Otherwise, Berkeley DB does not examine or interpret
either keys or values in any way. Values may be arbi-
trarily long.

It is also important to understand what Berkeley DB is
not. It is not a database server that handles network
requests. It is not an SQL engine that executes queries.
It is not a relational or object-oriented database man-
agement system.

It is possible to build any of those on top of Berkeley
DB, but the package, as distributed, is an embedded
database engine. It has been designed to be portable,
small, fast, and reliable.

1.4. Applications that use Berkeley DB
Berkeley DB is embedded in a variety of proprietary
and Open Source software packages. This section
highlights a few of the products that use it.

Directory servers, which do data storage and retrieval
using the Local Directory Access Protocol (LDAP),
provide naming and directory lookup service on local-
area networks. This service is, essentially, database
query and update, but uses a simple protocol rather than
SQL or ODBC. Berkeley DB is the embedded data
manager in the majority of deployed directory servers
today, including LDAP servers from Netscape, Mes-
sageDirect (formerly Isode), and others.

Berkeley DB is also embedded in a large number of
mail servers. Intermail, from Software.com, uses
Berkeley DB as a message store and as the backing
store for its directory server. The sendmail server
(including both the commercial Sendmail Pro offering
from Sendmail, Inc. and the version distributed by
sendmail.org) uses Berkeley DB to store aliases and
other information. Similarly, Postfix (formerly
VMailer) uses Berkeley DB to store administrative
information.

In addition, Berkeley DB is embedded in a wide variety
of other software products. Example applications

include managing access control lists, storing user keys
in a public-key infrastructure, recording machine-to-
network-address mappings in address servers, and stor-
ing configuration and device information in video post-
production software.

Finally, Berkeley DB is a part of many other Open
Source software packages available on the Internet. For
example, the software is embedded in the Apache Web
server and the Gnome desktop.

2. Access Methods
In database terminology, an access method is the disk-
based structure used to store data and the operations
available on that structure. For example, many
database systems support a B+tree access method.
B+trees allow equality-based lookups (find keys equal
to some constant), range-based lookups (find keys
between two constants) and record insertion and dele-
tion.

Berkeley DB supports three access methods: B+tree,
Extended Linear Hashing (Hash), and Fixed- or Vari-
able-length Records (Recno). All three operate on
records composed of a key and a data value. In the
B+tree and Hash access methods, keys can have arbi-
trary structure. In the Recno access method, each
record is assigned a record number, which serves as the
key. In all the access methods, the value can have arbi-
trary structure. The programmer can supply compari-
son or hashing functions for keys, and Berkeley DB
stores and retrieves values without interpreting them.

All of the access methods use the host filesystem as a
backing store.

2.1. Hash
Berkeley DB includes a Hash access method that
implements extended linear hashing [Litw80].
Extended linear hashing adjusts the hash function as the
hash table grows, attempting to keep all buckets under-
full in the steady state.

The Hash access method supports insertion and dele-
tion of records and lookup by exact match only. Appli-
cations may iterate over all records stored in a table, but
the order in which they are returned is undefined.

2.2. B+tree
Berkeley DB includes a B+tree [Come79] access
method. B+trees store records of key/value pairs in leaf
pages, and pairs of (key, child page address) at internal
nodes. Keys in the tree are stored in sorted order,



where the order is determined by the comparison func-
tion supplied when the database was created. Pages at
the leaf level of the tree include pointers to their neigh-
bors to simplify traversal. B+trees support lookup by
exact match (equality) or range (greater than or equal to
a key). Like Hash tables, B+trees support record inser-
tion, deletion, and iteration over all records in the tree.

As records are inserted and pages in the B+tree fill up,
they are split, with about half the keys going into a new
peer page at the same level in the tree. Most B+tree
implementations leave both nodes half-full after a split.
This leads to poor performance in a common case,
where the caller inserts keys in order. To handle this
case, Berkeley DB keeps track of the insertion order,
and splits pages unevenly to keep pages fuller. This
reduces tree size, yielding better search performance
and smaller databases.

On deletion, empty pages are coalesced by reverse
splits into single pages. The access method does no
other page balancing on insertion or deletion. Ke ys are
not moved among pages at every update to keep the
tree well-balanced. While this could improve search
times in some cases, the additional code complexity
leads to slower updates and is prone to deadlocks.

For simplicity, Berkeley DB B+trees do no prefix com-
pression of keys at internal or leaf nodes.

2.3. Recno
Berkeley DB includes a fixed- or variable-length record
access method, called Recno. The Recno access
method assigns logical record numbers to each record,
and can search for and update records by record num-
ber. Recno is able, for example, to load a text file into a
database, treating each line as a record. This permits
fast searches by line number for applications like text
editors [Ston82].

Recno is actually built on top of the B+tree access
method and provides a simple interface for storing
sequentially-ordered data values. The Recno access
method generates keys internally. The programmer’s
view of the values is that they are numbered sequen-
tially from one. Developers can choose to have records
automatically renumbered when lower-numbered
records are added or deleted. In this case, new keys can
be inserted between existing keys.

3. Features
This section describes important features of Berkeley
DB. In general, developers can choose which features
are useful to them, and use only those that are required

by their application.

For example, when an application opens a database, it
can declare the degree of concurrency and recovery that
it requires. Simple stand-alone applications, and in par-
ticular ports of applications that used dbm or one of its
variants, generally do not require concurrent access or
crash recovery. Other applications, such as enterprise-
class database management systems that store sales
transactions or other critical data, need full transac-
tional service. Single-user operation is faster than
multi-user operation, since no overhead is incurred by
locking. Running with the recovery system disabled is
faster than running with it enabled, since log records
need not be written when changes are made to the
database.

In addition, some core subsystems, including the lock-
ing system and the logging facility, can be used outside
the context of the access methods as well. Although
few users have chosen to do so, it is possible to use
only the lock manager in Berkeley DB to control con-
currency in an application, without using any of the
standard database services. Alternatively, the caller can
integrate locking of non-database resources with Berke-
ley DB’s transactional two-phase locking system, to
impose transaction semantics on objects outside the
database.

3.1. Programmatic interfaces
Berkeley DB defines a simple API for database man-
agement. The package does not include industry-stan-
dard programmatic interfaces such as Open Database
Connectivity (ODBC), Object Linking and Embedding
for Databases (OleDB), or Structured Query Language
(SQL). These interfaces, while useful, were designed
to promote interoperability of database systems, and
not simplicity or performance.

In response to customer demand, Berkeley DB 2.5
introduced support for the XA standard [Open94]. XA
permits Berkeley DB to participate in distributed trans-
actions under a transaction processing monitor like
Tuxedo from BEA Systems. Like XA, other standard
interfaces can be built on top of the core system. The
standards do not belong inside Berkeley DB, since not
all applications need them.

3.2. Working with records
A database user may need to search for particular keys
in a database, or may simply want to browse available
records. Berkeley DB supports both keyed access, to
find one or more records with a given key, or sequential
access, to retrieve all the records in the database one at



a time. The order of the records returned during
sequential scans depends on the access method. B+tree
and Recno databases return records in sort order, and
Hash databases return them in apparently random order.

Similarly, Berkeley DB defines simple interfaces for
inserting, updating, and deleting records in a database.

3.3. Long keys and values
Berkeley DB manages keys and values as large as 232

bytes. Since the time required to copy a record is pro-
portional to its size, Berkeley DB includes interfaces
that operate on partial records. If an application
requires only part of a large record, it requests partial
record retrieval, and receives just the bytes that it needs.
The smaller copy sav es both time and memory.

Berkeley DB allows the programmer to define the data
types of keys and values. Developers use any type
expressible in the programming language.

3.4. Large databases
A single database managed by Berkeley DB can be up
to 248 bytes, or 256 petabytes, in size. Berkeley DB
uses the host filesystem as the backing store for the
database, so large databases require big file support
from the operating system. Sleepycat Software has
customers using Berkeley DB to manage single
databases in excess of 100 gigabytes.

3.5. Main memory databases
Applications that do not require persistent storage can
create databases that exist only in main memory. These
databases bypass the overhead imposed by the I/O sys-
tem altogether.

Some applications do need to use disk as a backing
store, but run on machines with very large memory.
Berkeley DB is able to manage very large shared mem-
ory regions for cached data pages, log records, and lock
management. For example, the cache region used for
data pages may be gigabytes in size, reducing the likeli-
hood that any read operation will need to visit the disk
in the steady state. The programmer declares the size
of the cache region at startup.

Finally, many operating systems provide memory-
mapped file services that are much faster than their
general-purpose file system interfaces. Berkeley DB
can memory-map its database files for read-only
database use. The application operates on records
stored directly on the pages, with no cache manage-
ment overhead. Because the application gets pointers

directly into the Berkeley DB pages, writes cannot be
permitted. Otherwise, changes could bypass the lock-
ing and logging systems, and software errors could cor-
rupt the database. Read-only applications can use
Berkeley DB’s memory-mapped file service to improve
performance on most architectures.

3.6. Configurable page size
Programmers declare the size of the pages used by their
access methods when they create a database. Although
Berkeley DB provides reasonable defaults, developers
may override them to control system performance.
Small pages reduce the number of records that fit on a
single page. Fewer records on a page means that fewer
records are locked when the page is locked, improving
concurrency. The per-page overhead is proportionally
higher with smaller pages, of course, but developers
can trade off space for time as an application requires.

3.7. Small footprint
Berkeley DB is a compact system. The full package,
including all access methods, recoverability, and trans-
action support is roughly 175K of text space on com-
mon architectures.

3.8. Cursors
In database terminology, a cursor is a pointer into an
access method that can be called iteratively to return
records in sequence. Berkeley DB includes cursor
interfaces for all access methods. This permits, for
example, users to traverse a B+tree and view records in
order. Pointers to records in cursors are persistent, so
that once fetched, a record may be updated in place.
Finally, cursors support access to chains of duplicate
data items in the various access methods.

3.9. Joins
In database terminology, a join is an operation that
spans multiple separate tables (or in the case of Berke-
ley DB, multiple separate DB files). For example, a
company may store information about its customers in
one table and information about sales in another. An
application will likely want to look up sales informa-
tion by customer name; this requires matching records
in the two tables that share a common customer ID
field. This combining of records from multiple tables is
called a join.

Berkeley DB includes interfaces for joining two or
more tables.



3.10. Transactions
Transactions have four properties [Gray93]:

• They are atomic. That is, all of the changes
made in a single transaction must be applied at
the same instant or not at all. This permits, for
example, the transfer of money between two
accounts to be accomplished, by making the
reduction of the balance in one account and the
increase in the other into a single, atomic action.

• They must be consistent. That is, changes to the
database by any transaction cannot leave the
database in an illegal or corrupt state.

• They must be isolatable. Regardless of the num-
ber of users working in the database at the same
time, every user must have the illusion that no
other activity is going on.

• They must be durable. Even if the disk that
stores the database is lost, it must be possible to
recover the database to its last transaction-consis-
tent state.

This combination of properties — atomicity, consis-
tency, isolation, and durability — is referred to as
ACIDity in the literature. Berkeley DB, like most
database systems, provides ACIDity using a collection
of core services.

Programmers can choose to use Berkeley DB’s transac-
tion services for applications that need them.

3.10.1. Write-ahead logging
Programmers can enable the logging system when they
start up Berkeley DB. During a transaction, the appli-
cation makes a series of changes to the database. Each
change is captured in a log entry, which holds the state
of the database record both before and after the change.
The log record is guaranteed to be flushed to stable
storage before any of the changed data pages are writ-
ten. This behavior — writing the log before the data
pages — is called write-ahead logging.

At any time during the transaction, the application can
commit, making the changes permanent, or roll back,
cancelling all changes and restoring the database to its
pre-transaction state. If the application rolls back the
transaction, then the log holds the state of all changed
pages prior to the transaction, and Berkeley DB simply
restores that state. If the application commits the trans-
action, Berkeley DB writes the log records to disk. In-
memory copies of the data pages already reflect the
changes, and will be flushed as necessary during nor-
mal processing. Since log writes are sequential, but
data page writes are random, this improves

performance.

3.10.2. Crashes and recovery
Berkeley DB’s write-ahead log is used by the transac-
tion system to commit or roll back transactions. It also
gives the recovery system the information that it needs
to protect against data loss or corruption from crashes.
Berkeley DB is able to survive application crashes, sys-
tem crashes, and even catastrophic failures like the loss
of a hard disk, without losing any data.

Surviving crashes requires data stored in several differ-
ent places. During normal processing, Berkeley DB
has copies of active log records and recently-used data
pages in memory. Log records are flushed to the log
disk when transactions commit. Data pages trickle out
to the data disk as pages move through the buffer cache.
Periodically, the system administrator backs up the data
disk, creating a safe copy of the database at a particular
instant. When the database is backed up, the log can be
truncated. For maximum robustness, the log disk and
data disk should be separate devices.

Different system failures can destroy memory, the log
disk, or the data disk. Berkeley DB is able to survive
the loss of any one of these repositories without losing
any committed transactions.

If the computer’s memory is lost, through an applica-
tion or operating system crash, then the log holds all
committed transactions. On restart, the recovery sys-
tem rolls the log forward against the database, reapply-
ing any changes to on-disk pages that were in memory
at the time of the crash. Since the log contains pre- and
post-change state for transactions, the recovery system
also uses the log to restore any pages to their original
state if they were modified by transactions that never
committed.

If the data disk is lost, the system administrator can
restore the most recent copy from backup. The recov-
ery system will roll the entire log forward against the
original database, reapplying all committed changes.
When it finishes, the database will contain every
change made by every transaction that ever committed.

If the log disk is lost, then the recovery system can use
the in-memory copies of log entries to roll back any
uncommitted transactions, flush all in-memory database
pages to the data disk, and shut down gracefully. At
that point, the system administrator can back up the
database disk, install a new log disk, and restart the sys-
tem.



3.10.3. Checkpoints
Berkeley DB includes a checkpointing service that
interacts with the recovery system. During normal pro-
cessing, both the log and the database are changing
continually. At any giv en instant, the on-disk versions
of the two are not guaranteed to be consistent. The log
probably contains changes that are not yet in the
database.

When an application makes a checkpoint, all committed
changes in the log up to that point are guaranteed to be
present on the data disk, too. Checkpointing is moder-
ately expensive during normal processing, but limits the
time spent recovering from crashes.

After an application or operating system crash, the
recovery system only needs to go back two

checkpoints1 to start rolling the log forward. Without
checkpoints, there is no way to be sure how long
restarting after a crash will take. With checkpoints, the
restart interval can be fixed by the programmer. Recov-
ery processing can be guaranteed to complete in a sec-
ond or two.

Software crashes are much more common than disk
failures. Many dev elopers want to guarantee that soft-
ware bugs do not destroy data, but are willing to restore
from tape, and to tolerate a day or two of lost work, in
the unlikley event of a disk crash. With Berkeley DB,
programmers may truncate the log at checkpoints. As
long as the two most recent checkpoints are present, the
recovery system can guarantee that no committed trans-
actions are lost after a software crash. In this case, the
recovery system does not require that the log and the
data be on separate devices, although separating them
can still improve performance by spreading out writes.

3.10.4. Two-phase locking
Berkeley DB provides a service known as two-phase
locking. In order to reduce the likelihood of deadlocks
and to guarantee ACID properties, database systems
manage locks in two phases. First, during the operation
of a transaction, they acquire locks, but never release
them. Second, at the end of the transaction, they
release locks, but never acquire them. In practice, most
database systems, including Berkeley DB, acquire
locks on demand over the course of the transaction,
then flush the log, then release all locks.

1 One checkpoint is not far enough. The recovery system can-
not be sure that the most recent checkpoint completed — it may have
been interrupted by the crash that forced the recovery system to run
in the first place.

Berkeley DB can lock entire database files, which cor-
respond to tables, or individual pages in them. It does
no record-level locking. By shrinking the page size,
however, dev elopers can guarantee that every page
holds only a small number of records. This reduces
contention.

If locking is enabled, then read and write operations on
a database acquire two-phase locks, which are held
until the transaction completes. Which objects are
locked and the order of lock acquisition depend on the
workload for each transaction. It is possible for two or
more transactions to deadlock, so that each is waiting
for a lock that is held by another.

Berkeley DB detects deadlocks and automatically rolls
back one of the transactions. This releases the locks
that it held and allows the other transactions to con-
tinue. The caller is notified that its transaction did not
complete, and may restart it. Developers can specify
the deadlock detection interval and the policy to use in
choosing a transaction to roll back.

The two-phase locking interfaces are separately
callable by applications that link Berkeley DB, though
few users have needed to use that facility directly.
Using these interfaces, Berkeley DB provides a fast,
platform-portable locking system for general-purpose
use. It also lets users include non-database objects in a
database transaction, by controlling access to them
exactly as if they were inside the database.

The Berkeley DB two-phase locking facility is built on
the fastest correct locking primitives that are supported
by the underlying architecture. In the current imple-
mentation, this means that the locking system is differ-
ent on the various UNIX platforms, and is still more
different on Windows NT. In our experience, the most
difficult aspect of performance tuning is finding the
fastest locking primitives that work correctly on a par-
ticular architecture and then integrating the new inter-
face with the several that we already support.

The world would be a better place if the operating sys-
tems community would uniformly implement POSIX
locking primitives and would guarantee that acquiring
an uncontested lock was a fast operation. Locks must
work both among threads in a single process and
among processes.

3.11. Concurrency
Good performance under concurrent operation is a crit-
ical design point for Berkeley DB. Although Berkeley
DB is itself not multi-threaded, it is thread-safe, and
runs well in threaded applications. Philosophically, we
view the use of threads and the choice of a threads



package as a policy decision, and prefer to offer mecha-
nism (the ability to run threaded or not), allowing appli-
cations to choose their own policies.

The locking, logging, and buffer pool subsystems all
use shared memory or other OS-specific sharing facili-
ties to communicate. Locks, buffer pool fetches, and
log writes behave in the same way across threads in a
single process as they do across different processes on a
single machine.

As a result, concurrent database applications may start
up a new process for every single user, may create a
single server which spawns a new thread for every
client request, or may choose any policy in between.

Berkeley DB has been carefully designed to minimize
contention and maximize concurrency. The cache man-
ager allows all threads or processes to benefit from I/O
done by one. Shared resources must sometimes be
locked for exclusive access by one thread of control.
We hav e kept critical sections small, and are careful not
to hold critical resource locks across system calls that
could deschedule the locking thread or process. Sleep-
ycat Software has customers with hundreds of concur-
rent users working on a single database in production.

4. Engineering Philosophy
Fundamentally, Berkeley DB is a collection of access
methods with important facilities, like logging, locking,
and transactional access underlying them. In both the
research and the commercial world, the techniques for
building systems like Berkeley DB hav e been well-
known for a long time.

The key advantage of Berkeley DB is the careful atten-
tion that has been paid to engineering details through-
out its life. We hav e carefully designed the system so
that the core facilities, like locking and I/O, surface the
right interfaces and are otherwise opaque to the caller.
As programmers, we understand the value of simplicity
and have worked hard to simplify the interfaces we sur-
face to users of the database system.

Berkeley DB avoids limits in the code. It places no
practical limit on the size of keys, values, or databases;
they may grow to occupy the available storage space.

The locking and logging subsystems have been care-
fully crafted to reduce contention and improve through-
put by shrinking or eliminating critical sections, and
reducing the sizes of locked regions and log entries.

There is nothing in the design or implementation of
Berkeley DB that pushes the state of the art in database
systems. Rather, we hav e been very careful to get the
engineering right. The result is a system that is

superior, as an embedded database system, to any other
solution available.

Most database systems trade off simplicity for correct-
ness. Either the system is easy to use, or it supports
concurrent use and survives system failures. Berkeley
DB, because of its careful design and implementation,
offers both simplicity and correctness.

The system has a small footprint, makes simple opera-
tions simple to carry out (inserting a new record takes
just a few lines of code), and behaves correctly in the
face of heavy concurrent use, system crashes, and even
catastrophic failures like loss of a hard disk.

5. The Berkeley DB 2.x Distribution
Berkeley DB is distributed in source code form from
www.sleepycat.com. Users are free to download and
build the software, and to use it in their applications.

5.1. What is in the distribution
The distribution is a compressed archive file. It
includes the source code for the Berkeley DB library, as
well as documentation, test suites, and supporting utili-
ties.

The source code includes build support for all sup-
ported platforms. On UNIX systems Berkeley DB uses
the GNU autoconfiguration tool, autoconf, to iden-
tify the system and to build the library and supporting
utilities. Berkeley DB includes specific build environ-
ments for other platforms, such as VMS and Windows.

5.1.1. Documentation
The distributed system includes documentation in
HTML format. The documentation is in two parts: a
UNIX-style reference manual for use by programmers,
and a reference guide which is tutorial in nature.

5.1.2. Test suite
The software also includes a complete test suite, writ-
ten in Tcl. We believe that the test suite is a key advan-
tage of Berkeley DB over comparable systems.

First, the test suite allows users who download and
build the software to be sure that it is operating cor-
rectly.

Second, the test suite allows us, like other commercial
developers of database software, to exercise the system
thoroughly at every release. When we learn of new
bugs, we add them to the test suite. We run the test
suite continually during development cycles, and



always prior to release. The result is a much more reli-
able system by the time it reaches beta release.

5.2. Binary distribution
Sleepycat makes compiled libraries and general binary
distributions available to customers for a fee.

5.3. Supported platforms
Berkeley DB runs on any operating system with a
POSIX 1003.1 interface [IEEE96], which includes vir-
tually every UNIX system. In addition, the software
runs on VMS, Windows/95, Windows/98, and Win-
dows/NT. Sleepycat Software no longer supports
deployment on sixteen-bit Windows systems.

6. Berkeley DB 2.x Licensing
Berkeley DB 2.x is distributed as an Open Source prod-
uct. The software is freely available from us at our
Web site, and in other media. Users are free to down-
load the software and build applications with it.

The 1.x versions of Berkeley DB were covered by the
UC Berkeley copyright that covers software freely
redistributable in source form. When Sleepycat Soft-
ware was formed, we needed to draft a license consis-
tent with the copyright governing the existing, older
software. Because of important differences between
the UC Berkeley copyright and the GPL, it was impos-
sible for us to use the GPL. A second copyright, with
terms contradictory to the first, simply would not have
worked.

Sleepycat wanted to continue Open Source develop-
ment of Berkeley DB for several reasons. We agree
with Raymond [Raym98] and others that Open Source
software is typically of higher quality than proprietary,
binary-only products. Our customers benefit from a
community of developers who know and use Berkeley
DB, and can help with application design, debugging,
and performance tuning. Widespread distribution and
use of the source code tends to isolate bugs early, and
to get fixes back into the distributed system quickly. As
a result, Berkeley DB is more reliable. Just as impor-
tantly, individual users are able to contribute new fea-
tures and performance enhancements, to the benefit of
ev eryone who uses Berkeley DB. From a business per-
spective, Open Source and free distribution of the soft-
ware creates share for us, and gives us a market into
which we can sell products and services. Finally, mak-
ing the source code freely available reduces our support
load, since customers can find and fix bugs without
recourse to us, in many cases.

To preserve the Open Source heritage of the older
Berkeley DB code, we drafted a new license governing
the distribution of Berkeley DB 2.x. We adopted terms
from the GPL that make it impossible to turn our Open
Source code into proprietary code owned by someone
else.

Briefly, the terms governing the use and distribution of
Berkeley DB are:

• your application must be internal to your site, or

• your application must be freely redistributable in
source form, or

• you must get a license from us.

For customers who prefer not to distribute Open Source
products, we sell licenses to use and extend Berkeley
DB at a reasonable cost.

We work hard to accommodate the needs of the Open
Source community. For example, we have crafted spe-
cial licensing arrangements with Gnome to encourage
its use and distribution of Berkeley DB.

Berkeley DB conforms to the Open Source definition
[Open99]. The license has been carefully crafted to
keep the product available as an Open Source offering,
while providing enough of a return on our investment to
fund continued development and support of the prod-
uct. The current license has created a business capable
of funding three years of development on the software
that simply would not have happened otherwise.

7. Summary
Berkeley DB offers a unique collection of features, tar-
geted squarely at software developers who need simple,
reliable database management services in their applica-
tions. Good design and implementation and careful
engineering throughout make the software better than
many other systems.

Berkeley DB is an Open Source product, available at
www.sleepycat.com for download. The distributed sys-
tem includes everything needed to build and deploy the
software or to port it to new systems.

Sleepycat Software distributes Berkeley DB under a
license agreement that draws on both the UC Berkeley
copyright and the GPL. The license guarantees that
Berkeley DB will remain an Open Source product and
provides Sleepycat with opportunities to make money
to fund continued development on the software.



8. References
[Come79]

Comer, D., “The Ubiquitous B-tree,” ACM Com-
puting Surveys Volume 11, number 2, June 1979.

[Gray93]
Gray, J., and Reuter, A., Tr ansaction Processing:
Concepts and Techniques, Morgan-Kaufman
Publishers, 1993.

[IEEE96]
Institute for Electrical and Electronics Engineers,
IEEE/ANSI Std 1003.1, 1996 Edition.

[Litw80]
Litwin, W., “Linear Hashing: A New Tool for
File and Table Addressing,” Proceedings of the
6th International Conference on Very Large
Databases (VLDB), Montreal, Quebec, Canada,
October 1980.

[Open94]
The Open Group, Distributed TP: The XA+
Specification, Version 2, The Open Group, 1994.

[Open99]
Opensource.org, “Open Source Definition,”
www.opensource.org/osd.html, version 1.4, 1999.

[Raym98]
Raymond, E.S., “The Cathedral and the Bazaar,”
www.tuxedo.org/˜esr/writings/cathedral-
bazaar/cathedral-bazaar.html, January 1998.

[Selt91]
Seltzer, M., and Yigit, O., “A New Hashing Pack-
age for UNIX,” Proceedings 1991 Winter
USENIX Conference, Dallas, TX, January 1991.

[Selt92]
Seltzer, M., and Olson, M., “LIBTP: Portable
Modular Transactions for UNIX,” Proceedings
1992 Winter Usenix Conference, San Francisco,
CA, January 1992.

[Ston82]
Stonebraker, M., Stettner, H., Kalash, J.,
Guttman, A., and Lynn, N., “Document Process-
ing in a Relational Database System,” Memoran-
dum No. UCB/ERL M82/32, University of Cali-
fornia at Berkeley, Berkeley, CA, May 1982.


